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a b s t r a c t

Acid-mediated tumour invasion is receiving increasing experimental and clinical attention. Previous

models proposed to describe this phenomenon failed to capture key properties of the system, such as

the existence of the benign steady state, or predicted incorrectly the size of the inter-tissue gap. Here we

show that taking proper account of quiescence ameliorates these drawbacks as well as revealing novel

behaviour. The simplicity of the model allows us to fully identify the key parameters controlling

different aspects of behaviour.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The tumour microenvironment is significantly different from
that of normal tissue; its chaotic vasculature leads to a decrease in
supply of essential nutrients and a decrease in the removal of
waste products. One biomarker that has received much attention
is tumour hypoxia (poor oxygenation). Near-zero oxygen levels are
observed at distances of only 150mm from a feeding blood vessel
(Thomlinson and Gray, 1955; Gatenby and Gillies, 2004). As such,
areas of hypoxia are commonplace within tumours. Identifying
the regions of hypoxia within tumours has been a focus of recent
research, as cells residing within such regions are known to be
resistant to various radio- and chemo-therapeutic strategies.
Moreover, cells subjected to chronic hypoxia are found to be
more aggressive, displaying increased metastasis, invasion and
mutation (Gillies et al., 2002).

Acidity also plays a key role in tumour development. Like
hypoxia, regions of low pH are commonplace within tumours.
Moreover, the effects of acidosis are similar to those of hypoxia,
with acidosis promoting metastasis, invasion and mutation
(Gillies et al., 2002). However, unlike hypoxia, there has been
relatively little research into acidity as a factor for promoting
tumour development. The reasons for this are unclear; it may be
that many investigators assume that the acidity is simply a
byproduct of low oxygen levels. Cells respond to periods of

hypoxia by converting to anaerobic respiration, or glycolysis,
which in turn produces lactic acid and brings about lower tissue
pH. However, the work of Warburg early in the last century
(Warburg, 1930) showed that the increased reliance on glycolysis
to produce energy in many aggressive tumours occurs even in the
presence of sufficient oxygen. As such, tumour acidification is an
intrinsic property of both poor vasculature and altered tumour
cell metabolism, and occurs independently of hypoxia.

In an earlier work (Smallbone et al., 2005), we developed a
simple model of (spherically symmetric) tumour growth to
examine the role of acidosis in the interaction between normal
and tumour cell populations. Assuming that a mass of tumour
cells displays typical characteristics of increased acid production
coupled with a resistance to low pH, we predicted that the
hydrogen ions produced by the tumour will diffuse into the
surrounding normal tissue, inducing cellular death. Thus acidity
provides a simple mechanism for cancer invasion. Both vascular
and avascular tumour dynamics were investigated, and a number
of different potential behaviours arose. Whilst an avascular
tumour always proceeds to a benign steady state, a vascular
tumour may display either benign or invasive dynamics, depend-
ing on the value of a critical bifurcation parameter. The model also
predicted the development of an experimentally observed
acellular gap separating the advancing tumour and receding host
tissue fronts (Gatenby and Gawlinski, 1996).

In this paper, we extend the previous model through the
inclusion of quiescent (non-proliferating) tumour cells. Within
avascular tumours, in particular, the vast majority of viable cells
are quiescent, with active cells restricted to the nutrient-rich
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outer rim. These quiescent cells are essentially metabolically
inactive, producing significantly less acid than their proliferating
counterparts. By considering both active and quiescent cells, we
give a more physiologically accurate description of the acidity in
and around the tumour tissue. Moreover, the interfacial gap is
predicted to be an order of magnitude smaller than the tumour
radius at equilibrium, in line with experimental evidence.

2. Model development

We model the tumour as a sphere of radius RM and assume that
spherical symmetry prevails at all times. Let H denote the
extracellular concentration of excess hydrogen ions, where excess
means above its normal level of 10�7:25 M � pH 7:25. We assume
that there is a sharp acid threshold concentration HD above which
tumour cells cannot survive. Similarly, normal cells die when this
concentration H rises above HN . Tumour cells are relatively
resistant to extracellular acidity due to increased Naþ=Hþ antiport
activity and mutations in acid-induced apoptosis pathways, hence
HN5HD. High levels of acidity can also induce tumour cells to
cease proliferation, i.e. become quiescent (Casciari et al., 1992).
Specifically, acidosis promotes the production of hypoxia induci-
ble factor 1 (HIF-1); via a cyclin-dependent kinase inhibitor, p27,
HIF-1 acts to inhibit the cell cycle (Goda et al., 2003; Murphy et al.,
2004). Hence we assume that there also exists a sharp acidity
threshold HQ above which tumour cells cease proliferation.

These assumptions typically lead to a tumour geometry as
presented in Fig. 1. Necrotic tissue is located at the core of the
tumour RoRD. Within the viable region RDoRoRM , the active
proliferating tumour cells are restricted to the outer rim
RQoRoRM , whilst the region RDoRoRQ contains quiescent cells.
Each of the radii are defined by the acid levels at their
boundary—HðRiÞ ¼ Hi, for i ¼ D;Q ;N. We define the acid produc-
tion rate fQ per cell for quiescent cells and fA for active cells,
where fQ5fA as quiescent cells are essentially metabolically
inactive, producing significantly less acid than proliferating cells

(Casciari et al., 1992). The primary mode for removal of acid from
the system is through blood vessels and we assume that this
occurs at a rate rV proportional to the local acid concentration and
local blood vessel density. Assuming that the vascular density is
taken to be V ¼ VM within the viable tumour region, and V ¼ VN

elsewhere, we have

qH

qt
� DHr

2H ¼

0; 0oRoRD;

fQ KM � rV VMH; RDoRoRQ ;

fAKM � rV VMH; RQoRoRM ;

�rV VNH; RMoR;

8>>><
>>>:

(1)

where KM denotes the tumour cell density and DH the acid
diffusion coefficient.

Following Greenspan (1972), we assume that the necrotic
cellular debris continually disintegrates into simpler chemical
compounds at a rate proportional to the core volume. These
compounds flow into the surrounding tissue and the cell volume
lost in this way is replaced by cells pushed inward through surface
tension forces. Further assuming that the rate of cellular
proliferation is constant per unit volume in the active proliferating
region, we have

dR3
M

dt
¼ SðR3

M � R3
Q Þ � LR3

D. (2)

Taking r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rV VN=DH

p
, H0 ¼ fAKM=rV VN and T ¼ 3=S, we may

non-dimensionalize Eqs. (1) and (2) with r ¼ rR, h ¼ H=H0 and
t ¼ t=T to obtain

x
qh

qt �
q2h

qr2
þ

2

r

qh

qr

 !
¼

0; 0ororD;

��c2h; rDororQ ;

1� c2h; rQororM ;

�h; rMor;

8>>>><
>>>>:

(3)

hðriÞ ¼ hi; i ¼ D;Q ;N, (4)

r2
M

drM

dt ¼ r3
M � r3

Q � g
3r3

D, (5)

where x ¼ S=3rV VN , � ¼ fQ=fA51, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VM=VN

p
, ri ¼ rRi, hi ¼

Hi=H0 and g ¼
ffiffiffiffiffiffiffiffi
L=S3

p
. The data of Martin and Jain (1994)

demonstrate a smooth pH gradient extending from the tumour
edge into the peritumoural normal tissue. Hence we assume
here that limr!1hðrÞ ¼ 0, i.e. that there is no excess acidity
a long distance from the tumour, and further that h and hr are
continuous at internal boundaries r ¼ rD, rQ and rM .

Typical parameter values are given in Table 1. Given a tumour
cell cycle length of 5 days we may estimate S ¼ 1:6� 10�6 s�1,
from which we find x ¼ 2:24� 10�3

� 0. This property that the
acid diffusion timescale ð�minutesÞ is much shorter than the

ARTICLE IN PRESS

R2

Tumour

Normal

RD

RQ

RM

RN

Fig. 1. Cross-section of a tumour and its surrounding tissue showing the central

necrotic core, RoRD , a layer of quiescent tumour cells RDoRoRQ , a layer of

proliferating tumour cells RQoRoRM , the acellular gap separating normal and

tumour cell fronts RMoRoRN , and the normal cells RNoR.

Table 1
Typical parameter values used in the model

Parameter Value Reference

r 4:7 cm�1 Martin and Jain (1994)

H0 10�5 M Martin and Jain (1994)

DH 1:08� 10�5 cm2 s�1 Gatenby and Gawlinski (1996)

� 0.01 Patel et al. (2001)

g 0.5 Estimated

HD 10�6 M Patel et al. (2001)

HQ 10�6:4 M Patel et al. (2001)

HN 10�6:8 M Patel et al. (2001)

hD 0.1 ¼ HD=H0

hQ 0.04 ¼ HQ =H0

hN 0.01 ¼ HN=H0

c 0–1 Estimated

s0 0.5 Estimated

K. Smallbone et al. / Journal of Theoretical Biology 255 (2008) 106–112 107



tumour growth timescale ð�daysÞ allows us to assume x ¼ 0—i.e.
that the acid quickly redistributes and reaches equilibrium.
Following Patel et al. (2001), we take � ¼ 0:01—i.e. the rate of
acid production of quiescent tumour cells is two orders of
magnitude less than their proliferating counterparts.

It can be argued that the various simplifying assumptions
above are too unrealistic to represent complex biological
phenomena such tumour growth. For example, whilst radial
symmetry holds for early tumour growth, during later develop-
ment tumours often become asymmetric; indeed the degree of
irregularity of the tumour boundary may provide clinicians with
useful prognostic information (Cross et al., 1994). Moreover,
apoptosis and necrosis are dependent on a wide range of
environmental parameters besides acidity, with subpopulations
of a heterogeneous tumour responding differently to each cue.
However, the aim of this paper is to highlight the role of acidity;
under our assumptions the model remains analytically tractable
and allows us to fully understand general tissue dynamics. These
effects can subsequently be included in more complex models
where analysis is not possible, such as Smallbone et al. (2007a).

2.1. Avascular and vascular tumours, no quiescence

In an earlier work (Smallbone et al., 2005), we investigated
Eqs. (3)–(5) in the absence of quiescence (i.e. hQ ¼ hD), but we
reiterate the results here for completeness. Two cases were
considered, both an avascular tumour ðc ¼ 0Þ and a vascular
tumour whose blood vessel density was the same as that found in
normal tissue ðc ¼ 1Þ.

In the avascular case, a benign two-phase growth pattern is
observed. Initially, the tumour grows exponentially, without a
necrotic core. At a critical radius, a necrotic core begins to develop
and the second phase of tumour growth begins. During this phase,
we see very little change in tumour size. However, the necrotic
core grows rapidly towards its equilibrium value. A similar growth
pattern is observed in the vascular case when hDo1, and is
presented in Fig. 2; here we see formation of a necrotic core at
radius rM ¼ 0:53 (RM � 1 mm) before the tumour reaches a final
size of rM ¼ 0:8 (RM � 1:7 mm). If this critical parameter hD41,
however, the vascular tumour will display invasive exponential
growth, without the formation of a necrotic core.

Fig. 2 also shows normal tissue receding as the tumour grows.
Notice the development of an acellular gap between the
advancing tumour front and receding normal tissue, consistent
with experimental observations (Gatenby and Gawlinski, 1996).
However, one criticism that may be levelled at the model is the
size of this acellular gap—predicted to be of a similar size to the
tumour, and larger than the experimentally determined estimates
of 100mm.

2.2. Avascular tumours with quiescence

In this section, we extend the previous model through the
inclusion of quiescent tumour cells, focussing first on avascular
tumour growth (i.e. c ¼ 0), as this case is more amenable to
analysis. Assuming as mentioned before that x ¼ 0, Eq. (3) has
solution

hðrÞ ¼

k1; 0ororD;

k2 � k3
1

r
� �

1

6
r2; rDororQ ;

k4 � k5
1

r
�

1

6
r2; rQororM ;

k6
1

r
e�r ; rMor;

8>>>>>>>>><
>>>>>>>>>:

(6)

where the constants ki are given by

k1 ¼
2�r3

D þ 2ð1� �Þr3
Q þ r2

MðrM þ 3Þ

6ðrM þ 1Þ
�
�r2

D þ ð1� �Þr
2
Q

2
,

k2 ¼ k1 þ �
r2

D

2
,

k3 ¼ �
r3

D

3
,

k4 ¼ k1 þ
�r2

D þ ð1� �Þr
2
Q

2
,

k5 ¼
�r3

D þ ð1� �Þr
3
Q

3
,

k6 ¼ erM
��r3

D � ð1� �Þr
3
Q þ r3

M

3ðrM þ 1Þ
. (7)

Assuming that acidity is the sole cause of necrosis and quiescence
within the tumour allows us to calculate the radii of the necrotic
core, rD, and the quiescent region, rQ , as functions of the tumour
outer radius, rM . While the tumour consists of only active
proliferating cells (i.e. rD ¼ rQ ¼ 0), from Eq. (6) we have

hð0Þ ¼
r2

MðrM þ 3Þ

6ðrM þ 1Þ
�!1 as rM !1. (8)

Thus at some critical value rM ¼ r̂M , hð0Þ ¼ hQ , and the cells at the
centre of the tumour will become quiescent. This critical radius is
found by solving

c1ðr̂MÞ ¼ r̂
3
M þ 3r̂

2
M � 6hQ r̂M � 6hQ ¼ 0. (9)

The positive solution r̂M is given by Eq. (24), taking n ¼ 0.
If rM4r̂M , then a quiescent region exists, and its radius rQ may

be found by noting that the acid concentration at its boundary
will be hðrQ Þ ¼ hQ :

c2ðrQ ; rMÞ ¼ 2ð1� �Þr3
Q � ð3� 2�ÞðrM þ 1Þr2

Q þ c1ðrMÞ ¼ 0. (10)

The solution in rQ is given by Eq. (24), choosing n ¼ 2.
If �40, then we find that acidity will increase at the tumour

boundary as it grows. Eventually all tumour cells will become
quiescent, and the radius r̂Q at which this occurs may be found
through solution of Eq. (10), with rQ ¼ rM:

r̂Q ¼
3hQ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9h2

Q þ 12hQ�
q

2�
. (11)
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Fig. 2. Results from Eqs. (3) to (5). Recession of normal tissue accompanying

vascular (c ¼ 1) tumour growth, in the absence of quiescence (hQ ¼ hD).

Parameter values used are hN ¼ 0:01, g ¼ 0:5, hD ¼ 0:1 and rMð0Þ ¼ 0:2.
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Consider now the formation of necrosis within the tumour.
While rD ¼ 0 and rQ40, from Eq. (6) we have

hð0Þ ¼ hðrQ Þ þ �
r2

Q

6
¼ hQ þ �

r2
Q

6
. (12)

Thus setting

h� ¼ hQ þ �
r̂

2
Q

6
¼

hQ ðr̂Q þ 3Þ

2
, (13)

we see two distinct patterns of growth, dependent on the sign of
hD � h�. If hD4h�, then no necrotic core will develop, and the
tumour will grow to a state containing only quiescent cells. If
hDoh�, however, at some critical value rM ¼ r̂D, hð0Þ ¼ hD and the
cells at the centre of the tumour will become necrotic. From
Eq. (12), we find that this occurs when

rQ ¼ r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðhD � hQ Þ

�

r
. (14)

r̂D may then be found by solving c2ðr�; rMÞ ¼ 0 for rM. This is
achieved using Eq. (24), taking n ¼ 0.

If rM4r̂D, then a necrotic core exists and its radius is given by
noting that hðrDÞ ¼ hD:

c3ðrD; rQ Þ ¼ 2r3
D � 3rQ r2

D þ ðr
2
Q � r2

�ÞrQ ¼ 0. (15)

The solution in rD is found using Eq. (24), taking n ¼ 2.
Furthermore, we know that hðrQ Þ ¼ hQ :

c4ðrD; rQ ; rMÞ ¼ rQ c2ðrQ ; rMÞ � 2�ð1þ rM � rQ Þr
3
D ¼ 0. (16)

Given rM , we may numerically find rQ 2 ðrD; rMÞ from Eq. (16),
using the expression for rD in Eq. (15).

The set of equations above allows calculation of the non-
dimensional quiescent tissue radius, rQ , and the necrotic core
radius, rD, for any value of outer radius rM . These radii may then be
used to determine tumour growth from Eq. (5). Assuming that, at
time 0, the tumour is small enough that there is no necrotic
core or quiescent region (i.e. rD ¼ rQ ¼ 0), then the system is
completely defined by Eqs. (5), (15) and (16), relying on
parameters �, g, hD, hQ and the initial condition rMð0Þ.

Examples of the growth patterns observed are given in Fig. 3.
Using typical parameter estimates of hD ¼ 0:1 and hQ ¼ 0:04,
hDoh� and so we see a three-phase growth. Initially, the tumour
grows exponentially, whilst all cells are proliferative. At the
critical radius rM ¼ r̂M , the central tissue becomes quiescent,
restricting the active cells to a thin outer rim (Fig. 3(a)). At a later
stage, when rM ¼ r̂D, we see the development of a necrotic core,
followed by convergence of the tumour to its equilibrium size
(Fig. 3(b)), behaviour typically seen in multicellular spheroids
grown in vitro. In Fig. 3(c), we increase the tumour’s susceptibility
to acid-induced quiescence, taking hQ ¼ 0:01, equivalent to pH
6.8. In this case, hD4h�, and no necrotic core will develop. Rather,
it slowly grows to its equilibrium size rM ¼ r̂Q where all the
tumour cells are quiescent. This description of a quiescent tumour
with no necrosis corresponds to a typical benign growth such as
an adenoma.

We move on now to the acid-mediated invasion of normal
tissue, and the corresponding development of an acellular gap
separating the advancing tumour and receding host tissue fronts.
The normal tissue front rN is defined by the relationship hðrNÞ ¼

hN i.e. k6e�rN=rN ¼ hN , which has solution

rN ¼W0
k6

hN

� �
, (17)

where W0 denotes the principal value of the Lambert W (or
product log) function—the inverse function of f ðWÞ ¼WeW

(Corless et al., 1996).
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Fig. 3. Results from Eqs. (3) to (5). (a) Early stage and (b) late-stage avascular

(c ¼ 0) tumour growth with quiescence and necrosis, with parameters � ¼ 0:01,

g ¼ 0:5, hD ¼ 0:1, hQ ¼ 0:04 and rMð0Þ ¼ 0:1. (c) Non-necrotic growth with

parameters � ¼ 0:01, hD ¼ 0:1, hQ ¼ 0:01 and rMð0Þ ¼ 0:1.

K. Smallbone et al. / Journal of Theoretical Biology 255 (2008) 106–112 109



In Fig. 3(b), we see that in necrotic growth, the layer of
proliferating cells forms a very thin layer at the edge of the
tumour, hence we may approximate rM � rQ at equilibrium. In
non-necrotic growth (c), there are no proliferating cells at
equilibrium, hence rM ¼ rQ . In both cases, we may assume that
hðrMÞ � hðrQ Þ ¼ hQ . Then, from Eqs. (5) and (6) we find

o ¼ rN � rM �W0 rMerM
hQ

hN

� �
(18)

� 1þ r�1
M

� �
log

hQ

hN
, (19)

where the second equation arises from taking the Taylor
expansion about rM ¼ 1.

In Fig. 4 we compare the interfacial width at equilibrium o
with changes in tumour quiescence threshold hQ . We see that
Eq. (19) represents a good approximation to the gap size o. Most
importantly, through comparison of Figs. 3 and 4, we see that the
equilibrium tumour width is predicted to be approximately 10
times as large as the interfacial width. This is significantly more
physiologically accurate than the basic model (see Fig. 2), where
the gap was predicted to be of a similar size to the tumour. Indeed,
if we take the steady state tumour radius rM ¼ r̂Q from Eq. (11),
occurring in non-necrotic growth, and the approximate value for
o in Eq. (19), the gap to tumour ratio is given by

w

rM
¼

�
3hQ

log
hQ

hN
(20)

equal to 0.11 at our default parameter values.

2.3. Vascular tumours with quiescence

All of the analyses presented above are inherently reliant on
the property that acidity levels increase as one moves toward the
centre of the tumour. However, in the case of a vascularized
tumour where we consider the effects of quiescence, this may not
be the case, and the tumour may not adopt the typical geometry
presented in Fig. 1.

Indeed in Smallbone et al. (2007b), we examined a simplified
version of Eq. (3), ignoring the effects of necrosis (i.e. rD ¼ 0, or
equivalently hD !1). We found that the equation has no solution

x ¼ 0, provided hQc
2
2 ð�;1Þ (as is typically the case), and the

tumour is sufficiently large (rM40:31, equivalent to RM40:7 mm
at our typical parameter values). This implies that the typical
assumption of temporal homogeneity is not valid, and instead the
full dynamics must be considered.

In the absence of necrosis, we may reformulate Eqs. (3) and (4)
in terms of the Heaviside function y:

qh

qs�
q2h

qr2
þ

2

r

qh

qr

 !

¼
ð1� �ÞyðhQ � hðs� s0ÞÞ þ �� c2h; 0ororM ;

�h; rMor;

8<
: (21)

where we change the timescale to that of acid diffusion s ¼ t=x
and introduce a lag term s0 between extracellular acid levels
changing, and cells mounting the appropriate response of
quiescence or proliferation.

A typical model solution is presented in Fig. 5. Taking s0 ¼ 0:5,
equivalent to a lag of t0 � 30 min, we investigate how acidity
levels vary through the tumour. The model predicts that cycles of
acidity will be seen: high levels of acidity induce cells to cease
proliferation. Quiescent cells produce significantly less acid than
their proliferating counterparts, thus the level of acidity will
decrease, allowing cells to resume proliferation.

Initially, all the cells within the tumour are below the
quiescence threshold. Cycles of acidity are out of phase for
different sections of the tumour and an increase in acidity is first
seen at the tumour edge ðr ¼ 1Þ. Acidity then increases at the
tumour centre ðr ¼ 0Þ, before reaching its maximum level. This
figure demonstrates that, whilst acid levels are on average higher
in the tumour centre than the tumour edge, this property does not
hold for all points in the acid cycle. Indeed the first cells to become
quiescent due to extracellular acidity are not at the tumour
centre; rather this occurs at r � 0:81 near the edge of the tumour.

Fluctuations in metabolite levels are known to occur within
tumours with discrete periodicities of hours, minutes and days
(Baudelet et al., 2004; Braun et al., 1999). Cells that are best suited
to respond to these periods of cellular stress, such as through
constitutive upregulation of aerobic glycolysis, will be positively
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selected by somatic evolutionary forces. These cycles are assumed
to occur due to hæmodynamic variations such as changes in the
local concentration of red blood cells or structural rearrangement
of blood vessels (Gatenby and Gillies, 2004). We have shown that
an alternative hypothesis, namely quiescence in response to
cellular stress and the corresponding drop in metabolism,
provides a negative feedback mechanism capable of reproducing
such metabolite cycles.

3. Discussion

In this paper, we have presented a selection of models of both
vascular and avascular tumour growth, where the invasion
mechanism is the acidification of the microenvironment sur-
rounding the tumour due to increased reliance on glycolysis. A
major criticism of an earlier model was that the width of the
interfacial acellular gap was predicted to be of a similar size to the
tumour, larger than has been observed experimentally. Within
avascular tumours in particular, the vast majority of the viable
cells are quiescent, producing significantly less acid than their
proliferating counterparts. As such, we extend the basic model to
include the effects of quiescent, as well as proliferating and
necrotic tumour cells.

Analysis of the avascular model predicts two regimes of
tumour growth, dependent on a relationship between the
thresholds for acidity-induced tumour cell quiescence hQ and
tumour cell death hD. If the tumour is sufficiently resistant to
acid-induced cell death, we predict that no necrotic core will
develop, and the tumour will grow to a state containing only
quiescent tissue. Conversely, if the resistance hD drops below a
critical threshold h�, we predict that, at equilibrium, the
proliferative tumour tissue will be limited to a thin, relatively
alkaline, region at the tumour edge, whilst the core of the tumour
will contain necrotic material. At steady state, proliferation at the
rim is counterbalanced by volume loss through degradation of the
necrotic core.

In both cases, we predict that the advancing tumour front is
separated from the receding normal tissue by an acellular gap. In
contrast to earlier work, we find that the gap width is an order of
magnitude smaller than the tumour radius at equilibrium. A
simple functional approximation (Eq. (19)) allows us to calculate
the expected width of this gap in terms of the tumour radius, the
tumour tissue quiescence threshold ðhQ Þ and the host tissue death
threshold ðhNÞ.

As blood vessels are the primary mode for waste removal,
within avascular tumours we see a build-up of acid, limiting
growth through auto-toxicity. To demonstrate sustained growth,
tumours must acquire a vascular bed; if the vascular density rises
sufficiently, the tumour avoids excess acid accumulation and may
invade the whole of the normal tissue space. However, the
introduction of quiescence into the model adds an interesting new
dynamic: cycles of acidity may be observed in the tumour.
Previously, variations in substrate levels were assumed to occur
through oscillations in the hæmodynamics of nearby and distant
blood vessels. Within our modelling framework, quiescent cells
produce less acid than their proliferating counterparts. Through
vascular removal, acidity levels decrease, in time allowing cells to
resume proliferation. This simple negative feedback mechanism is
shown to produce the observed cycles in tumour substrate levels.

Simple reaction–diffusion systems are used here to describe
the dynamics of acidity in and around a tumour. Tumour growth
is dependent on the complex interactive dynamics of many
different factors, including the supply of nutrients and growth
factors and the specific mutations displayed by the tumour
population. Moreover, inhomogeneities can play an important

role, and stochastic or cellular automaton models (Patel et al.,
2001; Smallbone et al., 2007a) may be more appropriate than the
mean-field approach used here. However, using simplifying
assumptions we have shown that increased tumour acid produc-
tion alone, almost universally observed in clinical cancers, is
sufficient to explain a variety of behaviours; these include benign
and invasive development, an interstitial gap separating the
tumour and host tissue fronts, and cycles of acid levels driven
by cellular quiescence. Moreover, the tractability of the model has
allowed us to identify the key parameters controlling the change
between different growth regimes.
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Appendix

Given a cubic equation

f ðxÞ ¼ x3 þ a2x2 þ a1xþ a0 ¼ 0, (22)

define

P ¼
3a1 � a2

2

9
,

Q ¼
9a1a2 � 27a0 � 2a3

2

54
. (23)

Then, if the polynomial discriminant D ¼ P3
þ Q2o0, all solutions

to Eq. (22) are real and unequal, and are given by

xn ¼ 2
ffiffiffiffiffiffiffi
�P
p

cos
yþ 2np

3

� �
�

a2

3
, (24)

where

y ¼ arccos
Qffiffiffiffiffiffiffiffiffi
�P3

p
 !

(25)

for n ¼ 0;1;2, where we choose arccos : ½�1;1� ! ½0;p�.

References

Baudelet, C., Ansiaux, R., Jordan, B.F., Havaux, X., Macq, B., Gallez, B., 2004.
Physiological noise in murine solid tumours using T2%-weighted gradient-
echo imaging: a marker of tumour acute hypoxia? Phys. Med. Biol. 49,
3389–3411.

Braun, R.D., Lanzen, J.L., Dewhirst, M.W., 1999. Fourier analysis of fluctuations of
oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am.
J. Physiol. 277, H551–H568.

Casciari, J.J., Sotirchos, S.V., Sutherland, R.M., 1992. Variations in tumor cell growth
rates and metabolism with oxygen concentration, glucose concentration, and
extracellular pH. J. Cell. Physiol. 151, 386–394.

Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., 1996. On the
Lambert W function. Adv. Comput. Math. 5, 329–359.

Cross, S.S., Bury, J.P., Silcocks, P.B., Stephenson, T.J., Cotton, D.W.K., 1994. Fractal
geometric analysis of colorectal polyps. J. Pathol. 172, 317–323.

Gatenby, R.A., Gawlinski, E.T., 1996. A reaction–diffusion model of cancer invasion.
Cancer Res. 56, 5745–5753.

Gatenby, R.A., Gillies, R.J., 2004. Why do cancers have high aerobic glycolysis? Nat.
Rev. Cancer 4, 891–899.

Gillies, R.J., Raghunand, N., Karczmar, G.S., Bhujwalla, Z.M., 2002. MRI of the tumor
microenvironment. J. Magn. Reson. Imaging 16, 430–450.

Goda, N., Ryan, H.E., Khadivi, B., McNulty, W.C., Rickert, R.C., Johnson, R.S., 2003.
Hypoxia-inducible factor 1a is essential for cell cycle arrest during hypoxia.
Mol. Cell. Biol. 23, 359–369.

Greenspan, H.P., 1972. Models for the growth of a solid tumor by diffusion. Stud.
Appl. Math. 51, 317–340.

ARTICLE IN PRESS

K. Smallbone et al. / Journal of Theoretical Biology 255 (2008) 106–112 111



Martin, G.R., Jain, R.K., 1994. Noninvasive measurement of interstitial pH profiles in
normal and neoplastic tissue using fluorescence ratio imaging microscopy.
Cancer Res. 54, 5670–5674.

Murphy, M., Carlson, J.A., Keough, M.P., Claffey, K.P., Signoretti, S., Loda, M.,
2004. Hypoxia regulation of the cell cycle in malignant melanoma:
putative role for the cyclin-dependent kinase p27kip1. J. Cutan. Pathol. 31,
477–482.

Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A., 2001. A cellular
automaton model of early tumor growth and invasion. J. Theor. Biol. 213,
315–331.

Smallbone, K., Gavaghan, D.J., Gatenby, R.A., Maini, P.K., 2005. The role of acidity in
solid tumour growth and invasion. J. Theor. Biol. 235, 476–484.

Smallbone, K., Gatenby, R.A., Gillies, R.J., Maini, P.K., Gavaghan, D.J., 2007a.
Metabolic changes during carcinogenesis: potential impact on invasiveness.
J. Theor. Biol. 244, 703–713.

Smallbone, K., Gavaghan, D.J., Maini, P.K., Brady, J.M., 2007b. Quiescence as a
mechanism for cyclical hypoxia and acidosis. J. Math. Biol. 55, 767–779.

Thomlinson, R.H., Gray, L.H., 1955. The histological structure of some human lung
cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549.

Warburg, O., 1930. The Metabolism of Tumours. Constable Press, London.

ARTICLE IN PRESS

K. Smallbone et al. / Journal of Theoretical Biology 255 (2008) 106–112112


