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Abstract

The pure-injective R-modules are defined easily enough: as those mod-
ules which are injective over all pure embeddings, where an embedding
A → B is said to be pure if every finite system of R-linear equations
with constants from A and a solution in B has a solution in A. But the
definition itself gives no indication of the rich theory around purity and
pure-injectivity. The purpose of this survey is to present and illustrate
the definitions and a number of the results around pure-injective modules.

1 Introduction

It is pointing out at the outset that pure-injective = algebraically compact (for
modules and, indeed, for very general algebraic structures) and some sources
use the term “algebraically compact” instead of “pure-injective”. The concept
of algebraic compactness appears, at first, to be quite different from that of
pure-injectivity; in particular the definition of N being pure-injective makes
reference to the category containing N whereas that of algebraic compactness
refers only to the internal structure of N ; nevertheless, they are equivalent.

In this survey I do not make much reference to the history of this topic; for
that see, for example, [25], [44], [59], [76], [97]. Also, I do not present proofs
or, for the basic results, references; for those one may consult, for example, [1],
[22], [25], [45], [64], [85], [99].
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2 Purity

Throughout we will work with (right) modules over a ring R but most of what
we say holds equally well in more general additive categories (for instance see
[84], [15], [64]). Moreover, much of the theory around purity and algebraic
compactness was developed for more general algebraic systems (see, for instance,
[55], [56] [87], [95], [96], [97]). Here, however, we stay in the perhaps most
familiar context, that of modules over a ring. First, let us define purity. Prüfer,
[68], defined the notion for abelian groups; the general definition is due to Cohn,
[12]; the notion was developed further in, for instance, [83], [84], [91], [23], [72];
also see the notes to Chapter V of [25].

By an (R-linear) equation we mean one of the form
∑n

i=1 xiri = 0 where
the xi are variables and the ri are elements of the ring R. If we allow some of
the variables to take values in a module A then we say that the equation has
constants from A and we can re-arrange it to the form

∑
i xiri = a for some

a ∈ A. A finite system of equations has the form
∑

i xirij = 0 (j = 1, . . . ,m)
or, if we allow constants from A, has the form

∑
i xirij = aj (j = 1, . . . ,m) for

some aj ∈ A. We may also consider systems consisting of infinitely many such
equations.

It is useful to have a notation for systems of linear equations: we write θ
for a typical finite system of R-linear equations and, if the variables are x =
(x1, . . . , xn) then we can write θ(x) to show the variables; in the case where there
are non-zero constants we may write θ(x, a), that is θ(x1, . . . , xn, a1, . . . , am),
to specify the constants.

If M is any module then the solution set of θ in M is

θ(M) = {c ∈Mn : θ(c)}

where θ(c) is notation for
∑

i cirij = 0 (j = 1, . . . ,m). If the system has
constants from a module A then, of course, we consider its solution sets just
those modules M containing A (at least, containing those constants) and, in
this case, we write θ(M,a) for the solution set, that is

θ(M,a) = {c ∈Mn :
∑

i

cirij = aj (j = 1, . . . ,m)}.

Clearly θ(M) is a subgroup of Mn and θ(M,a) is either empty or a coset of the
solution set, θ(M, 0), of the system θ(x, 0) obtained by replacing each constant
by 0.

An embedding A → B of modules is pure if for every finite system θ(x, a)
of equations with constants from A and a solution in B there is a solution in A;
that is, θ(B, a) 6= ∅ implies θ(A, a) 6= ∅.

This extends to projected systems of linear equations, in the following sense.
Given a system θ(x1, . . . , xn) of linear equations we may fix some subset J ⊆
{1, . . . , n}, let us take J = {1, . . . , n′} for some n′ < n for definiteness, and we
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may consider, for each module M, the projection of the solution set θ(M) ≤Mn

toMJ , thus to the first n′ coordinates given our choice of J . The condition which
describes this set may be defined, using quantifiers, as ∃xn′+1, . . . , xn θ(x). Note
that some of the variables have been quantified out, so the free variables of this
condition are x1, . . . , xn′ . Such a condition is said to be a pp condition and
we use notation such as φ, or more precisely φ(x1, . . . , xn′), for such conditions.
Observe, with notation as above, that for any module M, φ(M) is a subgroup
of Mn′ ; a subgroup of this form is said to be pp-definable. If θ has constants
a then we also show these in notation such as φ(x1, . . . , xn′ , a), for projected
systems; clearly φ(M,a) is either empty or a coset of φ(M, 0).

Example 2.1 The simplest kind of pp condition which is not just an equation
is that which expresses divisibility by some element r ∈ R. Take θ(x1, x2) to be
the linear equation x1 + x2r = 0 and project to the first variable, i.e. quantify
out the second variable, to obtain φ(x1) which is ∃x1 (x1 + x2r = 0); clearly for
any module M we have φ(M) = Mr.

We may write the system θ(x) of linear equations using matrix notation,
namely as xH = 0 where x is now treated as a row vector and H is an n ×m
matrix with entries from R. Then, if we project to the first n′ coordinates,
partition x as x′ x′′ accordingly (so x′ = (x1, . . . , xn′), x′′ = (xn′+1, . . . , xn))

and partition H accordingly as H =
(

H ′

H ′′

)
, then the pp condition φ(x′) may

be written as ∃x′′ (x′ x′′)
(

H ′

H ′′

)
= 0; equivalently ∃x′′ (x′H ′ + x′′H ′′ = 0)

or, informally, H ′′ |x′H ′ (H ′′ divides x′H ′). Thus even the most general pp
condition may be viewed as a kind of divisibility condition.

It is easy to check that, although in general φ(M) is not an R-submodule of
Mn′ , it is closed under the (diagonal) action of the endomorphism ring End(M)
so it is, in particular, a module over the centre, C(R), of R.

Let Mod-R denote the category of right R-modules; we will use mod-R for
the category of finitely presented modules.

Theorem 2.2 The following conditions on an embedding f : A → B of R-
modules are equivalent:
(i) f is a pure embedding;
(ii) for every left R-module L the induced map f ⊗ 1L : A ⊗R L → B ⊗R L is
an embedding (of abelian groups);
(iii) for every finitely presented left R-module L the induced map f ⊗ 1L : A⊗R

L→ B ⊗R L is an embedding;
(iv) for every F ∈ (mod-R,Ab)fp the map

−→
F f :

−→
F A→

−→
F B is an embedding;

(v) for every pp condition φ with n free variables φ(A) = An ∩ φ(B);
(vi) for every pp condition φ with 1 free variable φ(A) = A ∩ φ(B);
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(vii) for every morphism f ′ : A′ → B′ between finitely presented modules and
morphisms in Mod-R, g : A′ → A and h : B′ → B such that hf ′ = fg there is
k : B′ → A such that kf ′ = g.

A′
f ′ //

g

��
	

B′

h

��k~~
A

f
// B

Condition (iii) needs some explanation: the notation (mod-R,Ab) is for the
category whose objects are the additive functors from mod-R to the category Ab
of abelian groups and whose morphisms are the natural transformations. This
category of functors is a Grothendieck category which has the representable
functors (C,−), for C ∈ mod-R, as a generating set (up to isomorphism) of
finitely generated projective objects. A functor F in (mod-R,Ab) is finitely

presented iff it has a presentation of the form (D,−)
(g,−)−−−→ (C,−)→ F → 0 for

some morphism g : C → D in mod-R; we use the notation (mod-R,Ab)fp for the
full subcategory of finitely presented functors. Each functor F ∈ (mod-R,Ab)fp

can be extended to a functor, which we denote
−→
F , from Mod-R to Ab: to

define
−→
F M , where M ∈ Mod-R, we use the fact that M is a direct limit,

M = lim−→Mλ, of some directed system (Mλ)λ of finitely presented modules

and we set
−→
F M = lim−→ (FMλ). It may be checked that

−→
F M is well-defined

(independent of choice of representation of M as a direct limit) and that, with
the obvious extension to an action on morphisms,

−→
F is the unique extension of

F to a functor on Mod-R which commutes with direct limits.

A short exact sequence 0 → A
f−→ B

g−→ C → 0 is said to be pure-exact
or just pure if f is a pure embedding, in which case g is said to be a pure
epimorphism.

Theorem 2.3 An exact sequence of modules is pure-exact iff it is a direct limit
of split short exact sequences.

Recall that a right R-module MR is said to be flat if whenever f : RK →R L
is an embedding of left R-modules the induced morphism 1M ⊗ f : M ⊗R K →
M ⊗R L is an embedding. A module is flat iff it is the direct limit of a directed
system of projective modules.

Proposition 2.4 If 0 → A
f−→ B

g−→ C → 0 is a short exact sequence and C
flat then this sequence is pure-exact.

Theorem 2.5 The following conditions on an epimorphism g : B → C are
equivalent:
(i) g is a pure epimorphism;
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(ii) for every pp condition φ and every c ∈ φ(C) there is b ∈ φ(B) such that
gb = c;
(iii) for every finitely presented module D, every morphism h : D → C lifts to
a morphism h′ : D → B with h = gh′.

Corollary 2.6 If 0 → A
f−→ B

g−→ C → 0 is pure-exact and C is finitely
presented then this sequence is split.

An example of a pure, non-split, embedding is that of the group Z(p), ob-
tained by localising the module ZZ at a non-zero prime p, into its p-adic com-
pletion, Z(p), the ring of p-adic integers regarded as an abelian group.

Theorem 2.7 Every short exact sequence of R-modules is pure iff R is a von
Neumann regular ring.

A module M is said to be absolutely pure if each embedding in Mod-R
with domain M is a pure embedding, so every R-module is absolutely pure iff R
is von Neumann regular (recall that the latter condition is right/left symmetric
so every right module is absolutely pure iff every left module is absolutely pure).
There are the following equivalents for absolute purity, (ii) of which explains the
alternative and equivalent term, fp-injective, used for these modules.

Theorem 2.8 For any module M the following are equivalent:
(i) M is absolutely pure;
(ii) M is fp-injective, that is, M is injective over embeddings with finitely pre-
sented cokernel;
(iii) Ext1(C,M) = 0 for every finitely presented module C;
(iv) M is a pure submodule of an injective module.

Other notions of purity have been introduced for a variety of reasons, see for
instance [10], [91]. Here I mention just one, which in some circumstances reduces
to the notion defined in this paper. Say that a ring R is RD (for “relatively
divisible”) if purity for R-modules reduces to simple divisibility, that is, if the
condition for an embedding A ≤ B to be pure is simply that for every r ∈ R we
have Ar = A ∩ Br. For abelian groups this is equivalent to purity and there is
the following characterisation of the rings with this property.

Theorem 2.9 [94, 2.6] A ring is RD
iff every finitely presented right module is a direct summand of a direct sum of
cyclically presented modules
iff the same is true for every left module.
In particular the RD condition on one side implies it on the other.

For example, serial rings have this property ([17, Thm.], [93, Thm. 3.3]), as
do Prüfer rings ([91, Thm. 1]), as does every hereditary noetherian prime ring
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with enough invertible right ideals ([19, §2], [20, §3]) - an example is the first
Weyl algebra over a field of characteristic 0. A commutative ring is RD iff it is
a Prüfer ring ([92, Thm. 3]). A resulting simplified criterion for pure-injectivity
over Prüfer rings is [91, Thm. 4].

3 Pure-injective modules

A module N is said to be pure-injective if it is injective over pure embeddings,
that is, if whenever f : A → B is a pure embedding and g : A → N is any
morphism then there is a morphism h : B → N with hf = g.

A
f //

g

��

B

h~
~

~
~

N

EquivalentlyN is pure-injective iff every pure embedding in Mod-R with domain
N is split.

As with any notion of injectivity, any direct product of pure-injective mod-
ules is pure-injective, as is every direct summand of a pure-injective module.
And, of course, every injective module is pure-injective. Over von Neumann
regular rings injective=pure-injective and this characterises these rings.

It is the case that every module purely embeds in a pure-injective module,
indeed, the analogy with injectives is complete in the sense that, given any
module M, there is a pure embedding of M into a pure-injective module, H(M),
the pure-injective hull of M, which is minimal in the following senses.

Proposition 3.1 The pure-injective hull j : M → H(M) of a module M has
the following properties.
(a) If f : H(M)→M ′ is any morphism such that fj is a pure embedding then
f is a pure embedding, that is, M → H(M) is pure-essential.1

(b) If j′ : M → N is a pure embedding of M into a pure-injective module N then
there is a morphism j′′ : H(M)→ N such that j′′j = j′; every such morphism
j′′ embeds H(M) as a direct summand of N .
(c) The pure-injective hull of M is unique up to isomorphism over M .
(d) The functor H(M)⊗− is the injective hull of M ⊗−.

Part (d) needs explanation. There is a very useful full embedding of Mod-R
into the functor category (R-mod,Ab), where R-mod denotes the category of
finitely presented left modules. The functor is given on objects by taking M ∈
Mod-R to the functor M ⊗− which takes a finitely presented left module L to

1A somewhat different notion of pure-essential has been used in some papers, e.g. [47], [91],
but that notion is not transitive, see [33], whereas the one just given is.

6



M ⊗R L and has the natural action on morphisms. This functor from Mod-R
to (R-mod,Ab) is full and faithful and induces a correspondence between pure-
exact sequences in Mod-R and exact sequences in (R-mod,Ab), as well as an
equivalence between the category of pure-injective modules in Mod-R and the
category of injective objects of (R-mod,Ab).

Theorem 3.2 [34], [35, §1] The functor from Mod-R to (R-mod,Ab) which
is defined on objects by taking M to M ⊗R − is a full embedding.

An exact sequence 0 → M → N → N ′ → 0 in Mod-R is a pure-exact
sequence iff the sequence 0 → (M ⊗ −) → (N ⊗ −) → (N ′ ⊗ −) → 0 is an
exact sequence in (R-mod,Ab), iff this sequence is a pure exact sequence in
(R-mod,Ab).2

For every module M the functor M ⊗ − is an absolutely pure object of
(R-mod,Ab) and every absolutely pure object of (R-mod,Ab) is isomorphic
to one of the form M ⊗ −. Furthermore, M ⊗ − is an injective object of the
functor category iff M is a pure-injective module, and M ⊗− is indecomposable
iff M is indecomposable.

Thus one may transfer results on embeddings and injectives in Grothendieck
categories, such as (R-mod,Ab), to results on pure embeddings and pure-
injectives in module categories. In particular, the existence and basic properties
of pure-injective hulls are most easily established via this route.

For instance, the corollary below follows immediately from the corresponding
result for indecomposable injectives in Grothendieck categories together with the
fact that the functor is a full embedding.

Corollary 3.3 If N is an indecomposable pure-injective R-module then the en-
domorphism ring of N is local.

Example 3.4 A module M is absolutely pure iff its pure-injective hull is its
injective hull.

Of course taking the injective hull in the functor category is not in general
a particularly direct way of computing the pure-injective hull, but there are
other routes. For example, the hull may also be found as a direct summand of
the double dual of a module. Given a right R-module M , let M∗ denote the
module HomZ(M,Q/Z) which, note, has a natural structure as a left R-module.
Applying the same process to this left module, we obtain the double dual M∗∗.

Theorem 3.5 Let M be any R-module; then M∗∗ is pure-injective. If 0 →
M → N → N1 → 0 is a pure-exact sequence then the induced sequence 0 →
M∗∗ → N∗∗ → N∗∗

1 → 0 is pure, hence split. Furthermore, the natural map
M →M∗∗ is a pure embedding of M into a pure-injective module.

2The definition of purity and its various equivalents do make sense in the functor category
and are equivalent to each other, see, for instance [64, Chpt. 10].
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Therefore the pure-injective hull of M is a direct summand of M∗∗.

Theorem 3.6 (e.g. [64, 1.3.15]) With notation as before, if F ∈ (mod-R,Ab)fp

then
−→
F M = 0 iff

−→
F M∗∗ = 0.

It is a consequence of this that M and M∗∗ generate the same definable
subcategory (in the sense of Section 8 below) of Mod-R.

A module M is said to be cotorsion if Ext1(F,M) = 0 for every flat module
F , that is, iff every exact sequence of the form 0 → M → X → F → 0, with
F flat, is split. In particular every pure-injective module is cotorsion, but not
conversely (see [42] for conditions for the converse). The modules F such that
Ext1(F,M) = 0 for every cotorsion module M are exactly the flat modules, in
fact, testing with pure-injective modules is enough.

picotor
Proposition 3.7 [100, 3.4.1] If a module F is such that Ext(F,N) = 0 for
every pure-injective module N then F must be flat.

4 Algebraically compact modules

A module M is algebraically compact if every collection, {aλ + φλ(M)}λ, of
cosets of pp-definable subgroups of M which has the finite intersection prop-
erty has non-empty intersection; that is, if for every finite Λ′ ⊆ Λ,

⋂
λ∈Λ′

(
aλ +

φλ(M)
)
6= ∅ then

⋂
λ∈Λ

(
aλ + φλ(M)

)
6= ∅. For instance take the localisation

Z(p) of Z at a prime p, and regard this as a Z-module. The submodules Z(p)p
n

are pp-definable and their cosets form a p-branching tree of infinite depth. Each
branch through this tree gives a set of cosets with the finite intersection prop-
erty so, since there are uncountably many distinct (and incompatible) branches,
whereas Z(p) is countable, it follows that this module is not algebraically com-
pact.

Theorem 4.1 For any module M the following conditions are equivalent:
(i) M is algebraically compact;
(ii) every system of linear equations, in possibly infinitely many variables, with
constants from M and which is finitely solvable in M , is solvable in M ;
(iii) M is an algebraic direct summand of some compact Hausdorff topological
module
(iv) M is pure-injective;
(v) ([45, 7.1]) for every index set, I, the summation map Σ : M (I) → M ,
given by (xi)i 7→

∑
i xi, factors through the natural embedding of M (I) into the

corresponding direct product M I .
M (I) //

Σ

��

M I

{{x
x

x
x

M
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The equivalence of algebraic compactness and pure-injectivity is true in much
more general algebraic systems and was discovered by various people, see [88].

Example 4.2 (see [91, Prop. 10]) Let R be a Dedekind domain. If P is a
maximal prime ideal of R and if M = R(P ) is the localisation of R at P, regarded
as an R-module, then the pure-injective hull of M is its P -adic completion. The
pure-injective hull of the module RR is the product, over all maximal primes P,
of these completions.

A module M is said to be linearly compact (see [101]) if every collec-
tion of cosets of submodules of M which has the finite intersection property
has non-empty intersection. It is not difficult to see that if MR is a module
which is linearly compact as a module over its endomorphism ring then M is
a pure-injective R-module. In particular any linearly compact module over a
commutative ring is algebraically compact.

It follows that a commutative linearly compact ring, in particular any com-
plete discrete valuation ring, is algebraically compact as a module over itself.
As a partial converse ([91, Prop. 9]), if R is commutative and either noetherian
or a valuation ring, then RR is algebraically compact iff it is linearly compact.

Theorem 4.3 [101, Prop. 9] If 0 → A → B → C → 0 is an exact sequence
with A and C linearly compact then B is linearly compact.

In contrast, an extension of a pure-injective module by a pure-injective mod-
ule need not be pure-injective; see, for instance, [73, p. 436], also see [100, 3.5.1]
for a general criterion.

5 Finiteness conditions

Example 5.1 Suppose that the module M has the descending chain condition
on pp-definable subgroups; then, directly from the definition, M is algebraically
compact, hence pure-injective.

Theorem 5.2 For any module M the following conditions are equivalent:
(i) M is Σ-pure-injective (also called Σ-algebraically compact), meaning that for
every cardinal κ the direct sum M (κ) of κ-many copies of M is pure-injective;
(ii) M (ℵ0) is pure-injective;
(iii) M has the descending chain condition on pp-definable subgroups.
(iv) M is totally transcendental.

The notion of a structure being totally transcendental is from model theory
(if the ring is countable then the term ω-stable is also used). For some time
there were rather parallel investigations of these modules by people in model
theory and in algebra (cf. [27] and [103]).
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An injective module is said to be Σ-injective if it is also Σ-pure-injective.
It is well known that a ring is right noetherian iff every injective right module
is Σ-injective. A ring R such that every pure-injective right R-module is Σ-
pure-injective is said to be right pure-semisimple and this condition implies
that, in fact, every right R-module is (Σ-)pure-injective. It is an open problem
(the Pure-semisimplicity Conjecture) whether right pure-semisimple implies left
pure-semisimple. It is known that right and left pure-semisimplicity together
imply finite representation type (i.e. that every module is a direct sum of
indecomposable modules and there are, up to isomorphism, only finitely many
indecomposable modules).

Since every pp-definable subgroup of M is an End(M)-module, if M has
finite endolength (i.e. is of finite length over its endomorphism ring) then
M is Σ-pure-injective, in particular is pure-injective. So if R is a k-algebra
for some field k and if M is an R-module which is finite-dimensional when
considered as a k-vectorspace, then M is of finite endolength, hence Σ-pure-
injective. Similarly, if R is an artin algebra, meaning that the centre of R
is artinian and R is finitely generated as a module over its centre, then every
R-module of finite length is of finite endolength, hence is (Σ-)pure-injective.
Over some rings, for instance over commutative Prüfer rings ([54], [11], [66]),
the Σ-pure-injective rings have been classified completely. There is a general
theory ([14]) of Crawley-Boevey relating modules of finite endolength to certain
additive functions on the category of finitely presented modules.

Over a right pure-semisimple ring (such a ring must be right artinian) ev-
ery indecomposable pure-injective is of finite length and of finite endolength;
furthermore there are, up to isomorphism, only finitely many modules of each
finite length ([58, 3.8], [105, Cor. 10], [98, 3.2]); and every finitely presented left
module is of finite endolength ([39, 2.3]).

Example 5.3 If R is a semiprime right and left Goldie ring, with semisimple
artinian quotient ring Q, then the Σ-pure-injective R-modules are those which
are the sum of a divisible module and a module which is annihilated by a regular
element of R. This was proved by Macintyre ([53, Thm. 1]) for the case R = Z
and the general result is from Crawley-Boevey ([13, 1.3]).

If R is a non-artinian simple noetherian ring then ([13, 1.4]) the only R-
modules of finite endolength are the direct sums of copies of the simple modules
over the (simple artinian) quotient ring of R.

If R is a non-artinian hereditary noetherian prime ring then ([13, 1.4]) ev-
ery R-module of finite endolength is a direct sum of R-modules of finite length
and copies of the simple module over the simple artinian quotient ring of R.
Conversely, every finite direct sum of such modules is of finite endolength.

Modules which are indecomposable and of finite endolength and which are
“large” in the sense of not being finitely presented, are often referred to as
generic modules. The appropriateness of the term may be seen from the main

10



results of [13] which show that for finite-dimensional algebras over an alge-
braically closed field, the generic modules arise from generic points of finite
localisations of the affine line. The results of that paper show how closely the
generic modules control the finite-dimensional representation theory of such al-
gebras.

6 The structure of pure-injectives

There is a general structure theorem for pure-injective modules, due originally to
Fisher ([24, 7.21] in a somewhat more general context) and proved independently
and by various methods by a number of other people. A module is said to
be superdecomposable if it is non-zero and has no indecomposable direct
summand.

Theorem 6.1 Let N be a pure-injective module. Then N = H(
⊕

λNλ) ⊕ Nc

where each Nλ is indecomposable pure-injective and where Nc is a superdecom-
posable pure-injective. The modules Nλ, together with their multiplicities, as
well as the module Nc, are determined up to isomorphism by N .

Over some rings, for example Dedekind prime PI rings and tame heredi-
tary algebras, there are no superdecomposable pure-injective modules so, over
such rings, the structure of pure-injectives is completely determined by the in-
decomposable pure-injectives. Ziegler introduced a dimension, which he called
“width”, defined in terms of the lattice of pp conditions (see the next section)
equivalently in terms of localisations of the category (mod-R,Ab)fp of finitely
presented functors. This dimension is such that, if there is a superdecompos-
able pure-injective R-module then this dimension is undefined and, at least if R
is countable, if this dimension is undefined then there is a superdecomposable
pure-injective ([102, §7]).

An example of a superdecomposable (pure-)injective is given by taking R =
k〈X,Y 〉 to be the free associative k-algebra on two generators and considering
the injective hull, E = E(RR) of the module RR: there is no non-zero uniform
right ideal of R hence no indecomposable direct summand of E.

Classification of indecomposable pure-injectives began with Kaplansky ([46],
for abelian groups) and received fresh impetus from work, especially that of
Ziegler [102], in the model theory of modules. See [64] for a current account.

We make the general point that over most rings it is impossible to classify
all modules: even algebras of tame representation type typically are “wild”
when their infinitely generated representations are considered. In practice one
is interested in the classification of certain “significant” modules rather than
in arbitrary modules; the pure-injective modules seem to form such a class
of modules which arise in practice and where there is hope of some kind of
classification.
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7 Pure-injective modules in model theory

Pure-injective modules play a central role in the model theory of modules. This
is not the place to go into details about that subject but there are short in-
troductions such as [62], [63] as well as relevant sections in texts such as [43],
[77].

The compactness condition which is the definition of algebraic compactness
is a special case of a notion, “saturation”, from model theory (more precisely
it is saturation for pp conditions). In particular the pure-injective modules are
exactly those which are direct summands of κ-saturated modules where κ may
be taken to be the smallest cardinal strictly greater than card(R) + ℵ0.

Sabbagh ([78, Cor. 4 to Thm. 4]) showed that pure-injective modules are,
model-theoretically, ubiquitous in the sense that every R-module M is an el-
ementary substructure of its pure-injective hull H(M). That means that any
property which can be expressed by a first order sentence in the language of
R-modules, allowing constants from M , holds for M iff it holds for H(M). In
particular, every theory of modules is a theory of pure-injective modules. This
consequence was extended by Ziegler as follows.

Theorem 7.1 Every module is elementarily equivalent to a direct sum of inde-
composable pure-injective modules.

There is, up to isomorphism, just a set of indecomposable pure-injective
R-modules and Ziegler introduced a topology on this set and a corresponding
notion of support for modules. Namely, to a module M associate the set of inde-
composable pure-injective direct summands of modules elementarily equivalent
to M . This is the same as the set of indecomposable pure-injectives in the de-
finable subcategory of Mod-R generated by M and this set, the support of M ,
is a closed subset of Ziegler’s space. Every closed subset arises in this way and
one has a bijection between the closed subsets of this space and those complete
theories of modules with class of models closed under products (in many cases
that is all complete theories), equivalently between closed subsets and theories
whose class of models is closed under products and direct summands (that is,
definable subcategories, in the sense of the next section). This space, now called
the (right) Ziegler spectrum of R, has since played a central role in the model
theory of modules.

The set of all pp conditions (in, say, one free variable) is naturally ordered
by implication (that is, inclusion of solution sets) and forms a modular lattice,
which is, in fact, naturally isomorphic to the lattice of finitely generated subfunc-
tors of the forgetul functor (RR,−) in the category (mod-R,Ab). The lattice
of pp-definable subgroups of any module is a factor lattice of this. Garavaglia,
especially in [26], studied finiteness conditions, extending the descending chain
condition, in these lattices (as we have seen, the dcc is equivalent to Σ-pure-
injectivity). He considered the relation between the Krull dimension (in the

12



sense of Gabriel and Rentschler) of these lattices and the structure of models
(especially the pure-injective ones). The work of Ziegler carried this considerably
further and it turns out that various dimensions on these lattices correspond
exactly to dimensions defined via certain localisations in the functor category
(mod-R,Ab) (rather like the relation between Krull dimension of the lattice of
right ideals and Gabriel dimension of the module category). The existence of
these dimensions (i.e. having an ordinal value rather than being undefined) is
reflected in the structure of pure-injectives.

For instance, the m-dimension of a modular lattice is defined by inductively
collapsing the intervals of finite length (see [59] or [64]) and the Krull-Gabriel
dimension of a Grothendieck category is defined by inductively localising away
the finitely presented objects of finite length (see [45], also [64]). The Krull-
Gabriel dimension of a ring R is defined to be that of the functor category
(mod-R,Ab).

Theorem 7.2 [102, §7] Suppose that N is a pure-injective module such that wdthnotspdec
some non-trivial interval in the lattice of pp-definable subgroups of N has m-
dimension. Then there is an indecomposable direct summand of N .

Corollary 7.3 If the width of the lattice of pp conditions over R is defined,
in particular if the m-dimension of this lattice (equivalently the Krull-Gabriel
dimension of R) is defined, then there are no superdecomposable pure-injective
R-modules.

If R is countable then the converse is true ([102, 7.8(2)]).

It is not known whether the converse is true without the assumption of
countability.

The analysis of the lattice of pp-definable subgroups by m-dimension (which
is a refinement of Krull dimension, using lattices of finite length rather than
artinian lattices as the base of the inductive definition) exactly corresponds to
the Cantor-Bendixson analysis of the corresponding closed subset of the Ziegler
spectrum. The latter is the process where one removes all the isolated points
from a topological space, then repeats the process in what is left, inductively
and transfinitely.

8 Definable subcategories

Ziegler’s result that, over any ring, each pure-injective module is elementarily
equivalent to a direct sum of indecomposable pure-injective modules may be
rephrased in terms of definable subcategories. We say that a full subcategory
(or a subclass) D of Mod-R is a definable subcategory if it is closed in Mod-R
under direct products, direct limits and pure submodules.

Theorem 8.1 The following conditions on a subclass D of Mod-R which is
closed under isomorphism, are equivalent:
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(i) D is definable;
(ii) D is closed under direct products, direct limits and pure submodules;
(iii) D is closed under finite direct sums, reduced products and pure submodules;
(iv) D is closed under direct products, ultrapowers and pure submodules.
Any such subclass is closed under arbitrary direct sums as well as direct sum-
mands and, more generally, pure-epimorphic images.

Theorem 8.2 If D is a definable subclass of Mod-R then D is closed under
pure-injective hulls.

The definable subcategory generated by a module or a set of modules is
the smallest definable subcategory containing that module or set of modules.

If modules are elementarily equivalent then they generate the same definable
subcategory and the converse is almost true (it is literally true if each quotient
φ(M)/ψ(M) is either trivial or infinite; the precise statement is that M and N
generate the same definable subcategory iff M (ℵ0) and N (ℵ0) are elementarily
equivalent).

If M is a module of finite endolength then the modules which are direct
summands of direct sums of copies of M form a definable subcategory. The
next result gives some more examples.

Theorem 8.3 [21, 3.16, 3.23], [79, Thm. 4] The following conditions on a ring
R are equivalent:
(i) R is right coherent
(ii) the class of absolutely pure right R-modules is definable
(iii) the class of flat left R-modules is definable.

Those papers of Eklof and Sabbagh also show that the class of injective
right modules, respectively of projective left modules, is definable iff R is right
noetherian, respectively right coherent and left perfect. There is also a theorem
of Herzog ([38, 4.4]) which gives a perfect duality between definable subcate-
gories of Mod-R and those of R-Mod; in this sense, the classes appearing in the
theorem above are dual ([38, 9.3]).

Definable subcategories of the class, Mod-Z, of abelian groups include: the
class of all torsionfree groups; the class of all divisible groups; the intersection of
these two classes; the class of all groups of exponent bounded by a given integer
n. The class of torsion abelian groups is clearly not a definable subcategory
(though it is a definable category in the wider sense described at the end of this
section).

Theorem 8.4 ([102, §4]) Every definable subcategory is generated by the set of
indecomposable pure-injective modules which it contains.

Set pinjR to be the set of isomorphism types of indecomposable pure-injective
modules (that this is a set follows, for example, from [102, 4.2(10]; it also follows
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from 3.2 and the corresponding fact for injectives in Grothendieck categories). If
D is a definable subcategory then we set D ∩ pinjR to the the set of (isomorphism
types of) indecomposable pure-injectives contained in D. By the result above
there is a bijection between definable subcategories of Mod-R and sets of this
form. As mentioned in the previous section, Ziegler proved that these sets are
exactly the closed subsets for the topology he introduced on pinjR and which
we define next.

A topology may be defined by specifying a basis of open sets; Ziegler took
those of the form (φ/ψ) where φ and ψ are pp conditions such that φ ≥ ψ in
the sense that for every module M the solution set of ψ is contained in that of
φ and where (φ/ψ) = {N ∈ pinjR : φ(N) > ψ(N)} - the set of indecomposable
pure-injectives N where the solutions to ψ form a proper subgroup of the set of
solutions to φ. There is a variety of alternative ways of defining this topology;
for example the same basis is obtained by taking the sets (F ) = {N ∈ pinjR :
−→
F N 6= 0} where F ranges over finitely presented functors in (mod-R,Ab). To
say that these sets form a basis is to say that for every point N ∈ pinjR and
every pair (φ/ψ) and (φ′/ψ′) of basic open sets there is some basic open set
(φ′′/ψ′′) ⊆ (φ/ψ) ∩ (φ′/ψ′) with N ∈ (φ′′/ψ′′). The topological space obtained
in this way is now called the Ziegler spectrum of R.

Herzog [38] showed that there is a natural bijection between definable subcat-
egories of Mod-R and those of R-Mod and that this induces a “homeomorphism
at the level of topology” between the right and left Ziegler spectra of R (that
is, an isomorphism between the lattices of open sets of these two spaces).

In fact, see [64] or [65], the theory of purity applies in the general context
of definable categories: these are defined to be the categories which arise as
definable subcategories of categories of the form Mod-R = (Rop,Ab) where R
is any skeletally small preadditive category. Equivalently these are the exactly
definable categories in the sense of [48]: those of the form Ex(A,Ab) where A
is a skeletally small abelian category and Ex denotes the full subcategory of all
exact functors.

9 Cotorsion and Cotilting

The module M is said to be cotilting if cog(M) = ⊥1M where the latter
denotes {A ∈ mod-R : Ext1(A,M) = 0}. These modules arise for exam-
ple in the context of cotorsion theories, which are defined rather like not-
necessarily-hereditary torsion theories but using Ext-orthogonality rather than
Hom-orthogonality, see [89]. It was observed that all known examples of cotilt-
ing modules were pure-injective and for a while it was open whether this is
always true; that this is so was proved by Bazzoni [7]. She also proved, [7,
3.2], that if M is cotilting then ⊥1M is a definable subcategory. There are also
generalisations of these notions, this question, and, see [86], answer, using Extn.
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For more around this topic see various of the articles in [2], [32], and refer-
ences therin.

Baldwin, Eklof and Trlifaj ([5]) investigate when classes of modules of the
form ⊥∞N = {A : Exti(A,N) = 0 ∀i > 0} are abstract elementary classes; such
classes arise from cotilting and cotorsion theories. They show that if ⊥∞N is an
abstract elementary class then N must be cotorsion and, in the other direction,
if N satisfies the stronger condition of being pure-injective, then ⊥∞N is an
abstract elementary class. Also see [90] where it is shown that every cotilting
class gives an abstract elementary class of finite character.

In conclusion: we have been able just to skim the surface and point in a
few directions; in particular we have not touched on the detailed classification
results which are in the literature. For more I refer the reader to the existing
surveys and detailed expositions, as well as the developing literature, a sampling
of which is included among the references.
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rings of artinian modules, Comm. Algebra, 22 (1994), 3133-3157.

[12] P. M. Cohn, On the free product of associative rings, Math. Z. 71(1)
(1959), 380-398.

[13] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London
Math. Soc., 63(2) (1991), 241-265.

[14] W. Crawley-Boevey, Modules of finite length over their endomorphism
rings, pp. 127-184 in Representations of Algebras and Related Topics,
London Math. Soc. Lect. Note Ser. Vol. 168, Cambridge University Press,
1992.

[15] W. Crawley-Boevey, Locally finitely presented additive categories,
Comm. Algebra, 22(5) (1994), 1641-1674.

[16] W. Crawley-Boevey, Infinite-dimensional modules in the representation
theory of finite-dimensional algebras, pp. 29-54 in I. Reiten, S. Smaløand
Ø. Solberg (Eds.), Algebras and Modules I, Canadian Math. Soc. Conf.
Proc., Vol. 23, Amer. Math. Soc, 1998.

[17] Yu. Drozd, On generalised uniserial rings, Math. Zametki, 18(5) (1975),
705-710.

[18] S. Ebrahimi Atani, On pure-injective modules over pullback rings,
Comm. Algebra, 28(9) (2000), 4037-4069.

[19] D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J.
Algebra, 16(1) (1970), 67-85.

[20] D. Eisenbud and J. C. Robson, Hereditary noetherian prime rings, J.
Algebra, 16(1) (1970), 86-104

[21] P. Eklof and G. Sabbagh, Model-completions and modules, Ann. Math.
Logic, 2(3) (1971), 251-295.

[22] A. Facchini, Module Theory: Endomorphism rings and direct sum de-
compositions in some classes of modules, Progress in Math., Vol. 167,
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