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The emergent field of systems biology involves the

study of the interactions between the components of a

biological system, and how these interactions give rise

to the function and behaviour of that system (for

example, the enzymes and metabolites in a metabolic

pathway). Nonlinear processes dominate such biologi-

cal networks, and hence intuitive verbal reasoning

approaches are insufficient to describe the resulting

complex system dynamics [1–3]. Nor can such

approaches keep pace with the large increases in

-omics data (such as metabolomics and proteomics)

and the accompanying advances in highthroughput

experiments and bioinformatics. Rather, experience

from other areas of science has taught us that quanti-

tative methods are needed to develop comprehensive

theoretical models for interpretation, organization and

integration of this data. Once viewed with scepticism,

we now realize that mathematical models, continuously

revised to incorporate new information, must be used

to guide experimental design and interpretation.

We focus here on the development and analysis of

mathematical models of cellular metabolism [4–6]. In

recent years two major (and divergent) modelling

methodologies have been adopted to increase our

understanding of metabolism and its regulation. The

first is constraint-based modelling [7,8], which uses

physicochemical constraints such as mass balance,

energy balance, and flux limitations to describe the
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Two divergent modelling methodologies have been adopted to increase our

understanding of metabolism and its regulation. Constraint-based modelling

highlights the optimal path through a stoichiometric network within certain

physicochemical constraints. Such an approach requires minimal biological

data to make quantitative inferences about network behaviour; however,

constraint-based modelling is unable to give an insight into cellular substrate

concentrations. In contrast, kinetic modelling aims to characterize fully the

mechanics of each enzymatic reaction. This approach suffers because

parameterizing mechanistic models is both costly and time-consuming. In

this paper, we outline a method for developing a kinetic model for a meta-

bolic network, based solely on the knowledge of reaction stoichiometries.

Fluxes through the system, estimated by flux balance analysis, are allowed

to vary dynamically according to linlog kinetics. Elasticities are estimated

from stoichiometric considerations. When compared to a popular branched

model of yeast glycolysis, we observe an excellent agreement between the

real and approximate models, despite the absence of (and indeed the

requirement for) experimental data for kinetic constants. Moreover, using

this particular methodology affords us analytical forms for steady state

determination, stability analyses and studies of dynamical behaviour.

Abbreviations

BPG, 1,3-bisphosphoglycerate; ETOH, ethanol; FBA, flux balance analysis; PFK, phosphofructokinase.
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potential behaviour of an organism. The biochemical

structure of (at least the central) metabolic pathways is

more or less well-known, and hence the stoichiometries

of such a network may be deduced. In addition, the

flux of each reaction through the system may be con-

strained through, for example, knowledge of its Vmax,

or irreversibility considerations. From the steady state

solution space of all possible fluxes, a number of tech-

niques have been proposed to deduce network behav-

iour, including flux balance and extreme pathway or

elementary mode analysis. In particular, flux balance

analysis (FBA) [9] highlights the most effective and

efficient paths through the network in order to achieve

a particular objective function, such as the maximiza-

tion of biomass or ATP production.

The key benefit of FBA lies in the minimal amount of

biological knowledge and data required to make quanti-

tative inferences about network behaviour. However,

this apparent free lunch comes at a price – constraint-

based modelling is concerned only with fluxes through

the system and does not make any inferences nor any

predictions about cellular metabolite concentrations. By

contrast, kinetic modelling aims to characterize fully the

mechanics of each enzymatic reaction, in terms of how

changes in metabolite concentrations affect local reac-

tion rates. However, a considerable amount of data is

required to parameterize a mechanistic model; if com-

plex reactions like phosphofructokinase are involved,

an enzyme kinetic formula may have 10 or more kinetic

parameters [6]. The determination of such parameters is

costly and time-consuming, and moreover many may be

difficult or impossible to determine experimentally. The

in vivo molecular kinetics of some important processes

like oxidative phosphorylation and many transport

mechanisms are almost completely unknown, so that

modelling assumptions about these metabolic processes

are necessarily highly speculative.

In this paper, we define a novel method for the gen-

eration of kinetic models of cellular metabolism. Like

constraint-based approaches, the modelling framework

requires little experimental data regarding variables

and no knowledge of the underlying mechanisms for

each enzyme; nonetheless it allows inference of the

dynamics of cellular metabolite concentrations. The

fluxes found through FBA are allowed to vary dynam-

ically according to linlog kinetics [10–12]. Linlog kinet-

ics, which draws ideas from thermodynamics and

metabolic control analysis, is known to be more

appropriate for approximating hyperbolic enzyme

kinetics than are other phenomenological relations

such as power laws [13]. Indeed, when a version using

linlog kinetics is compared with the original and mech-

anistic branched yeast glycolysis model of Teusink

et al. [14], we observe an excellent agreement between

the real and approximate models. Moreover, we show

that a model framed within the linlog format affords

analytical forms for steady state determination, stabil-

ity analyses and studies of dynamical behaviour. As

such, it does not suffer from the usual [15] computa-

tional scalability problems, and could therefore be

applied to existing genome scale models of metabolism

[8,16–18]. Such a model has powerful predictive power

in determining cellular responses to environmental

changes, and may be considered a stepping-stone to a

full kinetic model of cell metabolism: a ‘virtual cell’.

Results

The linlog approximation [10–12] is a method for sim-

plifying reaction rate laws in metabolic networks.

Drawing ideas from metabolic control analysis, it

describes the effect of metabolite levels on flux as a lin-

ear sum of logarithmic terms (Eqn 2). By definition, it

will provide a good approximation near a chosen refer-

ence state. Moreover, thermodynamic considerations

show that we can expect a logarithmic response to

changes in metabolite concentrations [10,13], and

hence that the approximation may be valid some dis-

tance from the reference state. Indeed, linlog kinetics

are known to be appropriate for approximating hyper-

bolic enzyme kinetics, and, in this case, are superior to

other phenomenological relations such as power laws

(including generalized mass action and S-systems) [13].

To illustrate this graphically, we compare in Fig. 1
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Fig. 1. A comparison of Michaelis–Menten kinetics v(x) ¼ V x ⁄
(x + Km) (o) to its linlog approximation u(x) ¼ v* (1 + e log(x ⁄ x*))

(solid line) and its power law approximation x(x) ¼ v*(x ⁄ x*)e

(dashed line), where v* ¼ v(x*) and e¼ Km ⁄ (x* + Km). Parameter

values used are x* ¼ V ¼ Km ¼ 1.
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typical irreversible Michaelis–Menten kinetics (o) with

its linlog (solid line) counterpart. Notice that the

abscissa is logarithmic, and Michaelis-Menten kinetics

appears to be close to linear in this plotting regime.

Thus linlog serves as an excellent approximation. Even

an order of magnitude away from the reference state,

the functions have comparable values. Also shown is

the power law approximation (dashed line). We see

that linlog provides a better approximation than power

law for substrate concentrations greater than the refer-

ence state, whilst the two approximations are equally

valid for concentrations less than the reference state.

Having described the validity of linlog kinetics at

the single reaction level, we move on to apply the

approximation to a full network: the branched model

of yeast glycolysis of Teusink et al. [14], available in

SBML format from JWS Online [19]. Taking the mod-

el’s steady state as our reference state, elasticities may

be calculated analytically from the kinetic equations

using Eqn (3). Eqn (10) may then be used to predict

changes in internal metabolite concentrations with

external metabolite changes.

In the Teusink et al. model, there are three external

effectors: ethanol, glucose and glycerol; in Fig. 2 we

show, as an example, internal changes in response to

changes in ethanol (ETOH). We see that both the

zeroth and first derivatives of the linlog kinetics

are correct around the reference state [ETOH] ¼
[ETOH]0, and hence the approximation is good in a

region near this point. Moreover, we see that in

many cases the approximation remains valid when

the ethanol concentration is changed by an order of

magnitude.

Linlog provides a good approximation to enzyme

kinetics, and moreover (as we show in Eqns 10–13)

affords analytical forms for steady state determination,

stability analyses and temporal dynamics. However,

the good fit in Fig. 2 was obtained through our exact

knowledge of the underlying kinetic formulae. Phe-

nomenological relations such as linlog are unlikely to

be of such interest when all enzymatic mechanisms and

corresponding parameters are known; rather the inter-

est lies in their applicability when such information is

not available and we require a best guess model of the
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Fig. 2. From Eqn (10). Elected variations in steady state intracellular metabolite concentrations with changes in ethanol (ETOH) concentra-

tion in the branched model of yeast glycolysis of Teusink et al. [14]. Shown are the real model solutions (o) and the predictions of the linlog

approximation (solid line). BPG, 1,3-bisphosphoglycerate; GLCi, glucose in cytosol; P2G, 2-phosphoglycerate; PEP, phosphoenolpyruvate.
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underlying kinetics. Returning to Eqn (10), we see that

to predict steady state behaviour in response to

changes in external effectors, estimates are required for

the reference system flux and the elasticities.

The first point, estimation of system fluxes with lim-

ited information, may be addressed through appealing

to flux balance analysis [9]. This method allows us to

identify the optimal path through the network to

achieve a particular objective, such as biomass yield or

ATP production. Biologically, this kind of objective

function assumes that an organism has evolved over

time to lie close to its maximal metabolic efficiency,

within its underlying physicochemical, topobiological,

environmental and regulatory constraints [8].

FBA (Eqn 15) is applied to the model of Teusink

et al. defining the objective function as cellular ATP

production; the results are presented in Table 1. We

see that FBA does provide a good estimate to the real

fluxes through the system as predicted by Teusink

et al. The discrepancy between the real and FBA solu-

tion is due to FBA disregarding the branches of the

pathway not involved in ATP production, namely glyc-

erol, glycogen, succinate and trehalose synthesis. It is

interesting to note that, in the full model, the fluxes

through these branches are relatively small; the major-

ity of flux is used to generate ATP as assumed by

FBA.

It remains to estimate the elasticities. Of course these

should ideally be measured explicitly using traditional

enzyme assays, for example. In the absence of such

information, assuming knowledge only of reaction

stoichiometries, we follow the tendency modelling

approach of Visser et al. [20] (see Materials and meth-

ods). The results of elasticity estimation when applied

to Teusink et al.’s model are presented in Table 2. We

see that this is a reasonable method for a first estima-

tion of elasticities; in most cases the estimate falls

within an order of magnitude of the true elasticity. It

is interesting to observe that in one case, the estimate

has the incorrect sign – the phosphofructokinase

(PFK) reaction with respect to high energy phosphates.

Whilst ATP is a substrate of PFK, at the reference

state an increase in ATP leads to a decrease in reaction

rate. Such a result is counter-intuitive and could not

Table 1. Results from Eqn (15). A comparison between fluxes in

Teusink et al. [14] and those predicted by FBA with ATP production

maximization. For reaction abbreviation definitions, see supplemen-

tary Table S2.

Reaction

Flux (mMÆmin)1)

Teusink FBA

ADH 129 176

ALD 77.3 88.1

ATP 84.5 176

ENO 136 176

G3PDH 18.1 0

GAPDH 136 176

GLK 88.1 88.1

GLYCO 6 0

PDC 136 176

PFK 77.3 88.1

PGI 77.3 88.1

PGK 136 176

PGM 136 176

PYK 136 176

SUC 3.64 0

Treha 2.4 0

Table 2. A comparison between elasticities in Teusink et al. and

those estimated through stoichiometric considerations. For reaction

and metabolite abbreviation definitions, see supplementary

Tables S1–S2.

Reaction Metabolite

Elasticity

Teusink Estimate

ADH ACE 3.20 1

ETOH ) 2.95 ) 1

NAD ) 3.04 ) 1

NADH 3.20 1

ALD F16P 1.89 1

TRIO ) 3.08 ) 2

ATP P 1.80 1

ENO P2G 0.826 1

PEP ) 0.384 ) 1

GAPDH BPG ) 8.00 · 10)2 ) 1

NAD 0.144 1

NADH ) 9.14 · 10)2 ) 1

TRIO 0.919 1

GLK G6P ) 1.65 · 10)2 1

GLCi 0.458 ) 1

P 1.02 1

GLT GLCi ) 7.20 · 10)2 ) 1

GLCO 2.54 · 10)2 1

PDC ACE 0 ) 1

PYR 0.423 1

PFK F16P ) 0.402 ) 1

F6P 0.936 1

P ) 3.21 1

PGI F6P ) 0.709 ) 1

G6P 1.18 1

PGK BPG 2.81 1

P ) 9.47 ) 1

P3G ) 2.24 ) 1

PGM P2G ) 2.36 ) 1

P3G 2.94 1

PYK P ) 1.82 ) 1

PEP 0.765 1

PYR ) 0.243 ) 1

K. Smallbone et al. Constraint-based meets kinetic modelling
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be known without detailed knowledge of the underly-

ing enzymatic mechanism.

Using the reference flux estimated in Table 1 and

the elasticities estimated in Table 2, we again use

Eqn (10) to predict internal metabolite steady state

concentrations for given external metabolite levels. In

Fig. 3 we show the predicted internal variations in

response to changes in ethanol concentration, using
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Fig. 3. Variations in steady state intracellular metabolite concentrations with changes in ethanol concentration. Shown are the real model

solutions (o), and the predictions of the linlog model with both estimated (solid line) and correct (dashed line) fluxes and elasticities. ETOH,

ethanol; P, high energy phosphates; P3G, 3-phosphoglycerate; PYR, pyruvate.
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these estimated parameter values (solid line), alongside

the real model solutions (o). As a comparison, we also

present the predictions of the correctly parameterized

linlog approximation (dashed line). Unsurprisingly, the

version of the linlog model with estimated parameters

does not reproduce real system dynamics as well as the

linlog model with correct fluxes and elasticities. Some-

what surprisingly, however, given the limited informa-

tion used, the estimated model still provides a

reasonable approximation to the underlying kinetics.

Indeed, in the case of 1,3-bisphosphoglycerate (BPG)

steady state concentration, the two versions of linlog

approximation are indistinguishable. For many of the

remaining metabolites, there is a good agreement

between the real and estimated model steady states,

despite the differences in parameter values as set out in

Tables 1 and 2. The result implies that system steady

states are relatively insensitive to these parameters. To

reinforce this point, in Table 3 we present the percent-

age error in steady state prediction by both the cor-

rectly parameterized and estimated linlog models,

when ethanol concentration is halved from its refer-

ence value. The correctly parameterized linlog model

provides an excellent approximation, with the majority

of errors under 1%. The estimated model performs less

well, but nonetheless the predicted concentration of all

but one of the metabolites falls within 25% of its real

value, which should be considered a success given the

limited biological information used.

To complement the above results, in Fig. 4 we pres-

ent the steady state fluxes as predicted by the linlog

model with both estimated (solid line) and real (dashed

line) fluxes and elasticities. Again, both versions pro-

vide good approximations to the real model fluxes.

The exception here is succinate synthesis; as we saw in

Table 1, FBA disregards this branch of glycolysis as it

is not involved in ATP production. Hence the fully

estimated model assumes no succinate synthesis for

any metabolite levels. However, such a result could

easily be improved through incorporation of relevant

biological information to FBA.

Discussion

Metabolism is arguably the best described network in

the cell and there already exist various computational

tools to model its behaviour. Kinetic modelling incor-

porates mechanistic rate equations for each reaction in

the network and knowledge of kinetic parameters to

accurately simulate system dynamics. However, it

requires a large amount of data, which may not be

always available for every reaction, and the model

may become intractable as the size of the system under

examination increases. Constraint-based approaches

typically only consider stoichiometric information for

the network, which is much more readily accessible,

but the allowable solution space is much larger and

cannot usually be reduced to a single point; further-

more a lot of biological information about the system

may be disregarded, even when available, because

there is no consideration of kinetics.

The goal of this paper has been to reconcile the sep-

arate methodologies of constraint-based modelling and

mechanistic (kinetic) modelling. Like constraint-based

methods, we begin from knowledge of only the stoichio-

metry of the network and cellular composition. Like

mechanistic approaches, our estimated model provides

at least an intimation of the kinetic nature and behav-

iour of the system. The proposed methodology was

tested by applying it to the well-studied yeast glycolytic

pathway, using the model proposed in Teusink et al.

[14] as a starting point.

The results in Figs 3 and 4 demonstrate that our

approach, even though admittedly not perfect in its

predictions, is still capable of providing a very useful

approximation for a metabolic network, in the absence

of an accurate kinetic model and detailed kinetic rate

equations for each reaction. The predictions of the

proposed model agree well with the Teusink et al.

model solutions and, therefore, when applied to a

pathway that has not been as thoroughly studied,

could yield invaluable information. To our knowledge,

the approach presented in this paper is the first to

provide a kinetic (albeit approximate) model for a

Table 3. Percentage errors in the predicted steady state concentra-

tions when ethanol concentration is halved from its reference

value. The table compares the percentage error between the real

model steady states and those predicted by both the correctly

parameterized linlog model and its fully estimated counterpart.

Metabolite

Linlog error (%)

Correctly parameterized Fully estimated

ACE 9.98 · 10)2 21.2

BPG 0.591 0.612

F16P 1.37 · 10)2 19.0

F6P 1.68 36.7

G6P 7.58 · 10)2 24.5

GLCi 3.00 6.34

NAD 0.251 0.805

NADH 2.52 19.5

P 1.54 0.418

P2G 0.38 4.75

P3G 0.275 14.5

PEP 0.535 11.8

PYR 1.03 4.98

TRIO 6.48 · 10)2 13.4

K. Smallbone et al. Constraint-based meets kinetic modelling
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metabolic network, based solely on the knowledge of

the reaction stoichiometry and nutrient supply. Any

known fluxes may be set as constraints to improve our

FBA solution; similarly, any known elasticities may be

used in place of our first approximations. Hence our

modelling framework may be considered the first step

in the deductive–inductive ‘cycle of knowledge’ [21]

crucial for systems biology.

Materials and methods

Linlog kinetics

A generalized description of the temporal evolution of a

metabolic network may be described in differential equation

form as

diagðcÞ dx

dt
¼ Nvðx; yÞ ð1Þ

where x is a vector of length m of internal metabolite con-

centrations, v is a vector of length n describing the func-

tional form of reaction rates or fluxes, and N is a matrix of

size m · n defining the stoichiometries of the system. Also

included is y, a vector of length my of external metabolite

concentrations that affect flux, but whose temporal dynam-

ics are not considered. Finally, c is a vector of length m

whose elements ci correspond to the volume of the com-

partment containing metabolite xi.

We first define a reference state (x, y) ¼ (x*, y*). These

are metabolite concentrations at a point of interest in the

system; for example, y* might represent the ‘normal’ exter-

nal metabolite concentrations and x* a steady state solution

to Eqn (1) at y ¼ y*, if such a solution exists.

The linlog approximation [10–12] describes the effect of

metabolite levels on flux v as a linear sum of logarithmic

terms:

vðx; yÞ � uðx; yÞ :¼ diagðv�Þ 1n þ ex log
x

x�
þ ey log

y

y�

� �
ð2Þ

where 1n denotes a vector of length n with all components

equal to unity, v* ¼ v(x*, y*) is the reference flux, ex and ey

are n · m and n · my elasticity matrices, and log(x ⁄ x*) and
log(y ⁄ y*) are vectors with components log(xi ⁄ xi*) and

log(yi ⁄ yi*), respectively. Implicit in the definition of linlog

kinetics is the requirement that all components of the refer-

ence state (x*,y*) are nonzero. Through differentiation of

Eqn (2), the elasticity matrices are defined by
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Fig. 4. Selected variations in steady state fluxes with changes in ethanol concentration. Shown are the real model solutions (o), and the pre-

dictions of the linlog model with both estimated (solid line) and correct (dashed line) fluxes and elasticities. ADH, alcohol dehydrogenase;

ATP, ATPase activity; ENO, enolase; SUC, succinate synthesis.
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ðexÞi;j ¼ evi
xj
¼ @viðx; yÞ

@xj

����
ðx�;y�Þ

x�j
v�i
;

ðeyÞi;j ¼ evi
yj
¼ @viðx; yÞ

@yj

����
ðx�;y�Þ

y�j
v�i :

ð3Þ

By definition, at the reference state u ¼ v and J(u) ¼
J(v), where J denotes the Jacobian matrix. Thus for each

reaction, both the zeroth and first derivatives with respect

to any metabolite are correct at the reference state, and

hence u is a good approximation to v in a region near this

point.

Substituting Eqn (2) in Eqn (1) we find

diagðcÞ dx

dt
� Ndiagðv�Þ 1n þ ex log

x

x�
þ ey log

y

y�

� �
ð4Þ

¼ Ndiagðv�Þ ex log
x

x�
þ ey log

y

y�

� �
ð5Þ

where the second equation holds as we choose the reference

state (x*, y*) to be a steady state, so N v* ¼ 0.

In general, the rank r(N diag (v*) ex) ¼ m0 < m and the

system defined above will display moiety conservations

[22,23]– certain metabolites can be expressed as linear com-

binations of other metabolites in the system. Note that,

within the linlog framework, the number of independent

metabolites is not given simply by r(N), as has been errone-

ously suggested [10]. The conservations may be removed

through matrix decomposition, using an m · m0 link matrix

L that relates the complete vector of internal metabolites to

the vector of independent metabolites [23,24]. Following

[10], we define

L ¼ diagðx�Þ�1diagðcÞ�1N ~Nþdiagð~cÞdiagð~x�Þ ð6Þ

where ~x denotes the independent metabolites, ~c the corre-

sponding compartments, ~N the corresponding rows of N

and + the Moore-Penrose pseudoinverse [25]. Using the

logarithmic approximation log(z) � z ) 1 for z � 1 we find

log
x

x�
� L log

~x

~x�
: ð7Þ

Now from Eqn (5):

dv
dt
¼ xð�vÞðevvþ eccÞ ð8Þ

where

v ¼ log
~x

~x�
; ev ¼ diagð~cÞ�1diagð~x�Þ�1 ~Ndiagðv�ÞexL;

c ¼ log
y

y�
; ec ¼ diagð~cÞ�1diagð~x�Þ�1 ~Ndiagðv�Þey;

ð9Þ

and x(z) ¼ exp(diag (z)) is a diagonal matrix with strictly

positive diagonal elements ezi . Eqn (8) differs from previous

linlog representations [11] in that we do not rely on the fur-

ther approximation x()v) � I, the identity matrix, and

thereby maintain the nonlinearity of the system.

Using Eqn (8), for given fixed concentrations of external

metabolites c, we find that the steady state internal metabo-

lite concentrations are given analytically by

v� ¼ �e�1
v ecc¼�ð ~Ndiagðv�ÞexLÞ�1ð~N diagðv�ÞeyÞc ð10Þ

where invertibility is ensured through introduction of the

link matrix. Linearizing the network about the steady state

defined in Eqn (10), the stability matrix is given by

J ¼ xð�v�Þev ¼ xðe�1
x eccÞex: ð11Þ

The steady state is linearly stable if and only if all eigen-

values of J have negative real parts [26].

Finally, assuming that v � v*, i.e. that the system

remains close its steady state, we may linearize Eqn (8) and

hence [27] find the temporal solution

vðtÞ ¼ eJtðvð0Þ � v�Þ þ v�: ð12Þ

If the external metabolites c are allowed to vary with

time, we may instead approximate x(– v) � I (following

[11]), i.e. assume that we remain close to the reference state,

when Eqn (8) has solution

vðtÞ ¼ eevtvð0Þ þ
Z t

0

eevðt�sÞeccðsÞds: ð13Þ

Flux balance analysis

Mathematically, flux balance analysis [9] is framed as a lin-

ear programming problem:

Maximize Z ¼ f T v;

subject to Nv ¼ 0;

vmin � v � vmax:

ð14Þ

That is, we define an objective function Z, a linear combi-

nation of the fluxes vi, that we maximize over all possible

steady state fluxes (Nv ¼ 0) satisfying certain constraints.

In many genome scale metabolic models a biomass produc-

tion reaction is defined explicitly that may be taken as a

natural form for the objective function; in other cases, a

natural choice is to maximize the rate of cellular ATP pro-

duction, Z ¼ vATP.

Whilst the relation Nv ¼ 0 constrains the possible fluxes

to lie within the null space of the stoichiometric matrix N,

upper and lower bounds may be further placed on the indi-

vidual fluxes ðvmin
i � v � vmax

i Þ. For irreversible reactions,

vmin
i ¼ 0. Specific upper bounds vmax

i , based on enzyme

capacity measurements, may be imposed on reactions; in

the absence of any information these rates can be generally

assumed unconstrained, i.e. vmax
i ¼ 1, and vmin

i ¼ �1 for

reversible reactions.

Special care must be taken when considering exchange

fluxes connecting external effectors and internal metabo-

lites, i.e. nutrient supply and waste product removal. If
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all reactions are unconstrained, it is explicit from

Eqn (14) that the objective function will be unconstrained.

To circumvent this problem, we must constrain nutrient

supplies to vmax
i <1; we take these bounds to be the

known reference state nutrient supplies. On a similar note,

if waste removal reactions are assumed unconstrained and

reversible, we may find that the cell can utilize the waste

product to generate biomass or ATP, again leading to an

unconstrained objective function. To circumvent this prob-

lem, we force net waste removal reactions to be irrevers-

ible, setting vmin
i ¼ 0.

The FBA problem is now well-defined, in that it leads to

a unique, finite objective value Z ¼ Z*; however, in general

there is degeneracy in the network, leading to an infinite

number of flux distributions v with the same optimal value.

It is a great focus of the FBA community to reduce the size

of this optimal flux space, through imposing tighter limits

on each flux based, for instance, on gene knockout experi-

ments, and the measurement of intracellular fluxes with

NMR. Such data are easily incorporated, but continuing

the assumption that we have limited information, these

techniques are not available to us. Instead we extract a bio-

logically meaningful flux from the solution space by solving

a secondary problem:

Minimize Rijvij
subject to f T v ¼ Z�;

Nv ¼ 0;

vmin � v � vmax:

ð15Þ

That is, we make the sensible assumption that the cell

will minimize the total flux required to produce the objec-

tive Z ¼ Z*, which by decomposing v into its positive

and negative parts may be again viewed as a linear pro-

gramming problem. Cells may be profligate with regard

to flux [28], but one benefit of this approach is that inter-

nal cycles that can produce fluxes vi ¼ ¥ from Eqn (14)

are removed. Whilst this secondary problem may still

have alternative solutions v, we at least know that our

nonunique solution will be sensible from a biological per-

spective.

Elasticity estimation

We follow the tendency modelling approach of Visser et al.

[20], whereby the elasticities ex and ey are taken to be equal

to the negative of their corresponding stoichiometric coeffi-

cient. For example, if two molecules of substrate are used

in a reaction, its elasticity is estimated as e¼ 2, whilst if

one molecule of product is formed from a reaction, we esti-

mate its elasticity as e¼ ) 1. These elasticities are identical

to those that would be found through the assumption of

mass action kinetics. Whilst Visser et al. extended their

generalized mass action approach to allow for allosteric

effectors, no such information may be derived from knowl-

edge of the stoichiometric matrix alone.
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