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The Conjugacy Problem in Amalgamated Products I:
Regular Elements and Black Holes

Alexandre V. Borovik, Alexei G. Myasnikov, and Vladimir N.
Remeslennikov

Abstract. We discuss the time complexity of the word and conjugacy prob-

lems for free products G = A ?C B of groups A and B with amalgamation

over a subgroup C. We stratify the set of elements of G with respect to the
complexity of the word and conjugacy problems and show that for the generic

stratum the conjugacy search problem is decidable under some reasonable as-

sumptions about groups A, B, C. Moreover, the decision algorithm is fast on
the generic stratum.
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Introduction

Motivation. This is the first paper in a series of four written on the Word and
Conjugacy Problems in amalgamated free products and HNN extensions. When this
improves the presentation of the main concepts we mention several results from the
subsequent papers.

Free products with amalgamation and HNN extensions are among the most
studied classical constructions in algorithmic and combinatorial group theory. Meth-
ods developed for the study of the Word and Conjugacy Problems in these groups
became the classical models much imitated in other areas of group theory. We refer
to Magnus, Karrass, and Solitar book [24] for amalgamated free product techniques
and to Lyndon and Schupp book [23] for HNN extensions.

The third author was supported by EPSRC grant GR/R29451 and by RFFI grants 02-01-
00192 and 05-01-00057.
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In 1971 Miller proved that the class of free products A ∗C B of free groups
A and B with amalgamation over a finitely generated subgroup C contains spec-
imens with algorithmically undecidable conjugacy problem [25]. This remarkable
result shows that the conjugacy problem can be surprisingly difficult even in groups
whose structure we seem to understand well. In few years more examples of HNN
extensions with decidable word problem and undecidable conjugacy problem fol-
lowed (see the book by Bokut and Kukin [7]). The striking undecidability results
of this sort scared away any general research on the word and conjugacy problems
in amalgamated free products and HNN extensions. The classical tools of amal-
gamated products have been abandoned and replaced by methods of hyperbolic
groups [6, 19, 27], or automatic groups [4, 14], or relatively hyperbolic groups
[12, 29].

In this and the subsequent paper [9, 10, 11] we make an attempt to rehabilitate
the classical algorithmic techniques to deal with amalgams. Our approach treats
both decidable and undecidable cases simultaneously. We show that, despite the
common belief, the Word and Conjugacy Problems in amalgamated free products
are generically easy and the classical algorithms are very fast on “most” or “typical”
inputs. In fact, we analyze the computational complexity of even harder algorithmic
problems which lately attracted much attention in cryptography (see [3, 22, 31],
and surveys [13, 33]), the so-called Normal Form Search Problem and Conjugacy
Search Problem. Our analysis is based on recent ideas of stratification and generic
complexity [8, 20], which we briefly discuss below.

Stratification of the set of inputs. We start with a general formulation of
our approach to algorithmic problems and then specify it to algorithmic problems
in groups. We follow the book Computational Complexity of Papadimitriou [30]
for our conventions on computational complexity.

Let M be a set with a fixed size function size : M → R>0 and A a partial
algorithm with inputs from M . Denote by DomA ⊆M the set of inputs on which
A halts. For w ∈ DomA by TA(w) we denote the number of steps required for the
algorithm A to halt on the input w. If f : R>0 −→ R>0 is a standard complexity
time bound, say f(x) = xn, or f(x) = nx, n ∈ N, then we say that f(x) is a worst
case time upper bound for A (with respect to the size function size) if there exists
a constant C ∈ R such that for every w ∈M

TA(w) 6 Cf(size(w)) + C.

The set
Mf = {w ∈M | TA(w) 6 f(size(w))}

is called the f-stratum of A.
Assume now that the set M comes equipped with a (finitely additive) measure

µ which takes values in [0, 1]. A subset Q ⊆ M is called generic (negligible) if
µ(Q) = 1 (µ(Q) = 0). A bound f is called a generic upper bound for A if the set
Mf is generic with respect to µ. A generic upper bound f is tight if it is a minimal
(with respect to the standard order � on the bounds) generic upper bound for A
from a fixed list of upper bounds U . If not said otherwise, we always assume that U
consists of the set of polynomial bounds xn, n ∈ N and a simple exponential bound
2x. It may happen that an algorithm A does not have a tight generic upper bound.

If f is a tight generic upper bound for A then the stratum Mf is called a
generic stratum. Sometimes it is difficult to determine generic strata precisely, in
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which case it is convenient to replace Mf by a “large enough” part of it. To this
end we introduce the following notion. A subset RP ⊆ Dom(A) is called a regular
part of M relative to A if RP is a generic subset of M such that RP ⊆Mf for some
tight generic upper bound f for A. One can view RP as the set of “algorithmically
typical” inputs for A with respect to µ, so RP describes the most typical behavior
of the algorithm on M . The compliment BH = M r RP is called a black hole.
Clearly, the regular part PR and the black hole BH are defined up to a negligible
set. In applications BH consists of elements w in M for which either the algorithm
A does not work at all, or TA(w) is not bounded by f(size(w)), or for some reason
it is just not known whether w is in Mf or not. Finally, for a bound h ∈ U we say
that the regular part RP of A has at most h time complexity if Mh is generic. In
particular, we say that RP is polynomial time if it has at most h time complexity
for some polynomial h.

In what follows the measure µ appears either as the asymptotic density function
on M with respect to the size function size, or the exponential distribution on M
which comes from a corresponding random walk on M (we refer to [8] for details).
To explain this we need a few definitions. Let

M =
∞⋃
i=0

Mi

be a partition of M with respect to the given size function size : M → R, thus

Mi = {w ∈M | size(w) = i}.

In this case for a subset Q of M the fraction

µ(Q ∩ Si)
µ(Mi)

can be viewed as the probability of an element of M of size i to be in Q. The limit
(if it exists)

ρ(Q) = lim
i→∞

µ(Q ∩Mi)
µ(Mi)

is called the asymptotic density of Q. The set Q is generic (negligible) with respect
to ρ if ρ(Q) = 1 (ρ(Q) = 0), and Q is strongly generic if the convergence

µ(Q ∩ Si)
µ(Si)

→ 1

is exponentially fast when i→∞.
It is not hard to see that the collection F of all generic and negligible subsets

of M is an algebra of subsets of M and the asymptotic density ρ is a measure on
the space (M,F).

Search problems in groups. The Word and Conjugacy Problems are two
classical algorithmic problems introduced by M. Dehn in 1912. Since then much of
the research in combinatorial group theory was related to these problems. We refer
to surveys [1, 25, 26, 32] on algorithmic problems in groups.

Let G be a fixed group given by a finite presentation G = 〈X;R〉, and M(X) =
(X±1)∗ a free monoid over the alphabet X±1. Sometimes, slightly abusing nota-
tions, we identify words in M(X) with their canonical images in the free group
F (X).
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An algorithmic problem P over G can be described as a subset D = DP of
a Cartesian power M(X)k of M(X). The problem is decidable if there exists a
decision algorithm A = AP which on a given input w ∈ M(X)k halts and outputs
“Yes” if w ∈ DP , otherwise it outputs “No”. In applications it is often required
to find a decision algorithm AY es for the “Yes” part which on an input w ∈ D
provides a “reasonable proof” that w is, indeed, in D. This leads to the search (or
witness) variations of the algorithmic problems (see [20, 28] for a more detailed
discussion of the Search Problems in groups).

Conjugacy Search Problem for G: For a given pair (u, v) ∈ M(X) ×M(X) verify
if u and v are conjugate in G, and if they are find a conjugator.

Search Word problem for finitely presented groups has several formulations which
depend on the form of the witness. For example, if an input w ∈ M(X) is equal
to 1 in G then one may require to provide a presentation of w as a product of
conjugates of relators from R as a witness (see [28]). However, in free products
with amalgamation it is convenient to consider the following more general problem.

Let R be a set of reduced forms and N be a a fixed set of normal forms (viewed
as words in M(X)) of elements from G.

Reduced Forms Search Problem for G and R: For a given w ∈ M(X) find its
reduced form w̄ ∈ R.

Let N be a fixed set of normal forms (viewed as words in M(X)) of elements
from G, and w̄ a representative of w.

Normal Forms Search Problem for G and N : For a given w ∈ M(X) find its
normal form w̄ ∈ N .

This new requirement for the search decision problems to provide a “proof”, or a
“witness”, of the correct decision brings quite a few new algorithmic aspects, which
were not studied in group theory (see discussion in [28]).

Results. We show below that in the free product G = A∗C B of free groups A
and B with amalgamation over a finitely generated subgroup C of infinite index in
A and in B, the Canonical Form and the Conjugacy Search Problem is decidable
for the set of regular elements in G. Moreover, we analyze the time complexity of
these problems (modulo the corresponding algorithms in the factors A, B).

In Section 3.2 we study algorithmic properties of the standard rewriting Algo-
rithm I for computing the normal forms of elements in amalgamated free products
(as, basically, described in [24]). It turns out that Algorithm I has the following
algorithmic properties (modulo the above mentioned algorithms in the factors):

• Algorithm 0 and I have exponential worst case time complexity in the
length of the inputs w.

The results of the papers show that this upper bound for complexity is not
actually reached on many groups, and, in some precise sense, the number of such
groups is large.

The paper [9] contains a detailed quantitative analysis of the complexity of the
Conjugacy Search Problem in amalgamated products of free groups.

We note also an important special case of free products with amalgamation
G = A∗CB where the previous result can be improved. Let A, B, C be free groups
of finite rank and assume that C has infinite index in both A and B. We prove,
that, in that case, the following statements hold.
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• The regular part RP of Algorithm I has linear time complexity on a
generic subset [9].

This result plays the key role in the estimates of the generic complexity of the
Conjugacy Search Problem in G.

Notice that [9] also contains
• natural procedures for generating random reduced, normal and cyclically

reduced normal forms of elements of G.
• We also give explicit formulae for the probabilities of generation of the

given random form.
Next important ingredient of [9] is

• the extended subgroup graph Γ∗C defined for a finitely generated subgroup
C of a free group F .

This graph allows us to construct, by means of a finite state automaton, all
Schreier systems of representatives for the subgroup C. Furthermore, for a fixed
Schreier system S for the subgroup C in F we define representatives with special
properties: stable and regular. A representative s ∈ S is called stable, if, for every
c ∈ C, the element sc belongs to S. A representative s ∈ S is called regular if it
is not contained in the generalized normalizer N∗

C(F ) of the subgroup C in F (the
definition is given later in the paper). A normal form of an element g ∈ G is called
stable if contains at least one stable representative. A normal form of an element
is called regular if it contains at least one regular representative.

• Let S be a Schreier system of representatives of F with respect to C.
Then if C is a subgroup of infinite index in F then the sets of stable and
regular representatives are strictly generic in S [9].

• If G = A ∗C B, where A, B, C are free groups of finite rank and C
has infinite index in both A and B, then, under some minor additional
assumption about C (details are in [9]), we show that

– the set of all stable reduced forms is strictly generic with respect to
the set of all reduced forms;

– the set of all regular normal forms is strictly generic with respect to
all normal forms.

In Section 4 we study the time complexity of the Search Conjugacy Problem in
G. More precisely, we study the time complexity of the standard decision algorithm
B for the Conjugacy Problem in amalgamated free products (following the descrip-
tion in [24]). The main result of this paper shows that the algorithm B solves the
Search Conjugacy Problem in G for all regular elements, and their conjugates. To
describe regular elements in G we need the following definitions. The generalized
normalizer N∗

H(K) of a subgroup K of a group H is a set of all elements g ∈ H
such that K ∩ Kg 6= 1 [5]. N∗

H(K) “measures malnormality” of K in H. For an
element g ∈ H define

Zg(K) = {h ∈ K | hg ∈ K} = Kg−1
∩K

and put
ZH(K) =

⋃
g∈N∗

H(K)rK

Zg(K) =
⋃

g∈N∗
H(K)

Zg(K).

Now in the group G = A ∗C B the set

BH = (N∗
G(C) r C) ∪ ZG(C)
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is called a Black Hole, and its complement RP = G r BH is called the Regular
Part of A.

It turns out that B has the following algorithmic properties (modulo the cor-
responding algorithms in the factors):

• B decides whether or not a given element from G is conjugated to a given
regular element of G.

• the regular part RP is generic in G ([9]);
• B works fast on elements from RP .
• RP is a decidable subset of G.

In [10] these results (with the exception of the genericity of the regular part
RP in G) are transferred to HNN extensions of free groups. In [11] we further
specilise them for the class of Miller’s groups.

Starting with a presentation for a finitely presented group H, Miller [26] con-
structed a generalized HNN-extension G(H); he then showed that the Conjugacy
Problem in G(H) is decidable if and only if the Word Problem is decidable in H.
Varying the group H, one can easily construct infinitely many groups G(H) with
decidable word problem and undecidable conjugacy problem.

In [10], working under some mild assumptions about the groups involved in a
given HNN-extensionG , we stratifyG into two parts with respect to the “hardness”
of the conjugacy problem:

• a Regular Part RP , consisting of so-called regular elements for which the
conjugacy problem is decidable by standard algorithms. We show that
the regular part RP has very good algorithmic properties:

– the standard algorithms are very fast on regular elements;
– if an element is a conjugate of a given regular element then the algo-

rithms quickly provide a conjugator, so the Search Conjugacy prob-
lem is also decidable for regular elements;

– the set RP is generic in G, that is, it is very “big” in some particular
sense explained in the previous paper [9];

• the Black Hole BH (the complement of the set of regular elements) which
consists of elements in G for which either the standard algorithms do not
work at all, or they require a considerable modification, or it is not clear
yet whether these algorithms work or not.

This general technique for solving the conjugacy problem in HNN-extensions
does not work in Miller’s groups, for in this case the Black Hole (BH) of the
conjugacy problem algorithm coincides with the whole group. We therefore have
to weaken the definition of regular elements to so called weakly regular elements
and change the notion of the Black Hole to the notion of a Strongly Black Hole.
It is proven that the Conjugacy Search Problem for elements that do not lie in
the Strongly Black Hole (SBH) is decidable in cubic time. We give an explicit
description of the size of SBH for Miller’s groups and prove that SBH is a strongly
sparse set.

This is the first example of a non-trivial solution of the Stratified Conjugacy
Problem in finitely presented groups.

1. Preliminaries
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1.1. Amalgamated products. In this section we briefly discuss definitions
and some known facts about free products with amalgamation. We refer to [24] for
details.

Let A, B, C be groups and φ : C −→ A and ψ : C −→ B be monomorphisms.
Then one can define a group

G = A ∗C B,
called the amalgamated product of A and B over C (the monomorphisms φ, ψ are
suppressed from notation). If A and B are given by presentations A = 〈X | RA =
1〉, B = 〈Y | RB = 1〉, and a generating set Z is given for the group C, then the
group G has presentation

(1) G = 〈X ∪ Y | RA = 1, RB = 1, zφ = zψ(z ∈ Z)〉.
Notice that if the groups A and B are finitely presented and C is finitely generated
then the group G is finitely presented. If we denote

zφ = uz(x), zψ = vz(y)

then G has presentation

G = 〈X ∪ Y | RA = 1, RB = 1, uz(x) = vz(y), (z ∈ Z)〉.
The groups A and B a called factors of the amalgamated product G = A ∗C B,

they are isomorphic to the subgroups in G generated respectively by X and Y .
We identify A and B with these subgroups via the identical maps x → x, y → y
(x ∈ X, y ∈ Y ). Notice also that

C = A ∩B = 〈uz〉z∈Z = 〈vz〉z∈Z 6 G.

1.2. Canonical forms of elements. Let G = A ∗C B be an amalgamated
product of groups as in (1). Denote by S and T fixed systems of right coset
representatives of C in A and B. Throughout this paper we assume that the
representative of C is the identity element 1.

The following notation will be in use throughout the paper. For an element
g ∈ (A ∪B) r C we define F (g) = A if g ∈ A and F (g) = B if g ∈ B.

Theorem 1.1. [24, Theorem 4.1] An arbitrary element g in G = A ∗C B can
be uniquely written in the canonical normal form with respect to S and T

(2) g = cg1g2 · · · gn,
where c ∈ C, gi ∈ T ∪ S r {1}, and F (gi) 6= F (gi+1), i = 1, . . . , n, n > 0.

Corollary 1.2. Every element g ∈ A ∗C B can be written in a reduced form

(3) g = cg1g2 · · · gn
where c ∈ C, gi ∈ (A ∪ B) r C, and F (gi) 6= F (gi+1), i = 1, . . . , n, n > 0. This
form may not be unique, but the number n is uniquely determined by g. Moreover,
g = 1 if and only if n = 0 and c = 1.

Let g ∈ A∗CB and g = cg1g2 · · · gn be a reduced form of g. Then the number n
is called the length of g and it is denoted by l(g). Observe, that l(g) = 0 ⇐⇒ g ∈ C.

Definition 1.3. Let g ∈ A ∗C B. A reduced form g = cg1g2 · · · gn is called
cyclically reduced if one of the following conditions is satisfied:

(a) n = 0;
(b) n = 1 and g is not a conjugate of an element in C;
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(c) n > 2 and F (g1) 6= F (gn).

Notice that our definition of cyclically reduced forms is slightly different from
the standard one (see, for example, [24]). Usually, the condition (b) is not required,
but the difference is purely technical, and it is convenient to have (b) when dealing
with conjugacy problems. Observe also, that if one of the reduced forms of g is
cyclically reduced then all of them are cyclically reduced. In this event, g is called
cyclically reduced element.

Lemma 1.4 ([24]). Let g ∈ A ∗C B. Then g is a conjugate of some element g0
in a cyclically reduced canonical form. This element g0 is not uniquely defined, but
its length l(g0) is uniquely determined by g.

The canonical form of g0 is called a cyclically reduced canonical form of g. The
uniquely determined number l(g0) is called the cyclic length of g and it is denoted
by l0(g). Observe that

l0(g) = 0 ⇐⇒ some conjugate of g is in C,

l0(g) = 1 ⇐⇒ some conjugate of g is in (A ∪B) r C.

1.3. Conjugacy criterion.

Theorem 1.5. [24, Theorem 4.6] Let G = A∗C B be an amalgamated product,
and let g be a cyclically reduced element in G.

(i) If l0(g) = 0, i.e., g ∈ C, and g is conjugate to an element c ∈ C then
there exists a sequence of elements c = c0, c1, . . . , ct = g, where ci ∈ C
and adjacent elements ci and ci+1, i = 0, . . . , t− 1, are conjugate in A or
in B.

(ii) If l0(g) = 1, i.e., g ∈ A ∪ B r C, and g′ is a cyclically reduced element
which is a conjugate of g in G then l(g′) = 1, F (g) = F (g′) and g and g′

are conjugate in F (g).
(iii) Let l0(g) = r > 2 and g = g1 · · · gr be a cyclically reduced form of g.

Assume that g is conjugate to a cyclically reduced element h = h1 · · ·hs
in G. Then r = s and h can be obtained from g by a cyclic permutation
of the elements g1, . . . , gr followed by a conjugation by an element from
C.

1.4. Malnormal subgroups. Recall, that a subgroup H of a group G is
called malnormal in G if H ∩Hg = 1 for all g ∈ GrH.

It follows immediately from the conjugacy criterion ( Theorem 1.5) that free
factors A and B are malnormal in the free product A∗B. It is known that maximal
abelian subgroups (= proper centralizers) are malnormal in torsion-free hyperbolic
groups, in particular in free groups. We refer to [17] for results on malnormality of
maximal abelian groups in free products with amalgamation and HNN extensions.

Definition 1.6. Let G be a group and H be a subgroup of G. The generalized
normalizer N∗

G(H) is a set of all elements g ∈ G such that H ∩Hg 6= 1.

Notice that, NG(H) ⊆ N∗
G(H), and, in general, N∗

G(H) is not a subgroup. It is
obvious that if g ∈ N∗

G(H) then N∗
G(H) contains the whole double coset HgH. A

set of representatives {gi | i ∈ I} of double cosets of H is called a double transversal
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of H in N∗
G(H), in this event

N∗
G(H) =

⋃
i∈I

HgiH

IfH is a finitely generated subgroup of a free group G thenH has a finite double
transversal in N∗

G(H), moreover such a transversal can be found algorithmically [5].
A more convenient algorithm (in terms of subgroup graphs) can be found in [19].

For an element g ∈ G define

Zg(H) = {h ∈ H | hg ∈ H} = Hg−1
∩H

and put
ZG(H) =

⋃
g∈N∗

G(H)rH

Zg(H) =
⋃

g∈N∗
G(H)

Zg(H).

Even though Zg(H) is a subgroup of G for every g ∈ G, the set ZG(H) may not be
a subgroup. Observe, that for any u, v ∈ H

Zugv = Zg
u−1

.

Hence if T is a double transversal of H in N∗
G(H) then ZG(H) is union of conjugacy

classes:
ZG(H) =

⋃
h∈H,t∈T

Zt(H)h

In particular, if the transversal T is finite then ZG(H) is union of finitely many
conjugacy classes of subgroups Zt(H).

Definition 1.7. Let G be a group equipped with a map L : G → N and H
be a subgroup of G. For an element g ∈ G define L(gH) as the minimal value of L
on the double coset HgH. Then the malnormality degree md(H) of H in G with
respect to L is the smallest cardinal r such that H ∩ Hg = 1 for all g ∈ G with
LH(g) > r.

For example, the malnormality degree of subgroups can be defined in free
groups, free products with amalgamation, and HNN extensions of groups with
respect to the canonical length functions. In the sequel we always assume that
for H 6 A ∗C B the degree md(H) is viewed with respect to the canonical length
function l : A ∗C B → N.

Obviously, if a subgroup H has a finite double transversal in N∗
G(H) then

md(H) is finite.

Lemma 1.8. Let G = A ∗C B and D 6 C. Then
(i) If C is malnormal in A and B then md(D) = 1.
(ii) If C is malnormal in one of the groups A and B then md(D) 6 2.

Proof. Let g = g1 · · · gn be a reduced form of an element g ∈ G. Suppose
l(g) > 1, in particular, gn 6∈ C. Suppose also that c, c′ ∈ C. If

g1 · · · gncg−1
n · · · g−1

1 = c′

then gncg
−1
n ∈ C. Assume that C is malnormal in both A and B. This implies

that gn ∈ C -contradiction. Then n = 0 and therefore md(D) = 1.
If C is malnormal either in A or in B then similar argument shows that

md(D) 6 2. �
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Question 1.9. Let G = A ∗C B and H be a finitely generated subgroup of G.
Assume that the malnormality degree mdG(C) of C in G is finite, and H contains
no elements of length 6 mdG(C).

(a) Is it true that md(H) is finite?
(b) Is it true that N∗

G(H) is union of finitely many double cosets of H?

2. Algorithmic problems in groups

In this section we list some requirements on A,B,C which enable one to solve
various problems in A ∗C B algorithmically.

Fix a group H given by a presentation given group H = 〈X | R 〉. We discuss
below several algorithmic problems for H. Many algorithmic problems for H come
in three variations: specific, uniform, and search. For example, the specific mem-
bership problem in H is decidable for a given fixed finitely generated subgroup D
of H if there exists an algorithm which for every word w ∈ F (X) decides whether
the element represented by w in H belongs to D or not. In this case an input to the
algorithm is a word w in F (X) and outputs are answers “yes” or “no”. Decidability
of the uniform membership problem for H requires an algorithm which would solve
the specific membership problem for every finitely generated subgroup D of H. In
this case, inputs come in pairs: a subgroup D and a word w, and outputs are “yes”
or “no”. Meanwhile, the search membership problem requires an algorithm which,
for a given fixed subgroup D and a given element w, decides whether or not w
belongs to D, and if it does, the algorithm finds a presentation of w as a product
of the given generators of D. In this case answers are either “no”, or “yes” with
a word in the given generators of D. Search problems could also be uniform or
specific. It is convenient to treat uniform and specific forms as particular cases of
problems which are uniform relative to a given class of objects Φ. For example, the
membership problem for a class of subgroups Φ of H solves the specific membership
problem for every subgroup D from Φ. This relative approach is very natural, since
there are groups in which the uniform version of a particular algorithmic problem
is undecidable, but still there are interesting subclasses of objects Φ for which this
problem is uniformly decidable. Moreover, even if the uniform version of the prob-
lem is decidable the class of all objects in the question can be partition into different
subclasses with respect to different complexities of the decision algorithms.

Below we list some algorithmic problems for H in their uniform relative to a
subclass search variation. These algorithmic problems involve different subsets of
H (subgroups, cosets, double cosets, regular sets, recursive sets, etc.) given by
some natural effective (constructive) descriptions. For example, finitely generated
subgroups D are given by finite generating sets (which are given as words from
F (X)), cosets wD are given as pairs (D,w), regular sets are given either by finite
automata or by regular expressions, etc. Usually, we do not specify any particular
descriptions of these subsets, unless it is required by complexity issues or by a
particular algorithm.

Word Search Problem for a given subset of elements Φ (WSPΦ): Let Φ be
a given subset of elements from H (given as words from F (X)). For a given w ∈ Φ
decide whether w = 1 in H or not? If w = 1 then find a presentation of w as a
product of conjugates of relators from R.
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We will see in Section 3.2 that there is a “very large” subset of elements from
G = A ∗C B for which the standard algorithm for computing normal forms is “very
fast”.

Conjugacy Search Problem for a given set of pairs of elements Φ (CSPΦ):
Let Φ be a given set of pairs of elements from H. For a given pair (u, v) ∈ Φ
determine whether u is a conjugate of v in H or not, and if it is then find a
conjugator.

We will see in Section 4 that there is a large set of regular elements inG = A∗CB
for which the conjugacy problem is decidable, even though the standard conjugacy
problem for G may be undecidable.

Conjugacy Membership Search Problem for a set of subgroups Φ (CMSPΦ):
Let Φ be a set of finitely generated subgroups of H. For a given D ∈ Φ and a given
w ∈ F (X) determine whether w is a conjugate of an element from D, and if so,
find such an element in D and a conjugator.

Coset Representative Search Problem for a set of subgroups Φ (CRSPΦ):
Let Φ be a set of finitely generated subgroups of H. For a given D ∈ Φ find a
recursive set S of representatives of D in H and an algorithm AS which for a given
word w ∈ F (X) finds a representative for Dw in S

Observe that to solve CRSPΦ for a givenD ∈ Φ it suffices to find the algorithm
AS , since w ∈ S if and only if w is the output of AS on the input w.

To formulate the next algorithmic problem we need the following definition.
Let M be a subset of a group H. If u, v ∈ H then the set uMv is called a shift of
M . For a set M of subgroups of H denote by Φ(M,H) the least set of subsets of
H which contains M and is closed under shifts and intersections.

Cardinality Search Problem for Φ(C,H) (CardSPΦ): Let M be a set of
finitely generated subgroups of H. Given a set D ∈ Φ(M,H) decide whether D is
empty, finite, or infinite and, if D is finite non-empty, list all elements of D.

Malnormality Search Problem for a given set of subgroups Φ
(MalSPΦ): Let Φ be a set of finitely generated subgroups of H. For a given
D ∈ Φ find N∗

H(D) and ZH(D).
This problem, it seems, is a new type of algorithmic problems, which was not

studied before. Therefore, we discuss it in more details. Usually (at least, in what
follows), for a given D ∈ Φ the algorithm finds a finite double transversal S of D
in N∗

H(D), i.e., a finite set S ⊂ H such that

N∗
H(D) =

⋃
s∈S

DsD.

So the subgroups from Φ have to have finite transversals. In this event, if the
Membership Problem is decidable for double cosets DsD, when s ∈ S, then N∗

H(D)
is recursive. Moreover,

ZH(D) =
⋃

d∈D,s∈S

Zs(D)d

Therefore, a given w ∈ H belongs to ZH(D) if and only if w ∈ D and some conjugate
of w in D belongs to a subgroup from the finite set Zs(D), s ∈ S. Hence if the
Conjugacy Membership Problem is decidable in D for subgroups Zs(D), s ∈ S then
the set ZH(D) is recursive and the problem MalSPΦ is decidable.
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Theorem 2.1. Let H be a free group. Then all the problems above are de-
cidable. Moreover, all these problems have decision algorithms of polynomial-time
complexity.

Proof. Malnormality Search Problem for the class of all finitely generated
subgroups of a free group was solved in [5]. A different proof (in terms of automata)
could be extracted from [19]. �

For decidability of the other problems we refer to [19], even though these results
have been proven much earlier, but it is easier to discuss complexity of algorithms
from [19].

3. Computing canonical forms

3.1. Algorithm 0 for computation of reduced forms. In this Section we
discuss the following algorithmic problems

Reduced Forms Problem. Let G = A∗CB and suppose that Membership Search
Problem (MSP) for C in A and in B is decidable. Give an algorithm which for a
given g ∈ F (X ∪ Y ) finds a reduced form of g.

We describe a decision algorithm for the problem above. Given a word g ∈
F (X ∪ Y ) one can effectively present it as a product

(4) g = g1 · · · gk,

where g1, . . . , gk are reduced words in X or in Y and if gi is a word in X then gi+1

is a word in Y and vice versa.

Algorithm 0: Computing Reduced Forms.

Input: a word g = g1 · · · gk in the form (4).
Step 1.:

Check if gi ∈ C, i = 1, . . . , k or not. If none of the gi’s lies in C then
(4) is reduced.

Step 2. Let gi ∈ C and suppose that i is the minimal index with this property. If
i = 1, rewrite g in the form g = g′2g3 · · · gk, where g′2 = g1g2 = cg2, c ∈ C, and go
back to Step 1.

If i > 1 then rewrite g as follows g = g1 · · · gi−2g
′
i+1gi+2 · · · gk, where g′i+1 =

gi−1cgi+1 in A or in B, and go to Step 1.
End of Algorithm I

Theorem 3.1. Let G = A ∗C B and MSP is decidable for C in A and in B
then Algorithm 0 finds the reduced form of g in at most quadratic time (is of at
most quadratic worst case time complexity) modulo MSP.

3.2. The standard Algorithm I to compute normal forms. We fix a
free product with amalgamation G = A ∗C B given by the following presentation

G = 〈X ∪ Y | RA = 1, RB = 1, uz(x) = vz(y), (z ∈ Z)〉.

In this section we discuss the following algorithmic problem.

Canonical Forms Search Problem: Let G = A ∗C B and let S, T be recursive
sets of representatives of A and B modulo C. Give an algorithm which for a given
g ∈ F (X ∪Y ) finds the canonical form of g in G with respect to the sets S and T .
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Now we describe the standard known decision algorithm for the problem above
(see, for example, [25]) provided we are given decision algorithms for the Coset
Representatives Search Problem (CRSP) for the subgroup C inA and inB (relative
to the sets S and T ).

Given a word g ∈ F (X ∪ Y ) one can effectively present it as a product

(5) g = g1 · · · gk,
where g1, . . . , gk are reduced words in X or in Y , and if gi is a word in X, then
gi+1 is a word in Y , and vice versa.

Modulo the algorithm for CRSP the process of computing the canonical form
is the following.

Algorithm I: Computing Canonical Forms.

Input: a word g = g1 · · · gk in the form (5).
Step 0.:

• If gk is a word in X, write it as gk = ckuk with uk ∈ S (using the
Coset Representative Search Algorithm).

• If gk is a word in Y , write it as gk = ckuk with uk ∈ T (using the
Coset Representative Search Algorithm).

Comment. Notice that the end segment ckuk of the word

g1 · · · gk = g1 · · · gk−1ckuk

now is written in the canonical form. So we may continue by induction.
Induction Step.: If g is represented in the form

g = g1 · · · gici+1ui+1 · · ·um
where ci+1ui+1 · · ·um is in the canonical form, do:
(a) Observe, that ci+1 is always given either as a word ci+1(v1, . . . , vn)

in generators vj , or as a word ci+1(u1, . . . , un) in generators uj (as
the output of the CRSP algorithm). Now we rewrite ci+1 as follows:

– If gi ∈ F (X) and cj+1 is given as a word ci+1(v1, . . . , vn) in
generators vj then replace each vj in ci+1(v1, . . . , vn) by uj ;
otherwise leave ci+1 unchanged (since it is already written as
a word in X).

– If gi ∈ F (Y ) then rewrite ci+1 as a word in Y , replacing uj by
vj if necessary (as above).

(b) Depending on whether gi is a word in X or in Y , rewrite

gici+1 = ciui, ci ∈ C, ui ∈ S or ui ∈ T, correspondingly.

(c) If both ui and ui+1 are in S or both of them are in T , rewrite

uiui+1 = c′u′i with c′ ∈ C and u′i ∈ S or T, correspondingly,

and change notation

ci := cic
′, ui := u′i, ui+1 := ui+2, . . . , um−1 := um.

Output: The word
g = c1u1 · · ·um

which is the canonical form of g relative to the set of representatives S and T .
End of Algorithm I
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We summarize the discussion above as the following theorem

Theorem 3.2. Let G = A ∗C B and the CRSP is decidable in A and in B
for the subgroup C. Then Algorithm I finds the canonical form of g for every given
element g ∈ G.

3.3. Complexity of Algorithm I. Now we discuss briefly time-complexity
of Algorithm I. Recall that the time function TA of an algorithm A is defined on
an input g of A as the number of steps required by the algorithm A to halt on the
input g.

The complexity of the time function TI of the Algorithm I depends, firstly, on
complexity of the time functions of decision algorithms for CRSP for A and B
relative to C. Also, it depends on how the length of the words ci grows during the
rewriting process in the item (a) of the description of Algorithm I.

Complexity of the Coset Representative Search Algorithm depends on particu-
lar groups A, B, and C. For example, if A and B are free groups, then CRSP has
linear time complexity for a fixed subgroup C (see, for example, [19]).

Estimating the complexity of the rewriting process (a) is more demanding, even
in the case of amalgamated products of free groups. Recall, that in the rewriting
process (a) we rewrite a word cj+1(u1, . . . , un) into a word cj+1(v1, . . . , vn). Set

λ(u, v) =
max{|u1|, . . . , |un|}
min{|v1|, . . . , |vn|}

Then we have an upper bound estimate on the increase of the length

|cj+1(v1, . . . , vn)| 6 λ(u, v) · |cj+1(u1, . . . , un)|.
Similarly, in the case when we rewrite a word cj+1 given in the generators vi into
a word in generators ui we have an estimate with the factor λ(v, u). Therefore, if
we denote

λ = max{λ(u, v), λ(v, u)}
then at any rewriting step one has increase in length of at most by the factor λ.

Now suppose, for simplicity, that the length of cj increases in the rewriting
processes (b) and (c) at most by M + |gj | where M is a fixed constant (we make
this assumption to focus on the process (a)). Under these assumptions

(6) |cj | 6 λ · |cj+1|+M + |gj |
In particular, if the length of cj does not increase at all in the rewriting processes
b) and c) then in k steps we will have an exponential estimate

|c1| 6 λk−1 · |ck|
where k = l(g). So if λ > 1 then we might have exponential growth of the length
of the words ci. The example below shows that this happens in the worst case
scenario.

Example 3.3. Let A = F (a, b, d), B = F (ã, b̃, d̃) be two free groups of ranks 3.
Consider two subgroups of rank 2:

C = 〈ap, b〉 6 A, C̃ = 〈ã, b̃p〉 6 B,

where p > 2 is an integer. Then the map φ defined by φ(ak) = ã, φ(b) = b̃k gives
rise to an isomorphism φ : C → C̃. Put

G = A ∗C=C̃ B = 〈a, b, d, ã, b̃, d̃ | ap = ã, b = b̃p〉.
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Let S be a recursive set of representatives of A modulo C such that the represen-
tative in S of the coset Cdapm is b−pmdapm for all integers m. In particular,

dapm = bpm(b−pmdapm) (m ∈ Z)

It is not difficult to construct such S since the set of elements of the type dapm is
recursive, as well as cosets of C. Similarly, let T be a recursive set of representatives
of B modulo C̃ such that the representative in T of the coset C̃d̃b̃pm is ã−pmd̃b̃pm

for all integers m, which implies that

d̃b̃pm = ãpm(ã−pmd̃b̃pm).

Now consider the following element in G:

g = d̃dd̃d · · · d̃dã = g1 · · · gk
Then, in the notations of Algorithm I, the rewriting process (a) goes as follows:

ck = ã = ap

gk−1 = d, gk−1ck = dap = bp(b−pdap) = bpuk−1

Now the next step will be

ck−1 = bp = b̃p
2
, gk−2 = d̃

Hence
gk−2ck−1 = d̃b̃p

2
= ãp

2
(ã−p

2
d̃b̃p

2
) = ãp

2
· uk−2 = ck−2 · uk−2.

In this case λ = p, lengths of the words ci do not change in rewriting processes (b)
and (c), so the word ci grows every step by a factor of p, so

|c1| = pk

where k = l(g)− 1.

Example 3.4. Let A = F (a, b), B = F (a′, b′) be two free groups of rank 2.
Consider two subgroups of rank 2, C =

〈
a, ab

〉
, C ′ =

〈
a′
p
, a′b

′
〉
, where p > 2 is an

integer. Then the map φ defined by φ(a) = a′b
′

and φ(ab) = a′p gives rise to an
isomorphism φC → C ′. Put

G = A ∗C=C′ B =
〈
a, b, a′, b′|a = a′b

′
, ab = a′p

〉
Let S be a recursive set of representatives of A modulo B such that every element
from 〈b〉 is in S. Analogously, T is the set of representatives B modulo C ′ such
that every element from 〈b′〉 is in T . Now consider the following element in G:

g = (bb′)−na(bb′)n = ap
n

Rewriting of this element into the canonical form involves the exponential growth
of the lengths of intermediate words ci.

Now we turn to the complexity of rewriting processes (b) and (c). In general,
this complexity depends on the particular algorithms for solving CRSP. In the case
of free groups A and B the decision algorithm in [19] for solving CRSP have some
important features. If we denote by w̄ the representative of the coset Cw produced
by the algorithm on the input word w, then the following conditions hold:

• For a given w ∈ A the representative w̄ of the coset Cw has the minimal
possible length in Cw.
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• There exists a constant M such that for a given w ∈ A if w = cw̄ for a
(unique) c ∈ C then |c| 6 |w|+M .

• the time spent by the algorithm on an input w is bounded from above by
L|w| for some fixed constant L.

This allows one to estimate the complexity of Algorithm I in the case of free
groups. From now on we assume that Algorithm I has subalgorithms for solving
CRSP which satisfy the conditions above.

Lemma 3.5. Let A ∗C B be a free product of free groups with finitely generated
amalgamated subgroup C. Then the lengths of the words ci that occur in computa-
tions with Algorithm I on an input w is bounded from above by

(7) λk
|w|+M

λ− 1
,

where k = l(w).

Proof. Let w = g1 . . . gk be an input for Algorithm I in the form (5), where
k = l(w). It requires k steps for Algorithm I to produce the input. According to
(6) on each step the length of the word cj is bounded by

|cj | 6 λ · |cj+1|+M + |gj | 6 λ · |cj+1|+M + |w|.

Hence in k steps we will have the following estimate on the lengths of the words cj ,
j = 1, . . . k.

λ(· · · (λ(|w|+M) + |w|+M)) · · · ) + |w|+M = (λk−1 + · · ·+ 1)(|w|+M)

6 λk
|w|+M

λ− 1
,

as required. �

Corollary 3.6. Let A ∗C B be a free product of free groups with finitely gen-
erated amalgamated subgroup C. Then the time spent by Algorithm I on an input
w is bounded above by

k · L1 · |w| · λk · (|w|+M)

where L1 is a fixed constant and k = l(w).

Proof. Indeed, Algorithm I works k steps on an input w with l(w) = k. On
each step it rewrites a current word cj of the length bounded from above in (7). The
rewriting involves the subalgorithms for solving CRSP. These algorithms spend at
most linear time with respect to the length of the input. Putting all the estimates
together we have the resulting estimate above. �

Combining the corollaries above with the example we have the following result.

Theorem 3.7.
(1) Let A ∗C B be a free product of free groups with finitely generated amal-

gamated subgroup C. Then Algorithm I has at most exponential (in the
length of the input words) time complexity function bounded by:

kL1|w|λk(|w|+M)

where k, L1, λ,M , and w are as above;
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(2) There are finitely generated free groups A and B and a finitely generated
subgroup C in A and B such that in the free product with amalgamation
A ∗C B the Algorithm I has precisely the exponential time complexity as
above.

However, we will show in the subsequent paper [9] that the situation in the
example above is very rare, and in every free product with amalgamation G =
A∗C B of free groups with a finitely generated group C the Algorithm I is very fast
on generic inputs.

3.4. Computation of cyclically reduced forms: Algorithm II. We fix
the free product with amalgamation G = A ∗C B given by a presentation

G = 〈X ∪ Y | RA = 1, RB = 1, uz(x) = vz(y), (z ∈ Z)〉.

In this section, we shall discuss the standard algorithm to find a cyclically reduced
canonical form of an element g ∈ G given in the form (5):

g = g1 · · · gn,

where g1, . . . , gn are reduced words in X or in Y , and if gi is a word in X, then
gi+1 is a word in Y , and vice versa.

We work under assumption that the Coset Representative Search Problem
(CRSP) and the Conjugacy Membership Search Problem (CMSP) are decidable
in A and B for the subgroup C, and we have the decision algorithms in our posses-
sion. Notice that we need CMSP only because we have a slightly stronger notion
of reduced forms than the usual one (see Section 1.2).

Observe, that the uniform version of CMSP is decidable in free groups and
the decision algorithm has linear time complexity (in the length of the input word
w) for a given finitely generated subgroup C [19].

Algorithm II: Computing Cyclically Reduced Forms.

Input: a word g in the form (5).

Step 0: Find the canonical form of g using the Algorithm I:

g = cgg1 · · · gk.

Observe that l(g) = k and for every gi we know its factor F (gi).
Induction Step:

• If l(g) = 0 then g is already in cyclically reduced from.
• If l(g) = 1, for example, if g ∈ A, then check whether g is a conjugate

of an element c ∈ C or not, using the algorithm for CMSP. In the
former case, c is a cyclically reduced form of g and the algorithm for
CMSP gives one of such elements c. In the latter case, g is already
in cyclically reduced form.

• Let l(g) > 2.
– If F (g1) 6= F (gk), then g is already in a cyclically reduced

canonical form.
– If F (g1) = F (gk). Then g is conjugate to

(gkcqg1)g2 · · · gk−1.
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Now apply the decision algorithm for CRSP to the word (gkcqg1)
to find the canonical form c′g′1 of it. If g′1 6= 1 then

c′g′1g2 · · · gk−1

is a cyclically reduced canonical form of g. Otherwise,

F (c′g2) = F (gk−1)

and we apply the procedure above to c′g2 · · · gk−1.

End of Algorithm II

Remark 3.8. If l0(g) > 2 then Algorithms II needs only a decision algorithm
for CRSP to find a cyclically reduced form of g.

Theorem 3.9. Let G = A ∗C B and the problems CRSP and CMSP are
decidable in A and B for the subgroup C. Then for a given element g ∈ G Algorithm
II finds a cyclically reduced canonical form of g in time TII(g) which can be bounded
from above as follows:

TII(g) 6 TI(g) +K ·max{TCMSP (cgg1), TCRSP (gkcgg1) · l(g)},
where TI , TCMSP , TCRSP are the time functions, correspondingly, of Algorithm I,
and the decision algorithms for CMSP,CRSP, K is a constant. In particular, if
A and B are free groups then

TII(g) 6 TI(g) +K1 · |g| · l(g),
where K1 is a constant (depending on C) and |g| is the length of the input g given
as a word in F (X ∪ Y ).

4. Conjugacy Search Problem for regular elements

4.1. Regular Elements. In this section we introduce and study regular ele-
ments. Roughly speaking, regular elements are those elements of G = A ∗C B for
which the condition 1) in the Conjugacy Criterion - does not apply.

Definition 4.1. We say that (c, g) ∈ C ×G is a bad pair if c 6= 1, g 6∈ C, and
gcg−1 ∈ C.

Notice that if (c, g) is a bad pair then g ∈ N∗
G(C) r C and c ∈ Zg(C). The

following lemma gives a more detailed description of bad pairs.

Lemma 4.2. Let c ∈ C r {1} and g ∈ GrC. If g = cgp1 · · · pk is the canonical
normal form of g then (c, g) is a bad pair if and only if the following system Bc,g
has a solution c1, . . . , ck with ci ∈ C:

pkcp
−1
k = c1

pk−1c1p
−1
k−1 = c2

...
p1ck−1p

−1
1 = ck

Moreover, in this case pi ∈ N∗
F (pi)

(C) and c ∈ ZA(C) ∪ ZB(C).

Proof. This lemma is a particular case of Lemma 4.5. �
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Observe, that consistency of the system Bc,g does not depend on a particular
choice of representatives of A and B modulo C.

Now we specify, in our particular context, the general concepts of a “black hole”
and “regular part” as discussed in the Introduction.

Definition 4.3. The set

BH = (N∗
G(C) r C) ∪ ZG(C)

is called a black hole. Elements from BH are called singular, and elements from
GrBH regular.

Notice that if the subgroup C has a finite malnormality degree in G then every
element g with l0(g) > mdG(C) is regular. In particular, it follows from Lemma
1.8 that if C is malnormal in A or in B then every element g ∈ G with l(g) > 2
is regular. Notice also, that if g ∈ G r C is regular then all elements in CgC are
regular.

Observe, that the condition 1) in the Conjugacy Criterion, indeed, does not
apply for regular elements.

The following description of singular elements follows from Lemma 4.2.

Corollary 4.4. Let G = A ∗C B. Then:
1) an element g ∈ G r C is singular if and only if the system Bg,c has a

solution c, c1, . . . , ck, where c, ci are non-trivial elements from C;
2) ZG(C) = ZA(C) ∪ ZB(C)

As we have seen already, an element g ∈ G is singular if and only if the system
gc = c1g has a nontrivial solution c, c1 in C. Now we will study slightly more
general equations of the type gc = c′g′ and their solutions c, c′ in C.

Lemma 4.5. Let G = A ∗C B, g, g′ ∈ G be elements given by their canonical
forms:

(8) g = cgp1 · · · pk, g′ = cg′p
′
1 · · · p′k (k > 1).

Then the equation gc = c′g′ has a solution c, c′ ∈ C if and only if the following
system Sg,g′ in variables c, c′, c1, . . . , ck has a solution in C:

pkc = c1p
′
k

pk−1c1 = c2p
′
k−1

...
p1ck−1 = ckp

′
1

cgck = c′cg′

Proof. Let c, c′ ∈ C be a solution to the equation gc = c′g′. We then rewrite
the equality gc = c′g′ as

cgp1 · · · pkc = c′cg′p
′
1 · · · p′k.

Notice that the right hand side of this equality is in the canonical form. Following
Algorithm I we shall rewrite the left hand side of this equality into the canonical
form. After rewriting the both sides must coincide as the canonical normal forms
of the same element. This gives rise to the system of equations for some elements
c, c′, c1, . . . , ck ∈ C, as above. Conversely, if the system Sg,g′ has a solution then
the elements c, c′ give a solution of the equation gc = c′g′. �
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The first k equations of the system Sg,g′ form what we call the principal system
of equations, we denote it by PSg,g′ . In what follows we consider PSg,g′ as a system
in variables c, c1, . . . , ck which take values in C, the elements p1, p

′
1, . . . , pk, p

′
k are

constants.
To study solution sets of the system PSg,g′ we need the following definition.

Definition 4.6. Let M be a subset of a group G. If u, v ∈ G then the set
uMv is called a G-shift of M . For a set M of subgroups of G denote by Φ(M, G)
the least set of subsets of G which contains M and is closed under G-shifts and
intersections.

Lemma 4.7. Let G be a group and C be a subgroup of G. If D ∈ Φ({C}, G),
D 6= ∅ then there exist elements g1, . . . , gn, h ∈ G such that

D = (Cg1 ∩ · · · ∩ Cgn)h

In particular, non-empty sets in Φ({C}, G) are particular cosets from G.

Proof. Induction on the number of operations required to construct D from
C. For a tuple ḡ = (g1, . . . , gn) of elements from G put

Cḡ = (Cg1 ∩ · · · ∩ Cgn).

Let D = Cḡh for some ḡ ∈ Gn, h ∈ G. Then for any a, b ∈ G:

aDb = Da−1
ab = Cḡa−1ab,

where ḡa−1 = (g1a−1, . . . , gna
−1), i.e., aDb is in the required form.

Observe, that for arbitrary subgroups K,L 6 G and elements a, b ∈ G if
h ∈ Ka ∩ Lb then

(9) Ka ∩ Lb = (K ∩ L)h.

Therefore, if h3 ∈ Cḡ1h1 ∩ Cḡ2h2, then

Cḡ1h1 ∩ Cḡ2h2 = (Cḡ1 ∩ Cḡ2)h3 = Cḡ3h3,

where ḡ3 is concatenation of ḡ1 and ḡ2. �

Lemma 4.8. Let G = A ∗C B. Then for given two elements g, g′ ∈ G in their
canonical forms

g = cgp1 · · · pk, g′ = cg′p
′
1 · · · p′k (k > 1)

the set Eg,g′ , of all elements c in C for which the system PS(g, g′) has a solution
c, c1, . . . , ck ∈ C, is equal to

Eg,g′ = C ∩ p−1
k Cp′k ∩ · · · ∩ p−1

k · · · p−1
1 Cp′1 · · · p′k.

In particular, if Eg,g′ 6= ∅ then Eg,g′ = Cg,g′cg,g′ for some subgroup Cg,g′ 6 C and
some element cg,g′ ∈ C.

Proof. Let
g = cgp1 · · · pk, g′ = cg′p

′
1 · · · p′k.

Denote by Vi the set of all solutions (c, c1, . . . , ci) ∈ Ci+1 of the system formed by
the first i equations of PS(g, g′). Let Dm,i be the projection of Vi onto its m-s
component.

The first equation of the system PS(g, g′) gives:

pkc0(p′k)
−1 = c1
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where for uniformity we denote c by c0. Therefore,

D1,1 = pkC(p′k)
−1 ∩ C, D0,1 = p−1

k D1,1p
′
k

and (c0, c1) ∈ V1 if and only if

c1 ∈ D1,1, c0 = p−1
k c1p

′
k.

Clearly, the sets D0,1 and D1,1 are in ΦC .
Now we rewrite the i-s equation pk−i+1ci−1 = cip

′
k−i+1 of the system PS(g, g′)

in the form
pk−i+1ci−1(p′k−i+1)

−1 = ci

It follows that

(10) Di,i = pk−i+1Di−1,i−1(p′k−i+1)
−1 ∩ C,

where i = 1, . . . , k and D0,0 = C. In particular

Dk,k = p1Dk−1,k−1(p′1)
−1 ∩ C

Clearly, (c, c1, . . . , ck) is a solution of the system PS(g, g′) if and only if ck ∈ Dk,k

and ci−1 = p−1
k−i+1cip

′
k−i+1. More precisely, since

Di−1,k = p−1
k−i+1Di,kp

′
k−i+1

it follows now that,

Dk−i,k = Dk−i,k−i ∩ p−1
i Cp′i ∩ · · · ∩ p−1

i · · · p−1
1 Cp′1 · · · p′i.

In particular,

Eg,g′ = D0,k = C ∩ p−1
k Cp′k ∩ · · · ∩ p−1

k · · · p−1
1 Cp′1 · · · p′k.

So Eg,g′ ∈ Φ(C,G). By Lemma 4.7

p−1
k Cp′k ∩ · · · ∩ p−1

k · · · p−1
1 Cp′1 · · · p′k = Hu

for some subgroup H 6 G and u ∈ G. Now we can see from (9) that

Eg,g′ = C ∩Hu = Cg,g′cg,g′

for some subgroup Cg,g′ 6 C and cg,g′ ∈ C, as required. �

Denote buy Sub(C) the set of all subgroups of C. By Lemma 4.7 non-empty sets
from Φ(Sub(C), A) (respectively, from Φ(Sub(C), B)) are some cosets of subgroups
from A (respectively, from B).

Corollary 4.9. Let G = A ∗C B. If the Cardinality Search Problem is decid-
able for Φ(Sub(C), A) in A and for Φ(Sub(C), B) in B then given g, g′ as above,
one can effectively find the set Eg,g′ . In particular, one can effectively check whether
or not Eg,g′ is empty, singleton, or infinite.

Proof. In notations of Lemma 4.8

Eg,g′ = p−1
k · · · p−1

1 Dk,kp
′
1 · · · p′k.

Therefore it suffices to solve the cardinality problem for the set Dk,k. The quality
10

Di,i = pk−i+1Di−1,i−1(p′k−i+1)
−1 ∩ C,

and Lemma 4.7 show that each Di−1,i−1 is a coset of the type Cici where Ci 6
C and ci ∈ C. Moreover, since the Cardinality Search Problem is decidable for
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Φ(Sub(C), A) in A, and for Φ(Sub(C), B) in B, the equality (9) shows how one
can effectively find the element ci and the direct expression for the subgroup Ci
(in terms of shifts and intersections). Therefore, in k steps one can find Dk,k, and
hence the set Eg,g′ . Moreover, on each step one can find the cardinality of the set
Di,i. This proves the corollary. �

Lemma 4.10. Let G = A∗C B and g, g′ ∈ G. If l(g) = l(g′) > 1 and the system
PS(g, g′) has more then one solution in C then the elements g, g′ are singular.

Proof. Let c, c1, . . . , ck and b, b1, . . . , bk be two distinct solutions of the prin-
cipal system PS(g, g′). Denote for uniformity c0 = c, b0 = b. Hence we have the
following systems of equations:

pkc0 = c1p
′
k, pkb0 = b1p

′
k

pk−1c1 = c2p
′
k−1, pk−1b1 = b2p

′
k−1

...

p1ck−1 = ckp
′
1, p1bk−1 = bkp

′
1

Expressing p′k from the first two equations in the system above, and then p′k−1 from
the next two equations, and so on, we get the following equalities:

c1
−1pkc0 = b1

−1pkb0

c2
−1pk−1c1 = b2

−1pk−1b1
...

ck
−1p1ck−1 = bk

−1p1bk−1

Rewriting these equalities we obtain:

p−1
k b1c

−1
1 pk = b0c

−1
0 ,

p−1
k−1b2c

−1
2 pk−1 = b1c

−1
1 ,

...

p−1
1 bkc

−1
k p1 = bk−1c

−1
k−1.

Observe that all the elements bic−1
i are non-trivial. By Lemma 4.2 the element g

is singular. Similar argument shows that g′ is also singular. �

The next result shows that one can effectively determine whether a given ele-
ment g ∈ G is regular or not.

Lemma 4.11. Let G = A ∗C B be a free product of finitely presented groups A
and B amalgamated over a finitely generated subgroup C. Assume also that A and
B allow algorithms for solving the following problems:

• Coset Representative Search Problem for the subgroup C.
• Cardinality Search Problem for Φ(Sub(C), A) in A and for Φ(Sub(C), B)

in B.
• Malnormality problem for C in A and in B.

Then there exists an algorithm to determine whether a given element in G is regular
or not.
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Proof. For a given g ∈ G we can find the canonical normal form of g using
Algorithm II. Now there are two cases to consider.

1) If l(g) > 1 then by Lemma 4.2 g is a singular element if and only if the
system Bc,g has a nontrivial solution c, c1, . . . , ck ∈ C. Observe, that if the system
Bc,g has two distinct solutions then one of them is non-trivial (i.e., c, c1 . . . , ck 6= 1).

Now if Bc,g has no solutions in C (and we can check it effectively) then g is
regular. If Bc,g has precisely one solution then we can find it and check whether
it is trivial or not, hence we can find out whether g is regular or not. If Bc,g has
more then one solution (and we can verify this effectively) then g is not regular.

2) If l(g) = 0 then g is regular if and only if g 6∈ ZG(C). By Corollary 4.4
ZG(C) = ZA(C) ∪ ZB(C). Since the Malnormality Problem is decidable for C in
A and B the sets ZA(C) and ZB(C) are recursive, as well as their union. �

Corollary 4.12. Let G = A ∗C B be a free product with amalgamation of free
groups A,B. Then the set of regular elements in G is recursive.

Remark 4.13. The decision algorithm for checking whether a given element
is regular or not is fast “modulo” Algorithm I and the algorithm B for finding
cardinality of sets of the type Eg,g′ . In general, both Algorithm I and B can be
exponential in the worst case. However, we will show later that generically both
the algorithms are fast.

Denote by CR the set of all elements in G which have at least one regular
cyclically reduced canonical form, i.e., CR is the set of elements in G which are
conjugates of cyclically reduced regular elements. Observe that if g is cyclically
reduced regular element in G with l(g) > 1 then gc is regular for every c ∈ C (since
if g ∈ N∗

G(C) then CgC ⊂ N∗
G(C)). Therefore, if one of the cyclically reduced

canonical forms of g is regular then all of these forms are regular. The set CR plays
an important part in our analysis of the conjugacy search problems in G.

Lemma 4.14. Let G = A ∗C B. Assume also that A and B allow algorithms
for solving the following problems:

• Coset Representative Search Problem for the subgroup C.
• Cardinality Search Problem for Φ(Sub(C), A) in A and for Φ(Sub(C), B)

in B.
• Malnormality problem for C in A and in B.

Then there exists an algorithm A to determine whether a given element in G is in
CR or not.

Proof. Follows from Lemma 4.11 and Theorem 3.9. �

4.2. Conjugacy Search problems and regular elements. The aim of this
section is to study Conjugacy Search Problem for regular elements in free products
with amalgamation G = A ∗C B. We show that the conjugacy search problem for
regular elements is solvable under some very natural restrictions on the factors.

We start with the following particular case of the Conjugacy Search Problem:

The Conjugacy Search Problem for a fixed element g: It is the Conjugacy
Search Problem for the set of pairs

Φg = {(g, u) | u ∈ G}.
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Theorem 4.15. Let G = A ∗C B be a free product of finitely presented groups
A and B amalgamated over a finitely generated subgroup C. Assume also that A
and B allow algorithms for solving the following problems:

• Coset Representative Search Problem for the subgroup C.
• Cardinality Search Problem for Φ(Sub(C), A) in A and for Φ(Sub(C), B)

in B.
Then the Conjugacy Search Problem in G is decidable for cyclically reduced

regular elements g of length l(g) > 1.

Proof. Let g be a fixed regular cyclically reduced element, and g′ be an arbi-
trary element from G. Applying Algorithm I we can find the canonical forms of g
and g′. In view of this we can assume from the beginning that g and g′ are given
already in their cyclically reduced canonical forms:

g = cp1 . . . pk, g′ = c′p′1 . . . pk′
′.

According to the Conjugacy Criterion, the elements g and g′ are conjugate in G
if and only if k = k′ and for some cyclic permutation π(g′) of g′ the equation
c−1gc = π(g′) has a solution c in C. So the Conjugacy Search Problem is decidable
in G for regular elements g if and only if the Diophantine problem is decidable
for equations of the type c−1gc = π(g′) (i.e., one can determine algorithmically
whether a given equation of this type has a solution in C or not). By Lemma 4.5
the equation c−1gc = π(g′) has a solution in C if and only if the system Sg,π(g′) has
a solution in C. Since g is regular the system PSg,π(g′) has at most one solution in
C. Decidability of the Cardinality Search Problem problems for Φ(Sub(C), A) in A
and for Φ(Sub(C), B) in B allows one to check whether PSg,π(g′) has a solution in
C or not, and if it does, one can find the solution. Now one can verify whether this
solution satisfies the last equation of the system Sg,π(g′) or not. If not, the system
Sg,π(g′) has no solutions in C, as well as the equation c−1gc = π(g′). Otherwise,
the system Sg,π(g′) and the equation c−1gc = π(g′) have solutions in C and we have
found one of these solutions. This proves the lemma. �

Now we study conjugacy search problem for regular elements of length 6 1.

Lemma 4.16. Let G = A ∗C B and g be a cyclically reduced regular element of
G with l(g) 6 1. If the Coset Representatives Search problem for C in A and B
and the Conjugacy Search Problem in A and in B are decidable then the Conjugacy
Search Problem for g is decidable in G.

Proof. It follows from the conjugacy criterion. �

Remark 4.17. The decision algorithms from Theorem 4.15 and Lemma 4.16
have polynomial time complexity “modulo” the algorithms for finding canonical
forms of elements and the decision algorithms for the problems listed in the state-
ments.

We are ready to formulate a general conjugacy search problem for regular ele-
ments.

Recall that by CR we denote the set of all conjugates in G of cyclically reduced
regular elements.

The Conjugacy Search Problem for CR: is the Conjugacy Search Problem for
the set of pairs

Φg = {(g, u) | g ∈ CR, u ∈ G}.
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Theorem 4.18. Let G = A ∗C B be a free product of finitely presented groups
A and B amalgamated over a finitely generated subgroup C. Assume also that A
and B allow algorithms for solving the following problems:

• Coset Representative Search Problem for the subgroup C.
• Cardinality Search Problem for Φ(Sub(C), A) in A and for Φ(Sub(C), B)

in B.
• Conjugacy Search Problem in A and in B.
• Conjugacy Membership Search Problem for C in A and B.

Then the Conjugacy Search Problem in G is decidable for elements from CR.

Corollary 4.19. Let G = A∗CB be a free product of free groups A and B with
amalgamated finitely generated subgroup C. Then the Conjugacy Search Problem
in G is decidable for elements from CR.

Corollary 4.20. Let G = A ∗C B and C is malnormal in A. If
• Coset Representative Search Problem for the subgroup C.
• The Conjugacy Search Problem decidable in A and in B.
• Cardinality Search Problem for Φ(Sub(C), A) in A and for Φ(Sub(C), B)

in B.
then:
(1) There exists an algorithm for solving the conjugacy problem in G;
(2) Two elements from C are conjugate in G if and only if they are conjugate

in B;

Proof. Since C is malnormal in A every element g ∈ G with l(g) > 2 is
regular (see Section 1.4). Hence by Theorem 4.15 conjugacy problem for every g
with l(g) > 2 is decidable.

Assume now that c1, c2 ∈ C are conjugate in G. By the Conjugacy Criterion,
there exists a sequence of elements c1 = d1, d2, . . . , dk = c2 from C such that
the neighboring elements are conjugate either in A or in B. By malnormality of
C in A this implies that c1 and c2 are conjugate in B, which is algorithmically
decidable since the Conjugacy Search Problem is decidable in B. This proves the
corollary. �
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