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FORWARD AND INVERSE PROBLEMS IN TOWED CABLE
HYDRODYNAMICS

N. POLYDORIDES†, E. STORTEIG‡, W. LIONHEART§

Abstract. This paper addresses the problem of reconstructing the velocities
of the ocean currents impinging on a towed streamer cable during an offshore
seismic survey. This study considers a two-dimensional model describing the
motion of a flexible, inextensible cable in the presence of hydrodynamic drag
forces in an incompressible fluid. In the first part the forward model is intro-
duced and then solved to yield the cable’s velocity, curvature and tension in
the knowledge of the towing vessel motion and the hydrodynamic loads ap-
plied. In sequence, we formulate the inverse problem of inferring the ocean
current velocities from discrete samples of the cable’s shape and tension and
show that this is rank deficient and ill-posed. In approaching the inverse prob-
lem a numerically stable algorithm is adopted based on generalized Tikhonov
regularization, in the context of robust differentiation of discrete noisy signals.
In order to demonstrate the practical performance of the scheme, some exam-
ples of ocean current reconstructions obtained using simulated noisy data are
presented.

1. Introduction

The aim of this work is to derive a robust methodology of inferring the velocities
of ocean currents as these are important for optimizing the controls of streamer
cables in towed array seismic imaging (Storteig et al. 2007). Accurate positioning
or repositioning of the acoustic sensors attached to the towed cable has become
important since the seismic market to a large extent has moved from exploration of
new areas to reservoir monitoring over the last decade. In a recent survey (Nakstad
et al. 2008) it has been reported that recovery rate from oil reservoirs is currently
of the order of 50% before these are abandoned and that reservoir monitoring is
now essential to enhance this rate. In this context, a series of seismic surveys are
performed repeatedly to make plans for proper reservoir depletion. A key factor
for successfully imaging a reservoir change is to reposition the seismic source and
acoustic receivers accurately. A desirable target for repositioning is in the order
of one meter of positioning error although admittedly this is still far from being
met. Several technological improvements in detecting and thereafter controlling the
positioning of the cables are required to reach such a target. Variable ocean currents
make the task of controlling hydrophone positions a major challenge for the seismic
industry. Steerable deflectors spaced along streamer cables several kilometers long
is one of the methods used to counteract the currents. However, elegant steering
is essential in order to avoid cross flow and strumming which are detrimental to
the noise levels on the hydrophones. As the local variations of current along the
streamer are not known the control algorithms used to steer the deflectors are based
on a feedback approach. This implies that the initial survey will, in general, not
follow an optimal predefined trajectory, and making the repeatability challenge even
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greater. The approach can be improved substantially with a feed forward algorithm
based on the knowledge of the approaching ocean current. Moreover, streamer
control becomes also imperative in three-dimensional seismic surveys employing
multiple streamer configurations. In such a case rigorous real time steering control
becomes critical as variable sea currents can cause the cables to tangle essentially
bringing the survey to an abrupt end.

The common practice in offshore seismic surveys is to measure the real time cur-
rent at the vessel and scattered buoys only. The value of this information is limited
since the current may vary considerably in time and space. In this framework, the
necessity for a technique to recover in real time the ocean current velocity profiles
(OCVP) acting on the cable is profound. The ultimate goal of such a method will
be to monitor the ocean currents in real time so that to optimize the steering of the
towed cables and hence improve the quality of the hydrophone data. In this work
we address this problem in the context of an inverse parameter identification prob-
lem, where one seeks to recover the OCVP along the streamer using positioning
and tension measurements. Positioning data are essentially samples of the cable’s
velocity and shape as these are acquired via a GPS sensor network. More precisely,
the inverse problem is to find the ocean current field distribution along the cable
that yields the observable cable shape and tension.

To setup the framework of our methodology we incorporate a model of a flexible,
inextensible cable of finite length and uniform circular diameter, towed by a survey
vessel moving at a nearly constant speed on a smooth trajectory. For the application
at hand, the streamer cable is assumed to be neutrally buoyant with its velocity
components parallel to the sea surface dominating the transverse. For this reason a
simplified two dimensional model of motion is considered. The spatial and temporal
resolution specifications of the model are set in accordance to the realistic conditions
of an offshore survey. The spatial discretization of the cable should conform with
the positioning of GPS transmitters and tension meters, while the increment in
the temporal dimension should reflect the rate at which real measurements are
collected. For this study the objective is to demonstrate that the proposed inverse
method is suitable for real time reconstruction of OCVP. The technique is described
for a single cable configuration although its generalization to multiple streamers is
trivial subject to the availability of computational resources.

The paper is organized as follows: in the next section we present the forward
model that describes the motion of the cable in the influence of hydrodynamic
forces and then briefly discuss its numerical solution using a finite difference ap-
proximation scheme. In sequence, we derive the inverse problem by reformulating
the forward model in a robust integral formulation before attending to its solution
using generalized Tikhonov regularization. The numerical characteristics of the
inverse problem are outlined in the context of a singular value analysis and sensi-
tivity discussion based on which we also address its robustness against noise and
uncertainties in the drag coefficients involved. Finally, a few numerical examples
are presented to demonstrate the performance of the method with simulated data.

2. Forward hydrodynamic model

Assuming negligible inertia terms at the range of towing velocities, Newton’s law
of motion for a towed cable is expressed in terms of the momentum equations in a
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tangential–normal coordinate frame

(1)
∂T

∂s
− 1

2
ρπdCtVtr|Vtr| = 0

(2) T
∂θ

∂s
− 1

2
ρdCnVnr|Vnr| = 0

describing the distribution of forces along the cable immersed in an incompressible
fluid (Dowling 1988). For the same system the kinematic relations

(3)
∂Vn

∂s
+ Vt

∂θ

∂s
− ∂θ

∂t
= 0

(4)
∂Vt

∂s
− Vn

∂θ

∂s
= 0

indicate the influence of the cable’s shape and orientation to the corresponding
velocity components. In the above equations T (s, t) denotes the tension at distance
s from the tow-point at time t, ρ is the density of sea water, d the diameter of the
cable, Ct is the tangential drag coefficient, Cn the normal drag coefficient, θ(s, t)
denotes the orientation angle between the tangent vector on s and the positive x
Cartesian axis, and its gradient ∂θ/∂s is the curvature of the cable. The cable’s
relative velocities in the tangential and normal directions, Vtr(s, t) and Vnr(s, t)
respectively, are expressed with respect to the corresponding ocean currents u(s, t)
and v(s, t)

(5) Vtr = Vt − u, Vnr = Vn − v

where Vt(s, t) and Vn(s, t) are the absolute cable velocities at the same axes. The
parabolic system (1) - (4) refers to a two-dimensional frame (t,n) obtained from the
cartesian (x,y) through an orthogonal rotation by an angle θ. Here t(s) denotes
the unit tangent vector at the point s on the cable, and n(s) the unit normal. A
typical sketch of the configuration of the towing system appears in figure 1.

If initially the system is considered to be at rest, four boundary conditions are
physically imposed to the system. As the streamer is hinged at the towing vessel,
the velocity of the front end of the streamer will be

(6) Vt(0, t) = ν1(t) cos θ(0, t) + ν2(t) sin θ(0, t)

(7) Vn(0, t) = −ν1(t) sin θ(0, t) + ν2(t) cos θ(0, t)

where θ(0, t) is the orientation angle at the beginning of the cable, and ν1(t) and
ν2(t) are the cartesian components of the vessel’s speed at time t, here set to
|ν| = 2.57m/s or 5 knots. For the conditions (6)-(7) notice that these provide
boundary information about the velocities of the cable in a parametric form requir-
ing a priori knowledge of the angle at the tow-point in order to specify the veloci-
ties there. Gatti in (Gatti 2002) quotes that this is a major source of instabilities
observed in numerical implementations of the model even with unconditionally sta-
ble approximation methods, although the problem can be alleviated by enforcing
smooth vessel manoeuvering and fine temporal discretization.

In the reports (Gobat et al. 2001), (Hover et al. 1994), and (Milinazzo et
al. 1987), the authors consider the tension at the tail to be zero as the end is free
and thus the sum of forces and moments there theoretically vanish. However, at
the end of a seismic cable it is customarily equipped with a surface GPS buoy that
contributes a significant drag force (Hui 2005). In fact this maintains a tail tension,
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Figure 1. The streamer cable in the local and global coordinate
systems in 2D. Notice the direction of t vector facing at the in-
creasing order of s.

essentially a lower bound for the tension profile, that scales linearly to the norm of
the cable’s velocity there

(8) T (L, t) = 2.57−1TL

(
V 2

t (L, t) + V 2
n (L, t)

)1/2

assuming a correspondence of TL = 2000N at a speed of 2.57m/s. Moreover, the
tension regulating buoy maintains the tail of the cable straight thus

(9)
∂θ(L, t)

∂s
= 0 ⇔ Vn(L, t) = v(L, t)

which along with (8) and (2) deduce that the normal velocity of the cable at the
tail end is merely due to the cross-line currents. Further to the above conditions,
in the numerical implementation of the model we assume the cable material to be
homogeneous and isotropic and elastic with circular cross section d. Moreover we
assume the cable to be inextensible with negligibly small shear deformation and
momentum terms.

3. Numerical solution of forward problem

In order to derive the numerical solution for the system (1)-(4) and (6)-(9) the
problem is transferred from the continuous domain to the discrete [0, L] × [0, tf ]
using the finite difference time domain method (FD). In particular, the space-time
problem is first transformed into a spatial two-point boundary value problem us-
ing finite differences in time and space and then the resulting nonlinear differential
equations are approximated by the first order Taylor series expansion to obtain a
linear two point boundary value problem. The resulted system of algebraic equa-
tions is subsequently solved using Newton’s method (Vogel 2002). For the scope
of this work an implicit FD scheme is adopted based on the generalized trapezoidal
rule (Hughes 1987). In particular, the first space derivative of z is approximated
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by

(10)
∂z
∂s

(s, t) =
z(s, t)− z(s−∆s, t)

a∆s
− γ

∂z
∂s

(s−∆s, t)

where the parameters a and γ satisfy a(γ + 1) = 1. The method is proved to be
stable for a and γ in certain closed intervals, while the special case for γ = 0 is
the unconditionally stable backward finite difference method. More details on the
selection of these parameters and the trade off between accuracy of approximation
and stability can be found in (Gatti 2002). Similar numerical schemes like the box
method obtain similar performance in terms of the accuracy of the approximation
but are reportedly more prone to numerical instabilities. The generalized alpha
method suggested in (Gobat 2000) and (Gobat et al. 2001) rectifies the instability
by enforcing additional temporal averaging on the conventional box method scheme
of (, Ablow et al. 1983). In applying the derivative discretization rule (10) the
forward problem in consideration is cast in a matrix form as (Milinazzo et al.
1987),

(11) Nż + Mz′ + Q = 0

where

Ni+1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , Mi+1 =




1 0 0 0
0 1 0 −Vn

0 0 1 Vt

0 0 0 T


 ,Qi+1 =




− 1
2ρπdCtVtr|Vtr|

0
0

− 1
2ρdCnVnr|Vnr|




and z = (T, Vt, Vn, θ). In the notation the superscript i denotes the time index while
the subscript j denotes the space index. Here we consider discrete time instances i
where the equation holds, separated by uniform time increments ∆t so that i = k∆t
for k = 0, 1, . . . and i ∈ [0, tf ] for tf the time the simulation ends. The problem
is also discretized in the one dimensional space domain by considering an array
of n interconnected nodes separated by a distance ∆s. In this arrangement the
j’th node is situated at a distance j = k∆s from the front end of the cable with
k = 0, . . . , n − 1 and j ∈ [0, L]. Although of comparable measure, space and time
discretization need not necessarily be uniform, however taking constant increments
simplifies the computational complexity.

The assembling of the coefficients matrices in (11) follows in the pattern of the
conventional finite element scheme where these are iteratively populated by working
out the contributions of the local elements. Consequently, for a model with n nodes
the FD procedure yields at each time step i, 4(n− 1) equations in 4n unknowns z
while the remaining four equations required to preserve uniqueness in the solution
of (11) arise by discretizing the boundary conditions (6)-(9) in a similar manner.
Eventually the FD scheme yields a system of 4n nonlinear algebraic equations

(12) Φ
(
zi

j=1:n, zi+1
j=1:n

)
= 0

which, provided a state solution zi
j=1:n yields the next state zi+1

j=1:n by computing the
roots of the resulting nonlinear equations. For example, starting from the knowledge
of the initial state z0 at t = 0, the roots of the nonlinear Φ

(
z0

j=1:n, z1
j=1:n

)
= 0

include the desired forward solution z1 at t = ∆t. The nonlinear system (12) is
solved using Newton’s method (Vogel 2002). Assuming a reasonably small time
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increment ∆t, then subject to some mild assumptions, every pair of consecutive
state solutions satisfies

(13)
∥∥∥zi

j=1:n − zi+1
j=1:n

∥∥∥
2
≤ τ

where τ > 0 a small positive scalar which tends asymptotically to zero as ∆t → 0.
From the first-order Taylor expansion of Φ, if zi+1 = zi + δz then

(14) δz = −
[

∂

∂zi
Φ

(
zi

j=1:n, z̄i
j=1:n

)]−1

Φ
(
zi

j=1:n, z̄i
j=1:n

)

where z̄i
j=1:n denotes the current state of the system to which the boundary con-

ditions for the next state i + 1 have been imposed. If the boundary condition
equations are elegantly indexed within the system (12) the Jacobian ∂Φ/∂z be-
comes a tridiagonal matrix with immediate impact on the computational efficiency
of the forward simulator. Apart from Newton’s method, alternative schemes for
the forward problem include the Runge-Kutta integration which is implemented on
the space dependent differential equations after the time derivatives are eliminated
by FD discretization (Ablow et al. 1983). The method is fairly robust to numer-
ical instabilities although special suppression routines like those implemented in
(Gatti 2002) and (Gobat 2000) are necessary to ensure that the solution remains
a bounded norm in the presence of Crank-Nicholson noise.

The forward simulator was implemented in Matlab (Matlab 2007), considering
for a cable of length L = 6000m and diameter d = 0.05m. The cable was towed
on a vessel executing a northbound orbit at a constant speed of |ν| = 2.57m/s.
The water density ρ was set to 1025 kg m−3 and the tangential and normal drag
coefficients were assumed fixed at Ct = 0.006, Cn = 2. To simulate the ocean cur-
rents combinations of trigonometric functions were used, varying in amplitude and
frequency with space and time. In fixed Cartesian coordinates the ocean velocity
profiles normalized by the length of the cable and the duration of the simulation
are given by

(15)
(

cx(x, t)
cy(y, t)

)
=


2t t−1

f sin
[
8t sin

(π(x−1)
n−1

)]

2t t−1
f sin

[
8t

(π(y−1)
n−1

)]

 x, y = 1, . . . , n , t = 1, . . . , tf

In the implementation of the FD scheme a grid of n = 1201 nodes equally dis-
tributed into ∆s = 5m elements was incorporated, the time step was set to ∆t = 10s
and the relaxation parameters in (10) were calibrated at a = 0.9 and γ = 0.1. The
forward system (12) was solved to an error tolerance of 10−4 yielding data for
0 ≤ t ≤ 3000s, some of which are plotted in the graphs of figure 2 along with the
corresponding OCVP. The graphs are indicative of the smooth spatial variation
of the tension and positioning data under the influence of smooth hydrodynamic
excitation. This remark is of great importance for the inverse problem as the choice
of the inverse methodology requires a priori knowledge of the differentiability of the
forward data. Moreover, as anticipated, tension is a strictly decreasing function that
embodies the frequency spectrum components of the inline currents. The tangential
cable velocity is maintained smooth and negative given the default orientation of
the tangent coordinate vector (c.f. figure 1), while cable’s normal velocity profile is
also smooth, although it appears to admit a greater variation. The computational
times for the forward problem based on a 1.8 GHz Windows XP workstation with
2 GB RAM were recorded at the range of 1 s per time step execution.
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Figure 2. Forward solutions under smoothly varying inline (tan-
gential) and cross-line (normal) hydrodynamic loads as defined in
(15). From top left: the spatial profiles of tension, tangential ve-
locity, normal velocity, and orientation angle along the cable of
length L = 6000m. The bottom figures illustrate the ocean veloc-
ity profiles in the local coordinate frame. The plots refer to times
t = 70, 140, 210 and 290 ∆t after the start of the motion, while the
vessel executes a straight orbit with constant velocity of 2.57 m/s.

4. Formulation of the inverse problem

In the preceding sections we have examined the forward hydrodynamic model
through the system of equations (1)-(9) in order to establish how the measurements
relate to the ocean current velocities in a towed array survey system. Thus the for-
ward model asserts the cable’s shape and tension are affected by the hydrodynamic
disturbances. With an appropriate choice of boundary conditions the response of
the system is uniquely determined (in the infinite dimensional sense), and subject
to the discretization employed the uniqueness of the finite difference solution is
granted when the Jacobian matrix in (14) has full rank. At an arbitrary point in
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time, consider the finite dimensional forward injective matrix-operator B
(16) B(u, v) = z + w

mapping the ocean currents to the measurements within a tolerance set by the
amount of instrumentation and physical noise expressed in the form w = N (0, σ2)1.
In this context, the inverse problem seeks to infer the ocean currents from the knowl-
edge of a finite set of noise infused measurements z̃ = z+w. The reconstruction of
u and v from (16) relies predominantly on the invertibility of the forward operator
and the noise levels distorting the data. The differential form of the model equa-
tions (1) and (2) asserts that B is a quasi-linear integral operator that determines
an unknown discrete function given its derivative and a boundary condition2. In
effect, B−1 is a linear differential operator that maps a function to its first spatial
derivative, and as such this is inherently rank deficient by one. This implies that in
the knowledge of a function f with n degrees of freedom, its derivative B−1f can
only be uniquely specified with n−1 degrees of freedom, typically at the midpoints
of the intervals of the n samples. Consequently, the inverse problem of recon-
structing the currents with n degrees of spatial resolution given n measurements
is therefore rank-deficient ill-posed with immediate effects on the uniqueness and
stability of the solution. For a review on the characteristics of linear rank deficient
inverse problems we refer the reader to the textbooks (Hansen 1998) and (Vogel
2002). For the scope of this work it suffices to estimate the OCVP with n − 1
degrees of freedom, which constitutes a somewhat ‘milder’ ill-posed problem since
although the non-uniqueness is eradicated the stability concerns remain due to the
impact of noisy data in conjunction with the differential forms of the model. The
differentiation of noisy data is notoriously unstable and has long being the subject
of research in signal processing (Wahba 1975), (Lu et al. 2006). To overcome the
instability regularization is applied in order to construct a robust approximation of
the operator B−1 using a priori information on the required ocean currents.

To formulate the regularized inverse problem we focus attention in the two mo-
mentum equations (1), (2) now expressed in terms of the noisy data quoted in
tilde

(17)
∂T̃

∂s
= ft(u) =

1
2
ρπdCt(Ṽt − u)

∣∣(Ṽt − u)
∣∣

(18) T̃
∂θ̃

∂s
= fn(v) =

1
2
ρdCn(Ṽn − v)

∣∣(Ṽn − v)
∣∣

For the noise content in the measured tension and curvature the derivatives on the
left hand sides of (17) and (18) attain norms that grow arbitrarily large as ∆s → 03

(Lu et al. 2006), and thus in order to enforce stability we recast the equations using
the integral ‘anti-differentiation’ operator

(19) (Bf)(s) =
∫ L

0

ds′ H(s− s′) f(s′)

1To describe the noise signal we use the normal distribution notation N (0, σ2) indicating a
Gaussian signal of zero mean and standard deviation σ.

2Here we have four measurement functions thus four boundary conditions (6)-(9) are needed
for uniqueness. A more general case is treated in (Gatti 2002).

3Alternatively, to aid stability in computing the finite differences on the noisy data one would
naively opt for increasingly larger discretization, fact which illustrates the intrinsic trade off be-
tween spatial resolution and stability in ill-posed problems.
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whose kernel is the Heavyside step function (Vogel 2002). On a finite grid with n
nodes the operator takes a matrix form of B ∈ Rn×n−1 leading to integral formu-
lations of the momentum equations like

(20) T = B ft(u)

and

(21) θ = B(
fn(v)® T̃a

)

where T = T̃ (L, t) − T̃ , θ = θ̃(L, t) − θ̃ and ‘®’ denotes element-wise division
of equally sized vectors. In the same equations, ft(u), fn(v) and T̃a denote the
element-wise average hydrodynamic loads and tension. Also note that the right
hand side of (21) is always finite since the tension is bounded well above zero
through condition (8). In order to obtain the tangential and normal drag forces
from (20) and (21) respectively, we employ a generalized Tikhonov regularization
scheme (Hansen 1998). As the required currents appear in distinct equations,
these can be individually treated for regularization and solved separately. Applying
Tikhonov regularization on (20) one seeks a solution f∗t (u) that minimizes the lease
squares misfit in the measurements while satisfying also the smoothness constraint
‖Dft(u)‖22 ≤ κ for a small scalar κ,

(22) f∗t (u) = arg min
‖Dft(u)‖22≤κ

∥∥T − B ft(u)
∥∥2

2

where D ∈ Rn−2×n−1 is a discrete form of the first-order difference operator,
weighted so that ‖D‖F ∼ ‖B‖F

4. For a nonzero parameter λ, Tikhonov’s for-
mulation admits a unique analytic solution

(23) f∗t (u, λ) =
(BTB + λDT D

)−1 BT T

From the definition of the tangential hydrodynamic drag force the inline current
distribution on the cable can be computed as

(24) u(λ) = Ṽta − sgn
(
f∗t (u, λ)

)¯
(

2|f∗t (u, λ)|
ρπdCt

)1/2

Following a similar procedure for (21) a Tikhonov regularized solution for the nor-
mal forces is obtained by

(25) f∗n(v, λ) = T̃a ¯
(BTB + λDT D

)−1 BT θ

where ¯ denotes element-wise multiplication, and the cross-line currents are sub-
sequently computed from

(26) v(λ) = Ṽna − sgn
(
f∗n(v, λ)

)¯
(

2|f∗n(v, λ)|
ρdCn

)1/2

where Ṽta and Ṽna are cable’s element-wise average inline and cross-line velocities
respectively.

4For a matrix D ∈ Rm×n with components dij the Frobenius norm is ‖D‖F =√∑m
i=1

∑n
j=1 |dij |2
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Figure 3. The n−1 singular values of the integral operator B and
the n − 2 singular values of the regularization difference operator
D on a logarithmic scale.

5. Singular value and sensitivity analysis

In the formulation of the inverse problem the operators B and D as well as the
regularization factor λ have an important role. These are closely related in the sense
that the difference operator D inverts the integral operator B and the regularization
parameter scales their contribution in reconstructing the solution. Detailed analysis
on this issue appears in many textbooks on inverse problem theory (Hansen 1998),
(Vogel 2002) and will not by repeated here. For the scope of this work it suffices
to demonstrate the relation of the two operators in terms of their singular value
spectrum so that to aid an appropriate selection of λ. The graphs in figure 3
show the singular values of the operators discretized on a grid with 601 equally
spaced nodes spanning over a 6000m long cable. The inverse reciprocity between
the exponentially decaying singular values of B and the logarithmically decreasing
singular values of D reaffirms that BDT = I ∈ Rn×n−2.

The singular value plots provide an insight into the problem of selecting the op-
timal regularization parameter λ∗. This parameter provides the necessary balance
between prior and measurement-extracted information, by essentially weighting the
biasing of the prior constraint to the objective of the minimization in (22). Conse-
quently, this choice must be consistent with the noise levels in the measurements,
the uncertainty in the model parameters and the credibility of the available prior
information. The optimal parameter is known to satisfy min(η) <

√
λ < max(η)

where η1, . . . , ηn−1 are the singular values of B, and it is often computed using the
L-curve (Hansen 1998) or the generalized cross validation method (Wahba 1975).

While some of the model parameters like the cable’s length and diameter can
be measured with great accuracy, others are somewhat difficult to coin exactly.
The drag coefficients Ct and Cn for example are assigned values after a series of
laboratory controlled experiments, and although it may seem reasonable to assume
that these are known with a small level of uncertainty, one should examine in some
rigor the impact of such uncertainties to the performance of the inverse method.
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From the model equations it is clear that errors in Ct affect merely the computation
of the inline current and those in Cn that of the cross-line velocity component. If the
tangential coefficient is known exactly then in assuming noise free measurements
the exact inline current u∗ is obtained from (24) for a given small value of λ.
Introducing a small perturbation δ so that Ct → Ct + δ can be shown to yield a
profile u with a square error

(27) ε2δ(u) = (u∗ − u)2 =
2

ρπd

∣∣∣∂T

∂s

∣∣∣
[√

1
Ct

−
√

1
Ct + δ

]2

where we have used the fact that the gradient of the tension is always negative.
To aid comparison we now apply the same perturbation to the exact normal drag
coefficient like Cn → Cn +δ and compute the square error on the cross-line velocity
as

(28) ε2δ(v) = (v∗ − v)2 =
2
ρd

∣∣∣T ¯ ∂θ

∂s

∣∣∣
[√

1
Cn

−
√

1
Cn + δ

]2

where v∗ the exact solution obtained from (26). As the nominal values of the drag

coefficients satisfy Ct ¿ Cn it is clear that
[√

C−1
t −

√
(Ct + δ)−1

]2 À [√
C−1

n −√
(Cn + δ)−1

]2 but this does not necessarily imply that εδ(u) À εδ(v) for the
same δ. In fact the influence of the tension in the formula for εδ(v) is critical
and although this relates inversely proportional to the curvature, in the range of
angles relevant to the application the factor T¯∂θ/∂s can become arbitrarily large,
especially toward the tow-point. Moreover, as it has been reported in (Grosenbaugh
1991), flow-induced vibrations occurring during unsteady towing motion may cause
the cable’s drag coefficients to vary substantially from their nominal values. In
particular, it is possible that the normal coefficient alters, heterogeneously on s,
by as much as 40% during the motion. In such a case the large offset on Cn is
likely to yield misleading results for the reconstructed cross-line currents. To avoid
this the proposed inverse methodology needs to be reformulated in the context of
robust parameter estimation (Ben-Tal et al. 1998) in order to allow for a degree
of uncertainty on the distribution of the drag coefficients along the cable.

In order to demonstrate the robustness and resolution of the inverse method
in reconstructing velocity profiles where one of the two components is dominant
some additional simulations have been performed. In the first case we assume large
homogenous velocities cx(x, t) normal to the originally straight cable configuration
and low magnitude smoothly varying currents cy(y, t) oriented parallel to the initial
trajectory. Assuming towing at constant speed of 2.57 m/s on a northbound straight
orbit, we set cx(x, t) = 10 m/s and max |cy(y, t)| = 2 m/s. The resulted normal
drag force causes the cable to gradually deviate from the vessel trajectory eventually
attaining a zero curvature configuration at a large angle θ. As the graphs at the
top row of figure 4 suggest, the impact of high normal velocities becomes more
profound toward the low-tension end of the cable, while this adjusts its shape in
order to minimize the effect of normal currents. As θ increases the graphs show
that the cable nearly straightens, despite a small curvature due to the cy currents,
so that eventually the dominant cx is largely projected onto the t axis. In the
reverse scenario where the currents are predominantly parallel to the cable the
tension rises and because of the boundary condition (8) the absolute value of the
gradient of the tension increases and this maintains the curvature at low levels.
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Figure 4. Simulated and reconstructed ocean velocities at times
60, 80, 100, and 120 ∆t from the beginning of motion. Top row
dominant cx currents and bottom row dominant cy currents.

The results appearing at the bottom row of figure (4) have been computed with
cy(y, t) = −10 m/s and max |cx(x, t)| = 2 m/s at a same towing speed and orbit.
In such a situation the accuracy of the positioning data that determines the shape
and the curvature becomes critical, since the sensitivity of the method to in-line
currents relates quasi-linearly to the product of the tension to changes in curvature,
hence deviations from the straight trajectory will imply higher normal currents.
The reconstruction formulae (23) and (25) clearly indicate that the sensitivity of
the method to inline currents relies exclusively on resolving the gradient of the
tension profile along the cable. In this regard, cables with high Young modulus will
have improved sensitivity in detecting tangential currents. On the other hand, the
detection of cross-line currents is manifested by the observed changes in the cable’s
shape and curvature with in turn relates to its flexibility. Consequently, cables with
low modulus of rigidity ar expected to have a higher sensitivity in normal currents.

6. Results and discussion

The inverse problem under consideration is a special case of the classical problem
of numerical differentiation of noisy data in the context of regularization (Lu
et al. 2006). In this section we provide simulated benchmark examples which
aim to test the noise robustness of the inverse method. In this we illustrate the
impact of noise on the ill-posed inverse problem and subsequently demonstrate how
this can be eliminated using Tikhonov regularization. Emphasis is also drawn in
the calibration of the regularization parameter for the various noise levels. The
simulation conditions used are similar to those discussed in section 5 from which
discrete sets of tension and positioning measurements have been simulated at time
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Figure 5. Noise free results. At left the simulated and recon-
structed tangential (inline) OCVP at t = 50, 100, 150∆t after the
start of the simulation, and right the corresponding normal (cross-
line) OCVP.

intervals ∆t = 10s. For the solution of the inverse problem a coarser grid with 600
elements of ∆s = 10m has been employed.

6.1. Reconstructing noise-free data. In the first instance we consider the ideal
case where one possesses noise free measurements z̃ = z, from which the OCVP
can be recovered directly from the model equations. This can be achieved either
by evaluating the gradients in (17) and (18) using a finite difference scheme, or
via the integral equations (23) and (25) for zero amount of regularization. Opting
for the latter choice and setting λ = 0, we obtain at time instants t = 50, 100
and 150∆t the current profiles appearing in figure 5. The graphs illustrate an
exact match between simulated and reconstructed profiles, This is coherent with
the analysis on the properties of the integral operator made in section 5. In fact
for zero regularization B−1 takes the form of a Moore-Penrose pseudo-inverse that
has n − 1 nonzero singular values. The noise-free example serves as a measure of
comparison for the performance of the inverse method under realistic noise levels
explored next.

6.2. Reconstructing noisy data. The necessity for regularization becomes more
profound when data are infused with additive random noise. This is typically the
situation arising in the acquisition of real survey data where these are corrupted by
instrumentation errors and physical noise. To emulate these conditions we introduce
a pseudo-random white noise signal w = N (0, σ2

1) on the forward variables where
σ1 = 10−2 z̄, and z̄ denotes the mean value of T , Vt, Vn and θ. The simulated OCVP
at times t = 300, 400∆t appear in the graphs of figure 6 along with the reconstructed
profiles for various values of the regularization parameter. Each graph illustrates
the reconstructed solution obtained by the Tikhonov method using (24) and (26)
for λ = 0.1, 10 and 100 in order to demonstrate the impact of the parameter on the
spatial resolution of the reconstructed velocities. In adopted generalized Tikhonov
scheme with a priori smoothness assumptions as imposed by the selection of D
operator, λ controls the degree of smoothness in the inverse solution. If λ∗ is the
optimal value of the parameter according to the noise content in the data, the
graphs show that using a λ ¿ λ∗ under-regularizes the inverse problem, and thus
the effect of noise is profound. On the other hand, a choice λ À λ∗ over-regularizes
the problem, effectively filtering some detailed features of the solution and hence
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Figure 6. Reconstructed OCVP with Gaussian noise of zero mean
and standard deviation σ1. At the top the simulated and recon-
structed OCVP at t = 300∆t after the start of the simulation. The
three inverse solutions have been obtained using Tikhonov regu-
larization for three different values of the regularization parameter
λ. The plots are indicative of under-regularization (dashed), op-
timal regularization (solid) and over-regularization (dash-dotted).
At the bottom the simulated and reconstructed OCVP with the
same values of λ at t = 400∆t.

compromising the spatial resolution. The optimal value of λ∗ ≈ 10 was computed
using the L-curve method (Hansen 1998).

Observing the graphs of the same figure there is another interesting remark to be
made. It appears that the reconstruction of the normal component v is qualitatively
and quantitatively superior compared to that of u for all values of the regularization
parameter. This is in fact justified since, despite their evocative formulation simi-
larity, inversion formula (25) offers significantly better noise robustness compared
to (23), since the tension averaging in the form of the vector T̃a which multiplies
the regularized inverse of the curvature in the former equation, eradicates most of
the noise in the contaminated tension data, and since by default ‖T̃‖2 À ‖θ̃‖2 (c.f.
figure 2), the impact of noise on (25) is limited.

As a second case we consider simulated data under more intense noise conditions,
captured at times t = 500∆t and t = 600∆t after the start of motion. In the scenario
the towing vessel was set to execute a circular orbit with a radius of 3000 m at the
same constant speed of 2.57 m/s. The noise signal infused with the measurements
was set to w = N (0, σ2

2) for σ2 = 3 × 10−2 z̄. As before, we proceed to compute
the regularized hydrodynamic loads and velocities along the cable by estimating
first the optimal regularization parameter. As anticipated, with the increase in the
level of noise in the data, a rise in the amount of smoothing is required to stabilize
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Figure 7. Reconstructed OCVP with Gaussian noise of zero mean
and standard deviation σ2 = 3σ1. At the top the simulated and re-
constructed currents at t = 500∆t after the start of the simulation.
The three inverse solutions have been obtained using Tikhonov reg-
ularization for three different values of the regularization parameter
λ. The plots are indicative of under-regularization (dashed), op-
timal regularization (solid) and over-regularization (dash-dotted).
Below, the corresponding currents with the same values of λ at
t = 600∆t.

the solution. The implementation of L-curve method yielded an optimal value for
the parameter around λ∗ ≈ 30. The simulated and reconstructed velocity profiles
at times t = 500∆t and t = 600∆t are presented in figure 7. Compared to the
results of the previous case, the spatial resolution of the optimally reconstructed
solutions u(λ∗) and v(λ∗) is somewhat compromised by the noise distortion in
the measurements, while as before the reconstruction of the tangential component
is affected the most. In the same graphs we provide also some inverse solutions
obtained with non-optimal regularization in order to illustrate the influence of the
parameter on the solution. In particular, for a λ < 1 the amount of the filtering
imposed on the spectrum of B does not suffice to stabilize the solution and the
method fails to yield an informative solution.

6.3. Angle of attack prediction. One of the fundamental aspects of towed array
seismic imaging, directly related to the optimal steering of the cable, is the estima-
tion or prediction of the angle of attack. As described in the preceding sections,
the reconstruction of the OCVP provides some significant input to the systems that
control the steering of the cable, and in this sense the angle of attack embodies this
information. More precisely the knowledge of the ocean velocities impinging on the
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Figure 8. Angle of attack prediction performance. The simulated
versus predicted angle of attack at t = 300, 400, 500, 600∆t after
the start of the simulation, obtained with the second set of noisy
data.

streamer can yield an estimate on the angle of attack α,

(29) α = αc + arctan
(Vn − v

Vt − u

)

so that the feedback control angle αc can be adjusted in a way that the cable is
steered to the desired location irrespectively of the ocean currents. In figure 8 we
plot the graphs of the simulated and predicted profiles for the angles of attack at
times t = 300, 400, 500, 600∆t for the data of the second simulation above under
optimal regularization. The results show a good agreement between simulated and
predicted α profiles under noise conditions, fact which justifies the utility of the
inverse method in assisting the optimal steering of the streamer.

7. Conclusions

In this paper we present a complete framework for solving the forward and in-
verse hydrodynamic problems in towed array seismic survey. Our main contribution
rests with the inverse problem of inferring the ocean current velocity profiles when
the shape and tension variation along the cable are approximately known. In the
context of regularization in inverse problem theory, we have presented a robust
methodology for reconstructing the ocean velocities and predicting the correspond-
ing angle of attack. Using simulated case studies we have demonstrated the noise
robustness of the proposed method under the optimal regularization through the
calibration of the involved parameter. Moreover, the results indicate that adequate
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spatial resolution is realistically feasible despite the noise content in the measure-
ments when smooth velocity profiles are sought through the implementation of a
generalized Tikhonov regularization in the inverse solver.
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