
Analysis of the Cholesky Method with Iterative
Refinement for Solving the Symmetric Definite

Generalized Eigenproblem

Davies, Philip I. and Higham, Nicholas J. and Tisseur,
Françoise

2001

MIMS EPrint: 2008.70

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


ANALYSIS OF THE CHOLESKY METHOD WITH
ITERATIVE REFINEMENT FOR SOLVING THE

SYMMETRIC DEFINITE GENERALIZED EIGENPROBLEM∗

PHILIP I. DAVIES† , NICHOLAS J. HIGHAM† , AND FRANÇOISE TISSEUR†
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Abstract. A standard method for solving the symmetric definite generalized eigenvalue problem
Ax = λBx, where A is symmetric and B is symmetric positive definite, is to compute a Cholesky
factorization B = LLT (optionally with complete pivoting) and solve the equivalent standard sym-
metric eigenvalue problem Cy = λy, where C = L−1AL−T . Provided that a stable eigensolver is
used, standard error analysis says that the computed eigenvalues are exact for A+∆A and B+∆B
with max(‖∆A‖2/‖A‖2, ‖∆B‖2/‖B‖2) bounded by a multiple of κ2(B)u, where u is the unit round-
off. We take the Jacobi method as the eigensolver and give a detailed error analysis that yields
backward error bounds potentially much smaller than κ2(B)u. To show the practical utility of our
bounds we describe a vibration problem from structural engineering in which B is ill conditioned
yet the error bounds are small. We show how, in cases of instability, iterative refinement based on
Newton’s method can be used to produce eigenpairs with small backward errors. Our analysis and
experiments also give insight into the popular Cholesky–QR method, in which the QR method is
used as the eigensolver. We argue that it is desirable to augment current implementations of this
method with pivoting in the Cholesky factorization.

Key words. symmetric definite generalized eigenvalue problem, Cholesky method, Cholesky
factorization with complete pivoting, Jacobi method, backward error analysis, rounding error anal-
ysis, iterative refinement, Newton’s method, LAPACK, MATLAB
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1. Introduction. The symmetric definite generalized eigenvalue problem

Ax = λBx,(1.1)

where A,B ∈ R
n×n are symmetric and B is positive definite, arises in many applica-

tions in science and engineering [4, chapter 9], [16]. An important open problem is
to derive a method of solution that takes advantage of the structure and is efficient
and backward stable. Such a method should, for example, require half the storage
of a method for the generalized nonsymmetric problem and produce real computed
eigenvalues.

The QZ algorithm [18] can be used to solve (1.1). It computes orthogonal matrices
Q and Z such that QTAZ is upper quasi-triangular and QTBZ is upper triangular.
This method is numerically stable but it does not exploit the special structure of
the problem and so does not necessarily produce real eigenpairs in floating point
arithmetic.
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A method that potentially has the desired properties has recently been proposed
by Chandrasekaran [3], but the worst-case computational cost of this algorithm is
not clear.

A standard method, apparently first suggested by Wilkinson [25, pp. 337–340], be-
gins by computing the Cholesky factorization, optionally with complete pivoting [12,
section 4.2.9], [14, section 10.3],

ΠTBΠ = LD2LT ,(1.2)

where Π is a permutation matrix, L is unit lower triangular, and D2 = diag(d2
i ) is

diagonal. The problem (1.1) is then reduced to the form

Cy ≡ D−1L−1ΠTAΠL−TD−1y = λy, y = DLTΠTx.(1.3)

Any method for solving the symmetric eigenvalue problem can now be applied to
C [6], [19]. In LAPACK’s xSYGV driver, (1.1) is solved by applying the QR algo-
rithm to (1.3). MATLAB 6’s eig function does likewise when it is given a symmetric
definite generalized eigenproblem. As is well known, when B is ill conditioned numer-
ical stability can be lost in the Cholesky-based method. However, it is also known
that methods based on factorizing B and converting to a standard eigenvalue prob-
lem have some attractive features. In reference to the method that uses a spectral
decomposition of B, Wilkinson [25, p. 344] states that

In the ill-conditioned case the method of §68 has certain advantages
in that “all the condition of B” is concentrated in the small elements
of D. The matrix P of (68.5) [our C in (1.3)] has a certain number
of rows and columns with large elements (corresponding to small dii)
and eigenvalues of (A − λB) of normal size are more likely to be
preserved.

In this work we aim to give new insight into the numerical behavior of the Cholesky
method.

First, we make a simple but important observation about numerical stability.
Assume that the Cholesky factorization is computed exactly and set Π = I without
loss of generality. We compute Ĉ = C +∆C1 where, at best, ∆C1 satisfies a bound
of the form

|∆C1| ≤ cnu|D−1||L−1||A||L−T ||D−1|,
where cn is a constant and u is the unit roundoff (see section 3 for the floating point

arithmetic model). Here, |A| = (|aij |). Solution of the eigenproblem for Ĉ can be

assumed to yield the exact eigensystem of Ĉ + ∆C2 for some ∆C2. Therefore the
computed eigensystem is the exact eigensystem of

C +∆C1 +∆C2 = D−1L−1
(
A+∆A

)
L−TD−1, ∆A = LD(∆C1 +∆C2)DLT ,

and

|∆A| ≤ |L||D|(cnu|D−1||L−1||A||L−T ||D−1|+ |∆C2|
)|D||LT |

≤ cnu|L||L−1||A||L−T ||LT |+ |L||D||∆C2||D||LT |.(1.4)

If we are using complete pivoting in the Cholesky factorization then |lij | ≤ 1 for i > j
and

d2
1 ≥ · · · ≥ d2

n > 0.(1.5)
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Hence [14, Theorem 8.13]

κp(L) = ‖L‖p‖L−1‖p ≤ n2n−1, p = 1, 2,∞(1.6)

(with approximate equality achieved for LT the Kahan matrix [14, p. 161]), and so
the first term in (1.4) is bounded independently of κ(B). The second term will have
the same property provided that ∆C2 satisfies a bound of the form

|∆C2| ≤ |D−1|f(|A|, |L−1|, u)|D−1|,
where f is a matrix depending on |A|, |L−1|, and u, but not |D−1|.

If nothing more is known about ∆C2 than that ‖∆C2‖ ≤ cnu‖C‖ (corresponding
to using a normwise backward stable eigensolver for C), then the best bound we can
obtain in terms of the original data is of the form

‖∆A‖ ≤ g(n)uκ(B)‖A‖.(1.7)

However, this analysis shows that there is hope for obtaining a bound without the
factor κ(B) if the eigensolver for C respects the scaling of C when D is ill conditioned.
The QL variant of the QR algorithm has this property in many instances, since when
D is ill conditioned the inequalities (1.5) imply that C is graded upward (that is,
its elements generally increase from top left to bottom right) and the backward error
matrix for the QL algorithm1 then tends to be graded in the same way [19, chapter 8],
[21, p. 337]. However, this is a heuristic and we know of no precise results.

In this work we show that if, instead of the QL and QR algorithms, the Jacobi
method is applied to C, then we can derive rigorous backward error bounds that can
be significantly smaller than bounds involving a factor κ(B) when B is ill conditioned.
We also give experimental evidence of the benefits of pivoting in the Cholesky–QR
method.

Wilkinson [26] expressed the view that for most of the standard problems in
numerical linear algebra iterative refinement is a valuable tool for which it is worth
developing software. We investigate iterative refinement as a means for improving the
backward errors of eigenpairs computed by the Cholesky–QR and Cholesky–Jacobi
methods.

The organization of the paper is as follows. In section 2 we describe the Cholesky–
Jacobi method and in section 3 we give a detailed rounding error analysis, making
use of a diagonal scaling idea of Anjos, Hammarling, and Paige [2]. In section 4 we
show how fixed precision iterative refinement can be used to improve the stability of
selected eigenpairs. Section 5 contains a variety of numerical examples. In particular,
we describe a vibration problem from structural engineering where B is ill conditioned
yet our backward error bounds for the Cholesky–Jacobi method are found to be of
order u, and we give examples where ill condition of B does cause instability of
the method but iterative refinement cures the instability. Conclusions are given in
section 6.

In our analysis ‖ · ‖ denotes any vector norm and the corresponding subordinate
matrix norm, while ‖ · ‖2 and ‖ · ‖F denote the 2-norm and the Frobenius norm,
respectively.

1For the original QR algorithm, we need C to be graded downward. However, the distinction is
unimportant for our purposes since LAPACK’s routines for the QR algorithm [1] include a strategy
for switching between the QL and QR variants and thus automatically take advantage of either form
of grading.
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2. Method outline. The Cholesky–Jacobi method computes the Cholesky fac-
torization with complete pivoting (1.2), forms

H0 = D−1L−1ΠTAΠL−TD−1(2.1)

in (1.3), and then applies Jacobi’s method for the symmetric eigenproblem to H0.
Peters and Wilkinson [20] note that a variant of this method in which the Cholesky
factorization of B is replaced by a spectral decomposition, computed also by the
Jacobi method, was used by G. H. Golub on the Illiac at the University of Illinois in
the 1950s.

Jacobi’s method constructs a sequence of similar matrices starting with H0. An
orthogonal transformation is applied at each step,

Hk+1 = QT
kHkQk

in such a way that Hk tends to diagonal form Λ = diag(λi) as k → ∞. Denoting
by Q = Q0Q1 . . . the product of the orthogonal transformations that diagonalizes H0

and writing X = ΠL−TD−1Q, we have, overall,

XTAX = Λ, XTBX = I.(2.2)

Thus X simultaneously diagonalizes A and B and is also easily seen to be a matrix
of eigenvectors.

Now we describe the method in more detail. At the kth stage let Qk be a Jacobi
rotation in the (i, j) plane (i ≤ j) such that QT

kHkQk has zeros in positions (i, j) and
(j, i). Using MATLAB notation,

Qk([i j], [i j]) =

[
c s
−s c

]
,(2.3)

where c = cos θ and s = sin θ are obtained from [12, section 8.4.2] (with sign(0) = 1)

τ =
hjj − hii

2hij
,(2.4)

t =
sign(τ)

|τ |+√
1 + τ2

,(2.5)

c =
1√

1 + t2
, s = tc.(2.6)

The corresponding rotation angle θ satisfies |θ| ≤ π/4; choosing a small rotation angle
is essential for the convergence theory [19, chapter 9]. We choose the index pairs (i, j)
from a row cyclic ordering, in which a complete sweep has the form

(i, j) = (1, 2), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n− 1, n).(2.7)

For this ordering and the choice of angle above, the Jacobi method converges quadrat-
ically [12, section 8.4.4], [19, section 9.4].

When forming Hk+1 = QT
kHkQk = (h̃ij) we explicitly set h̃ij = 0 and compute

the new diagonal elements from [19, equation (9.9)]

h̃ii = hii − hijt,(2.8)

h̃jj = hjj + hijt,(2.9)
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where t is given in (2.5). The complete algorithm is summarized as follows.
Algorithm 2.1 (Cholesky–Jacobi method). Given A,B ∈ R

n×n with A sym-
metric and B symmetric positive definite, this algorithm calculates the eigenvalues λi

and corresponding eigenvectors xi of the pair (A,B).
1. Compute the Cholesky factorization with complete pivoting ΠTBΠ = LD2LT .

Form H = D−1L−1ΠTAΠL−TD−1 by solving triangular systems.
X = ΠL−TD−1.

2. % Jacobi’s method
done rot = true
while done rot = true

done rot = false
for i = 1:n

for j = i+ 1:n

(∗) if |hij | > u
√|hiihjj |

done rot = true
Form Qij ≡ Qk([i j], [i j]) using (2.3)–(2.6).
ind = [1: i− 1, i+ 1: j − 1, j + 1:n]
H([i j], ind) = QT

ijH([i j], ind)
H(ind, [i j]) = H(ind, [i j])Qij

H([i j], [i j]) =
[
h̃ii

0
0

h̃jj

]
using (2.8), (2.9)

X(: , [i j]) = X(: , [i j])Qij

end
end

end
end
λi = hii, xi = X(: , i), i = 1:n

The test (∗) for whether to apply a rotation is adapted from the one used for
Jacobi’s method for a symmetric positive definite matrix [7]—we have added absolute
values inside the square root since hii and hjj can be negative. This test is too
stringent in general and can cause the algorithm not to converge, but we have found
it generally works well, and so we used it in our experiments in order to achieve the
best possible numerical behavior.

3. Error analysis. Now we give an error analysis for Algorithm 2.1, with the
aim of obtaining an error bound better than (1.7). We use the standard model for
floating point arithmetic

fl(x op y) = (x op y)(1 + δ1) =
x op y

1 + δ2
, |δ1|, |δ2| ≤ u, op = +,−, ∗, /,

f l(
√
x) =

√
x(1 + δ), |δ| ≤ u,

where u is the unit roundoff. We will make use of the following lemma [14].
Lemma 3.1. If |δi| ≤ u and ρi = ±1 for i = 1:n, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, where |θn| ≤ nu

1− nu
=: γn.

We define

γ̃k =
pku

1− pku
,
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where p denotes a small integer constant whose exact value is unimportant. We will
also write θ̃k to denote a quantity satisfying |θ̃k| ≤ γ̃k. Computed quantities are
denoted with a hat.

We consider first the second part of Algorithm 2.1, beginning with the construc-
tion of the Jacobi rotation.

Lemma 3.2. Let a Jacobi rotation Qk be constructed using (2.4)–(2.6) so that
QT

kHkQk has zeros in the (i, j) and (j, i) positions. The computed ĉ, ŝ, and t̂ satisfy

ĉ = c(1 + θ̃1), ŝ = s(1 + θ̃′1), t̂ = t(1 + θ̃′′1 ),

where c, s, and t are the exact values for Hk.
Proof. The proof is straightforward.
In most of the rest of our analysis we will assume that the computed ĉ, ŝ, and t̂

are exact. It is easily checked that, in view of Lemma 3.2, this simplification does not
affect the bounds.

Lemma 3.3. If one step of Jacobi’s method is performed in the (i, j) plane on the

matrix Hm then the computed Ĥm+1 satisfies

Ĥm+1 = QT
m (Hm +∆Hm)Qm,

where the elements of ∆Hm are bounded componentwise by

|∆hik| ≤ γ̃1 (|hik|+ 2|sc||hjk|)
|∆hjk| ≤ γ̃1 (|hjk|+ 2|sc||hik|)

}
k �= i, j,

and

|∆hii| ≤ γ̃1

(
c2|hii|+ |s/c||hij |+ s2|hjj |

)
,

|∆hij |, |∆hji| ≤ γ̃1

(|sc||hii|+ 2s2|hij |+ |sc||hjj |
)
,

|∆hjj | ≤ γ̃1

(
s2|hii|+ |s/c||hij |+ c2|hjj |

)
.

Proof. For the duration of the proof letQm := Qm([i j], [i j]). WritingHm = (hij)

and Ĥm+1 = (ĥij) and using a standard result for matrix–vector multiplication [14,
section 3.5], we have, for k �= i, j,[

ĥik

ĥjk

]
= fl

(
QT

m

[
hik

hjk

])
,

= (Qm +∆Qm)
T

[
hik

hjk

]
, |∆Qm| ≤ γ̃1|Qm|,

=: QT
m

([
hik

hjk

]
+

[
∆hik

∆hjk

])
.

Then [ |∆hik|
|∆hjk|

]
≤ |Qm||∆QT

m|
[ |hik|
|hjk|

]
≤ γ̃1|Qm||QT

m|
[ |hik|
|hjk|

]
= γ̃1

[
1 2|sc|

2|sc| 1

] [ |hik|
|hjk|

]
,
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which gives the first two bounds. We calculate the elements at the intersection of
rows and columns i and j using

ĥii = fl(hii − hijt) = (1 + θ̃1)hii − (1 + θ̃1)hijt,

ĥjj = fl(hjj + hijt) = (1 + θ̃1)hjj + (1 + θ̃1)hijt,

and by setting ĥij and ĥji to zero. The backward perturbations ∆hii, ∆hij , and ∆hjj

satisfy

QT
m

([
hii hij

hij hjj

]
+

[
∆hii ∆hij

∆hij ∆hjj

])
Qm =

[
ĥii 0
0 ĥjj

]
,

which can be expressed as[
∆hii ∆hij

∆hij ∆hjj

]
= Qm

[
ĥii 0
0 ĥjj

]
QT

m −
[
hii hij

hij hjj

]
=

[
c2ĥii + s2ĥjj −scĥii + scĥjj

−scĥii + scĥjj s2ĥii + c2ĥjj

]
−
[
hii hij

hij hjj

]
.

Substituting in for ĥii and ĥjj and taking absolute values we obtain the second group
of inequalities. (Note that ∆hij = ∆hji = 0 if c and s are exact, so by bounding ∆hij

and ∆hji in this way we are allowing for inexact c and s.)
In the next lemma we show that in the first rotation of Jacobi’s method in Algo-

rithm 2.1 a factor D−1 can be scaled out of the backward error, leaving a term that
we can bound. We make use of the identity

sc =
hij√

4h2
ij + (hii − hjj)

2
,(3.1)

which comes from manipulating the equations defining a Jacobi rotation and solving
for sc = 1

2 sin 2θ in terms of tan 2θ. In this result, A0 ≡ L−1ΠTAΠL−T in (2.1).
Lemma 3.4. Given a symmetric A0 and a positive diagonal matrix D0 = diag(d2

i ),
suppose we perform one step of Jacobi’s method in the (i, j) plane on H0 = D−1

0 A0D
−1
0 ,

obtaining H1 = QT
0 H0Q0. Then

Ĥ1 = fl(QT
0 Ĥ0Q0) = QT

0 D
−1
0 (A0 +∆A0)D

−1
0 Q0,(3.2)

where

‖∆A0‖2 ≤ γ̃n(1 + 2ω0)‖A0‖2,(3.3)

with

ω0 = |sc|max(ρ, 1/ρ), ρ = di/dj .

Proof. We start by forming the matrix H0 = (hij). Since we are given the squared
diagonal elements d2

i we have

ĥij = fl
(
aij/

√
d2
i d

2
j

)
= (1 + θ3)aij/(didj) = (1 + θ3)hij

=: âij/(didj).
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Thus these initial errors can be thrown onto A0: Ĥ0 = D−1
0 (A0 + ∆1)D

−1
0 , where

|∆1| ≤ γ3|A0|. The errors in applying one step of Jacobi’s method to Ĥ0 can be ex-

pressed as a backward perturbation ∆H0 to Ĥ0 using Lemma 3.3. The corresponding
perturbation of Â0 = A0+∆1 is ∆2 = D0∆H0D0, so we simply scale the component-
wise perturbation bounds of Lemma 3.3. We find

|(∆2)ik| ≤ γ̃1 (|âik|+ 2|sc||âjk|ρ)
|(∆2)jk| ≤ γ̃1 (|âjk|+ 2|sc||âik|/ρ)

}
k �= i, j,

|(∆2)ii| ≤ γ̃1

(
c2|âii|+ |s/c||âij |ρ+ s2|âjj |ρ2

)
,(3.4)

|(∆2)ij,ji| ≤ γ̃1

(|sc||âii|/ρ+ 2s2|âij |+ |sc||âjj |ρ
)
,

|(∆2)jj | ≤ γ̃1

(
s2|âii|/ρ2 + |s/c||âij |/ρ+ c2|âjj |

)
.(3.5)

We now work to remove the potentially large ρ2 and 1/ρ2 terms. We can rewrite (3.1)
as

sc =

aij

didj√
4

a2
ij

d2
i
d2
j

+
(

aii

d2
i

− ajj

d2
j

)2
=

ρaij√
(aii − ρ2ajj)

2
+ 4ρ2a2

ij

.(3.6)

Further manipulation yields

|ajj |ρ2 ≤ |aii|+
√

a2
ijρ

2

(sc)2
− 4a2

ijρ
2 = |aii|+ ρ|aij |

√
1

(sc)2
− 4.

Therefore

s2|ajj |ρ2 ≤ s2|aii|+ ρ|aij |
√
t2 − 4s4.(3.7)

A similar manipulation of (3.1) (or a symmetry argument) gives

s2|aii|/ρ2 ≤ s2|ajj |+ |aij |
ρ

√
t2 − 4s4.(3.8)

Since âij = aij(1 + θ3) there is no harm in replacing aij by âij in (3.7) and (3.8).
Since θ ∈ [−π/4, π/4] we have√

t2 − 4s4 + |s/c| = 2|sc|,(3.9)

and hence (3.4) and (3.5) may be bounded by

|(∆2)ii| ≤ γ̃1 (|âii|+ 2|sc||âij |ρ) ,
|(∆2)jj | ≤ γ̃1 (|âjj |+ 2|sc||âij |/ρ) .

Setting ∆A = ∆1 +∆2 and using these componentwise bounds we obtain the overall
bound given in (3.3).

Lemma 3.4 shows that the Jacobi rotation results in a small backward perturba-
tion to A0 provided that ω0 is of order 1. We see from (3.6) that in normal circum-
stances sc is proportional to min(ρ, 1/ρ), which keeps ω0 small. However, in special
situations ω0 can be large, for example, when |aii−ρ2ajj | � ρ|aij | with ρ large, which
requires that |ajj | be much smaller than |aij | and B be ill conditioned.
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By combining Lemma 3.4 with subsequent applications of Lemma 3.3 we find that
after m steps of Jacobi’s method on H0 = D−1

0 A0D
−1
0 we have

Ĥm = QT
m−1 . . . Q

T
0 (H0 +∆0)Q0 . . . Qm−1,

where

∆0 = D−1
0 ∆A0D

−1
0 +

m−1∑
k=1

Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0

= D−1
0

(
∆A0 +

m−1∑
k=1

D0Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0 D0

)
D−1

0 .

The ∆Hk are bounded as in Lemma 3.3. We would like to bound the term in paren-
theses by a multiple of u‖A0‖2, but simply taking norms leads to an unsatisfactory
κ(D2

0) factor. To obtain a better bound we introduce, purely for theoretical purposes,

a scaling to Ĥk at each stage of the iteration. For an arbitrary nonsingular diagonal
Dk we write

‖D0Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0 D0‖2 = ‖D0Q0 . . . Qk−1D

−1
k ·Dk∆HkDk

·D−1
k QT

k−1 . . . Q
T
0 D0‖2

≤ min
Dk diag

(‖D0Q0 . . . Qk−1D
−1
k ‖2

2‖Dk∆HkDk‖2

)
= min

Dk diag

(‖N−T
k ‖2

2‖Dk∆HkDk‖2

)
,

where

Nk = D−1
0 Q0 . . . Qk−1Dk.(3.10)

Define

Ak := NT
k A0Nk = DkHkDk.(3.11)

By applying Lemma 3.4 to a rotation on Hk, we can see that

‖Dk∆HkDk‖2 ≤ γ̃n(1 + 2ωk)‖Ak‖2,(3.12)

where

ωk = |skck|max(ρk, 1/ρk), ρk = d
(k)
i /d

(k)
j ,

with a subscript k denoting quantities on the kth step and where Dk = diag(d
(k)
i ).

One way to proceed is to choose Dk to minimize κ2(Mk−1), where

Mk−1 = D−1
k−1Qk−1Dk.(3.13)

Notice that

Nk = M0 . . .Mk−1.(3.14)

This idea is based on an algorithm of Anjos, Hammarling, and Paige [2] that avoids ex-
plicitly inverting any of the Dk and uses transformation matrices of the form in (3.13)
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to diagonalize A while retaining the diagonal form of D0. The algorithm computes
the congruence transformations

Ak+1 = MT
k AkMk, D2

k+1 = MT
k D2

kMk,

whereDk is diagonal for all k and Ak tends to diagonal form as k → ∞. The difference
between our approach and that in [2] is that we form H0 = D−1

0 A0D
−1
0 and use Dk in

the analysis to obtain stronger error bounds, whereas in [2], in an effort to apply only
well-conditioned similarity transformations, H0 is never formed but Mk is computed
and applied in the algorithm (and no error analysis is given in [2]).

Now we discuss the choice of Dk, drawing on analysis from [2]. Since Qk−1 is a
rotation in the (i, j) plane, we choose Dk to be identical to Dk−1 in all but the ith
and jth diagonal entries. Thus Mk−1 is the identity matrix except in the (i, j) plane,
in which

Mij = M([i j], [i j]) =

[
d−1
i 0
0 d−1

j

] [
c s
−s c

][
d̃i 0

0 d̃j

]
,

where we are writing

Dk−1 = diag(di), Dk = diag(d̃i).

We now choose Dk to minimize the 2-norm condition number κ2(Mij). It can be
shown that for any 2× 2 matrix, G, say,

κ2(G) = σ1(G)/σ2(G) =
(
φ2 +

√
φ4 − 4δ2

)
/2δ,

where φ = ‖G‖F , δ = |det(G)| and σ1(G) ≥ σ2(G) are the singular values of G. Using
κF (G) = φ2/δ, we obtain

κ2(G) =
(
κF (G) +

√
κF (G)2 − 4

)
/2,

so clearly κ2(G) has its minimum when κF (G) does. Therefore it is only necessary to
analyze κF (Mij) in order to find the minimum of κ2(Mij). For Mij we have

φ2 = s2
(
(d̃i/dj)

2 + (d̃j/di)
2
)
+ c2

(
(d̃j/dj)

2 + (d̃i/di)
2
)
,

δ = det(D−1
k−1) det(Dk) = (d̃id̃j)/(didj).

Setting ξ = d̃i/d̃j we have

κF (Mij) = φ2/δ =
(
c2(ρ2 + ξ2) + s2(ρ2ξ2 + 1)

)
/(ρξ).

This is an equation with only one unknown, ξ. The minimum of κF (Mij) over ξ
occurs at

ξ2
opt =

(
s2 + ρ2c2

)
/
(
c2 + ρ2s2

)
,

which gives the values

κF (Mij)min = 2

√
1 + s2c2 (ρ− ρ−1)

2
,

κ2(Mij)min = |sc(ρ− ρ−1)|+
√
1 + s2c2 (ρ− ρ−1)

2
.(3.15)
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Knowing the ratio d̃i/d̃j that minimizes κ2(M0), we now have to choose d̃j and then

set d̃i = d̃jξopt. We set ‖Dk‖F = ‖Dk−1‖F , or more simply,

d2
i + d2

j = d̃2
i + d̃2

j =
(
ξ2
opt + 1

)
d̃2
j .(3.16)

This yields the values

d̃2
i = c2d2

i + s2d2
j ,

d̃2
j = c2d2

j + s2d2
i

(3.17)

and the matrix

Mij =

[
c
√
c2 + s2/ρ2 s

√
s2 + c2/ρ2

−s
√
s2 + c2ρ2 c

√
c2 + s2ρ2

]
.(3.18)

Clearly,

min(d2
i , d

2
j ) ≤ d̃2

k ≤ max(d2
i , d

2
j ), k = i, j.(3.19)

We note for later reference that a direct calculation reveals

‖M−1
ij ‖F =

√
2.(3.20)

It is also interesting to note that Mij has columns of equal 2-norm. This is not
surprising in view of a result of van der Sluis [24], which states that scaling the
columns of an n × n matrix to have equal 2-norms produces a matrix with 2-norm
condition number within a factor

√
n of the minimum over all column scalings.

To complete our analysis we need to bound ‖Ak‖2 and ‖N−1
i ‖2.

3.1. Growth of Am. We now bound ‖Am‖2, which appears in the bound (3.12).
We consider the growth over one step from Am = (aij) to Am+1 = (ãij) = MT

mAmMm,
as measured by φm = maxi,j |ãij |/maxi,j |aij |. By rewriting (2.8) and (2.9) in terms
of Ak, and using (3.11) and (3.17), we can show that

|ãii| ≤ c2|aii|+ s2|aii|/ρ2 + |aij |
( |s3|

cρ
+ |sc|ρ

)
,(3.21)

|ãjj | ≤ c2|ajj |+ s2|ajj |ρ2 + |aij |
( |sc|

ρ
+

|s3|
c

ρ

)
.(3.22)

We would like to bound these two elements linearly in terms of max(ρ, 1/ρ) (recall
that ρ can be greater than or less than 1). The troublesome terms in the bounds are
s2|ajj |ρ2 and s2|aii|/ρ2. Upon substitution of (3.7) and (3.8) in (3.21) and (3.22) we
obtain bounds linear in ρ and 1/ρ:

|ãii| ≤ c2|aii|+ s2|ajj |+ |aij |
((√

t2 − 4s4 +
|s3|
c

)
1

ρ
+ |sc|ρ

)
,

|ãjj | ≤ c2|ajj |+ s2|aii|+ |aij |
((√

t2 − 4s4 +
|s3|
c

)
ρ+

|sc|
ρ

)
.

Using (3.9) we find that
√
t2 − 4s4 + |s3|/|c| = |sc|, and so

|ãii| ≤ c2|aii|+ s2|ajj |+ |aij ||sc| (ρ+ 1/ρ) ,(3.23)

|ãjj | ≤ c2|ajj |+ s2|aii|+ |aij ||sc| (ρ+ 1/ρ) .(3.24)
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For the other affected elements in rows and columns i and j we have, for k �= i, j,

ãik = ãki = aikc
√
c2 + s2/ρ2 − ajks

√
s2 + c2ρ2,

ãjk = ãkj = aiks
√
s2 + c2/ρ2 + ajkc

√
c2 + s2ρ2.

These elements can be bounded by

|ãik| ≤ |aik|
(
c2 + |sc|/ρ)+ |ajk|

(
s2 + |sc|ρ) ,(3.25)

|ãjk| ≤ |aik|
(
s2 + |sc|/ρ)+ |ajk|

(
c2 + |sc|ρ) .(3.26)

The bounds (3.23)–(3.26) can all be written in the form

|ãpq| ≤ max
r,s

|ars|
(
1 + |sc|(ρ+ 1/ρ)

)
,

and so the growth of Am over one step is bounded by

φm ≤ 1 + |sc|(ρ+ 1/ρ) ≤ 1 + 2|sc|max(ρ, 1/ρ) = 1 + 2ωm.

The overall growth bound is

πm :=
‖Am‖2

‖A0‖2
≤ √

n

m−1∏
i=0

φi.(3.27)

3.2. Bounding ‖N−1
i ‖2. Our final task is to bound

µi := ‖N−1
i ‖2 = ‖D−1

i QT
i−1 . . . Q

T
0 D0‖2

(see (3.10)). We describe two different bounds. In view of (3.19),

‖D−1
i+1‖2 ≤ ‖D−1

i ‖2 ≤ · · · ≤ ‖D−1
0 ‖2.

Thus, since D0 = D, where B has the Cholesky factorization (1.2),

µ2
i ≤ κ2(D)2 ≤ κ2(L)κ2(B).

However, the point of our analysis is to avoid a κ2(B) term in the bounds. As an
alternative way of bounding µi we note that, from (3.14),

N−1
i = M−1

i−1 . . .M
−1
0 .

For the row cyclic ordering in (2.7) the congruence transformations can be reordered
into 2n− 3 groups of up to �n/2� disjoint transformations Mj+1, . . . ,Mj+p such that,
using (3.20),

‖M−1
j+p . . .M

−1
j+1‖2 ≤

√
2.

For example, a sweep of a 6 × 6 matrix can be divided into 9 groups of disjoint
rotations: 

− 1 2 3 4 5
− 3 4 5 6

− 5 6 7
− 7 8

− 9
−

 .
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Here, an integer k in position (i, j) denotes that the (i, j) element is eliminated on
the kth step by a rotation in the (i, j) plane, and all rotations on the kth step are
disjoint. Hence we can bound µi by

µi ≤ (
√
2)2n−3 = 2n−3/2.

Although exponential in n, this bound is independent of κ2(B).

3.3. Summary. Our backward error analysis shows that, upon convergence after
m Jacobi rotations, Algorithm 2.1 has computed a diagonal Λ such that

XT (A+∆A)X = Λ, XT (B +∆B)X = I(3.28)

for some nonsingular X, where

‖∆A‖2 ≤ γ̃n2‖A‖2

(
κ2(L)

2 +

m−1∑
k=0

µ2
k

(
1 + 2ωk

)
πk

)
,(3.29a)

‖∆B‖2 ≤ γ̃n2‖B‖2.(3.29b)

The term involving κ2(L) takes account of errors in the first stage of Algorithm 2.1
and follows from standard error analysis [14, chapter 10] of Cholesky factorization
and the solution of triangular systems. Because of the complete pivoting, κ(L) is
bounded as in (1.6), and in practice it is usually small. Even when κ(L) is large, its
full effect tends not to be felt on the backward error, since triangular systems are
typically solved to higher accuracy than the bounds suggest [14, chapter 8].

We do not have a bound better than exponential in n for the term µ2
i , but

this term has been less than 10 in virtually all our numerical tests. We showed in
section 3.1 that the growth factor πk = ‖Ak‖2/‖A0‖2 in (3.27) is certainly bounded

by πk ≤ √
n
∏k−1

i=0 (1 + 2ωi). The term

ωk = |skck|max(ρk, 1/ρk) ≤ |skck|κ2(D) ≤ |skck|κ2(L)κ2(B)1/2(3.30)

is the most important quantity in our analysis. A large value of ωk, for some k, is the
main indicator of instability in Algorithm 2.1.

We stress that our error bounds do not depend on the ordering (1.5), as should be
expected since the Jacobi method is insensitive to the ordering of the diagonal of D.
The purpose of pivoting in the Cholesky factorization is to keep L well conditioned
and thereby concentrate any ill conditioning of B into D.

The conclusion from the error analysis is that Algorithm 2.1 has much better
stability properties than the bound (1.7) suggests. When κ2(B) is large it is usually
the case that small values of |skck| cancel any large values of max(ρk, 1/ρk) (see the
discussion following Lemma 3.4) and that πk is also small, with a resulting small
backward error bound.

For the particular version of the Cholesky–QR method in which the initial tridi-
agonalization of the QR algorithm is performed using Givens rotations, Davies [5]
uses suitable modifications of the analysis presented here to derive analogues of (3.28)
and (3.29) in which the terms 1 + 2ωk and πk in (3.29) are squared (the definitions
of wk and πk are unchanged, but of course the underlying rotations are different).
Unfortunately, Householder transformations rather than Givens rotations are almost
always used for the tridiagonalization and our error analysis is specific to rotations;
therefore (1.7) remains the best error bound for the practically used Cholesky–QR
method.
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4. Iterative refinement. The relative normwise backward error of an approx-
imate eigenpair (x̃, λ̃) of (1.1) is defined by

η(x̃, λ̃) = min
{
ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ‖∆A‖ ≤ ε‖A‖,(4.1)

‖∆B‖ ≤ ε‖B‖}.
To evaluate the backward error we can use the explicit expression [11], [13]

η(x̃, λ̃) =
‖r‖

(|λ̃| ‖B‖+ ‖A‖)‖x̃‖
,(4.2)

where r = λ̃Bx̃−Ax̃ is the residual. For symmetric A and B, we denote by ηS(x̃, λ̃)
the backward error (4.1) with the additional constraint that the perturbations∆A and

∆B are symmetric. Clearly ηS(x̃, λ̃) ≥ η(x̃, λ̃). However, Higham and Higham [13]

show that when λ̃ is real, ηS(x̃, λ̃) = η(x̃, λ̃) for the 2-norm. Hence, for the symmetric
definite generalized eigenproblem it is appropriate to use the general definition (4.1)
and the formula (4.2).

The idea of using iterative refinement to improve numerical stability has been
investigated for linear systems by several authors; see [14, chapter 11] for a survey
and [15] for the most recent results. Iterative refinement has previously been used
with residuals computed in extended precision to improve the accuracy of approx-
imate solutions to the standard eigenproblem [8], [9], [22]. Tisseur [23] shows how
iterative refinement can be used in fixed or extended precision to improve the forward
and backward errors of approximate solutions to the generalized eigenvalue problem
(GEP). She writes the GEP as

Ax = λBx, eTs x = 1 (for some fixed s)

and applies Newton’s method to the equivalent nonlinear equation problem

F

([
x
λ

])
=

[
(A− λB)x
eTs x− 1

]
: R

n+1 → R
n+1.

This requires solving linear systems whose coefficient matrices are the Jacobian

J

([
x
λ

])
=

[
A− λB −Bx

eTs 0

]
.

We use this technique with residuals computed in fixed precision to improve the
backward errors of eigenpairs computed by Algorithm 2.1. We very briefly summarize
the convergence results and two implementations of iterative refinement; full details
may be found in [23].

If J is not too ill conditioned, the linear system solver is not too unstable, and the
starting vector is sufficiently close to an eigenpair (x∗, λ∗), then iterative refinement
by Newton’s method in floating point arithmetic with residuals computed in fixed
precision yields a refined eigenpair (x̂, λ̂) with backward error in the ∞-norm bounded
by [23, Corollary 3.5]

η∞(x̂, λ̂) ≤ γ̃n + u(3 + |λ|)max

(‖A‖∞
‖B‖∞ ,

‖B‖∞
‖A‖∞

)
.(4.3)

This backward error bound is small if λ is of order 1 and the problem is well balanced,
that is, ‖A‖∞ ≈ ‖B‖∞. If the problem is not well balanced, we can change the GEP
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to make it so. We can scale the GEP to (αA)x = (αλ)Bx, where α = ‖B‖∞/‖A‖∞
and the backward error now depends on the size of λ = αλ. If |λ| ≤ 1, a small
backward error is ensured, while for |λ| ≥ 1 we can consider the problem Bx = µAx,
for which |µ| ≤ 1. Practical experience shows that it is not necessary to scale or to
reverse the problem—a backward error of order u is obtained as long as the starting
vector is good enough for Newton’s method to converge.

The following algorithm can be derived after some manipulation of the Newton
equations [23].

Algorithm 4.1. Given A, B and an approximate eigenpair (x, λ) with ‖x‖∞ =
xs = 1, this algorithm applies iterative refinement to λ and x:

repeat until convergence
r = λBx−Ax
Form M : the matrix A− λB with column s replaced by −Bx
Factor PM = LU (LU factorization with partial pivoting)
Solve Mδ = r using the LU factors
λ = λ+ δs; δs = 0
x = x+ δ

end
This algorithm is expensive as each iteration requires O(n3) flops for the factor-

ization of M . By taking advantage of the eigendecomposition computed by Algo-
rithm 2.1, the cost per iteration can be reduced to O(n2) flops [23].

Algorithm 4.2. Given A, B, X, and Λ such that XTAX = Λ and XTBX = I,
and an approximate eigenpair (x, λ) with ‖x‖∞ = xs = 1, this algorithm applies
iterative refinement to λ and x at a cost of O(n2) flops per iteration.

repeat until convergence
r = λBx−Ax
Dλ = Λ− λI
d = −Bx− cλs, where cλs is the sth column of A− λB
v = XT d; f = XT es
Compute Givens rotations Jk in the (k, k + 1) plane, such that

QT
1 v := JT

1 . . . JT
n−1v = ‖v‖2e1

Compute orthogonal Q2 such that
T = QT

2 Q
T
1 (Dλ + vfT ) is upper triangular

z = QT
2 Q

T
1 X

T r
Solve Tw = z for w
δ = Xw
λ = λ+ δs; δs = 0
x = x+ δ

end

The computed X̂ from Algorithm 2.1 does not necessarily give a backward stable
diagonalization of A and B. However, Tisseur [23] shows that instability in the solver
does not affect the overall limiting accuracy and limiting backward error (4.3) when
iterative refinement converges, although of course it may inhibit convergence. The
price to be paid for the greater efficiency of Algorithm 4.2 over Algorithm 4.1 is less
frequent and less rapid convergence.

5. Numerical results. In this section we give several examples to illustrate the
behavior of Algorithm 2.1 and the sharpness of our backward error bounds, to show
how the algorithm compares with the Cholesky–QR method, to show the need for
pivoting in the Cholesky–QR method, and to show the benefits of iterative refinement.
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Table 5.1
Terms from error analysis and backward error for Example 1.

ε κ2(B) maxωk maxµ2k maxπk max η2(x̂, λ̂)

10−1 107 7.98e-1 3.33e0 3.12e0 1.31e-16
10−2 1014 1.90e0 4.38e0 7.02e0 5.35e-17
10−3 1021 2.38e0 4.67e0 1.04e1 3.50e-17

All our experiments were carried out in MATLAB 6, in which matrix computations are
based on LAPACK; the unit roundoff is u = 2−53 ≈ 1.1×10−16. (Our implementation
of the Cholesky–QR method uses the MATLAB/LAPACK implementation of the QR
algorithm and so employs Householder tridiagonalization.) In Algorithms 4.1 and 4.2

convergence was declared when η∞(x̂, λ̂) ≤ u.

Example 1. Our first example illustrates how our backward error bounds can
correctly predict perfect backward stability of Algorithm 2.1 despite large values of
κ2(B). We take A = H − I ∈ R

n×n, where H is the Hilbert matrix, and B =
diag(1, ε, ε2, . . . , εn−1). For n = 8 and ε = 10−1, 10−2, 10−3, Table 5.1 shows the values
of the terms appearing in the error analysis along with the maximum backward error
over all the computed eigenpairs. The Cholesky–QR method is also stable on this
example.

In a variation of this example we took A = H and B = diag(εn−1, . . . , ε, 1), with
n = 8 and ε = 10−2. The computed eigenvalues from the Cholesky–Jacobi method
and the Cholesky–QR method with pivoting both range from 10−9 to 1014 and the
maximum backward error over all the computed eigenpairs is of order u. However,
the Cholesky–QR method without pivoting produces two negative eigenvalues of or-
der 10−2, even though the exact eigenvalues are clearly positive, and the maximum
backward error is of order 10−3.

Example 2. This example is a structural engineering problem that again illustrates
independence of our backward error bounds on κ2(B). We consider a cantilever beam
as shown in Figure 5.1(a). We assume that the cantilever is rigid in its axial direction
and that all the deformations are small. The boundary conditions are full-fixity at
the base and zero translational displacement at the cantilever end. We also assume
that the material properties and cross sections vary along the length of the beam.
The equation of motion for the natural vibrations has the form

Mv̈ +Kv = 0,

where M denotes the symmetric positive definite mass inertia matrix and K the
symmetric positive definite stiffness matrix. The finite element method leads to the
generalized eigenvalue problem

Kφ = λMφ.(5.1)

The cantilever is modeled with N finite elements. Each element has 4 degrees of
freedom, namely, the two beam-end lateral displacements and the two beam-end ro-
tations as shown in Figure 5.1(b). The length of the ith finite element ei is taken to
be Li and its flexural characteristic to be (EI)i, where E is the modulus of elasticity
and I the moment of inertia. The global degrees of freedom are numbered as shown
in Figure 5.1(a). If cubic Hermite interpolation polynomials are used to describe
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e1 e2 ei ei+1 eN

1,2 3,4 2i−1,2i

2N−1

(a) Geometry of supported cantilever beam.

2i−3

2i−2

2i−1

2i

Li

ei

(b) Beam finite element.

Fig. 5.1. Single span cantilever beam with supported end point.

Table 5.2
Result for two instances of the cantilever beam problem.

κ2(M) = 3.9× 1010, κ2(L) = 1.8

maxωk maxµ2k maxπk max η2(x̂, λ̂)

Cholesky–Jacobi 4.58e0 8.3e0 1.63e0 5.18e-17
Cholesky–QR (no pivoting) 5.10e-17

Cholesky–QR (with pivoting) 7.48e-17

κ2(M) = 6.7× 106, κ2(L) = 2.2

maxωk maxµ2k maxπk max η2(x̂, λ̂)

Cholesky–Jacobi 3.86e0 4.18e0 2.45e0 1.77e-16
Cholesky–QR (no pivoting) 1.23e-13

Cholesky–QR (with pivoting) 1.21e-16

displacement along the beam element, then the beam element stiffness matrix is [17]

Ki =
2(EI)i
L3
i


6 3Li −6 3Li

3Li 2L2
i −3Li L2

i

−6 −3Li 6 −3Li

3Li L2
i −3Li 2L2

i


and the beam element consistent mass matrix is

Mi =
miLi

420


156 22Li 54 −13Li

22Li 4L2
i 13Li −3L2

i

54 13Li 156 −22Li

−13Li −3L2
i −22Li 4L2

i

 ,

where mi is the average mass per unit length for the ith beam. The global stiffness
and mass inertia matrices are obtained by assembling the Ki and Mi, i = 1:N .

For our example, we chose N = 5 finite elements leading to 9 degrees of freedom
and we varied the parameters ei, Li, (EI)i, and mi, sometimes applying direct search
to maximize the backward error over these variables. The backward errors for Algo-
rithm 2.1 and the Cholesky–QR method with pivoting were always of order u, with
our backward error bounds for Algorithm 2.1 also of order u. Table 5.2 shows results
for two sets of parameters. The second set of results shows again that pivoting can
be needed for stability of the Cholesky–QR method.

Example 3. This is an example where Algorithm 2.1 is unstable and there is only
one large value of ωk. With n = 10, we take A ∈ R

n×n to be a random symmetric
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Table 5.3
Iterative refinement of eigenpairs of Example 4. For the entry marked †, convergence was not

to the eigenvalue indicated in the leftmost column.

Before After refinement

refinement Algorithm 4.1 Algorithm 4.2

λ η∞(x̃, λ̃) e(λ̃) η∞(x̂, λ̂) e(λ̂) it η∞(x̂, λ̂) e(λ̂) it

ε = 2−6 ≈ 1.6× 10−2

1.4e0 4e-7 9e-6 5e-17 3e-16 2 7e-17 1e-15 2

−4.6e1 2e-8 6e-8 7e-18 2e-16 2 6e-18 2e-16 2

−8.4e3 2e-11 1e-9 5e-20 0 1 5e-20 0 2

ε = 2−8 ≈ 3.9× 10−3

1.4e0 2e-3 4e-2 4e-17 2e-16 3 4e-17 2e-16 12

−1.8e2 1e-5 3e-4 2e-17 2e-16 2 3e-17 8e-16 9

−1.4e4 4e-9 3e-6 5e-21 2e-16 2 2e-15 1e-12 ∗
ε = 2−12 ≈ 2.4× 10−4

1.4e0 3e-3 1e0 4e-18 0† 5 1e-2 1e0 ∗
−3.0e3 6e-4 8e-1 1e-22 0 5 3e-3 8e-1 ∗
−3.5e7 4e-5 1e-1 2e-17 4e-16 3 2e-5 1e-1 ∗

matrix and B = In and replace the (n, n) entries of each matrix by 10−24. Jacobi
rotations not involving the nth plane have ρ = 1, and therefore ωk is small. However,
when we first apply a Jacobi rotation in the (1, n) plane we see that ρ = 1012 and

a11 − ρ2ann = a11 − 1 � ρa1n = 1012a1n,

and therefore, from (3.6), sc ≈ 1/2 and ωk ≈ 5× 1011. Note that this is an example
where (3.30) is sharp. This is the only ill-conditioned Mk transformation as, using

our scaling strategy, we set d̃2
n = c2d2

n + s2d2
1 = O(1) in (3.17), and afterwards ρ is

always approximately 1 for all subsequent rotations. The other key terms from the
error bounds are maxk πk = 8.4×1011 and maxk µ

2
k = 2.0. The computed eigenvalues

consist of a group of 8 of order 1, all with backward errors of order 10−5 and two
eigenvalues of order 1012, with backward errors of order u. Applying Algorithm 4.1
to the eigenvalues with large backward errors we found that backward errors of order
u were produced within 3–7 iterations; Algorithm 4.2 did not converge for any of the
eigenvalues. The Cholesky–QR method was stable in this example.

Example 4. This example is one of a form suggested by G. W. Stewart that causes
difficulties for Algorithm 2.1, and we use it to compare Algorithms 4.1 and 4.2. The
matrices are

diag(A) = d, aij = min(i, j) for i �= j, B = diag(d), d = [1, ε, ε2, . . . , εn−1]

with 0 < ε < 1. We take n = 8 with three choices of ε and concentrate on the three
eigenvalues of smallest absolute value. We report in Table 5.3 the backward error
η∞(x̂, λ̂) of the computed eigenpair and the forward error

e(λ̂) =
|λ− λ̂|
|λ|

of the computed eigenvalue, where the exact λ is obtained using MATLAB’s Symbolic
Math Toolbox; these statistics are given both before and after refinement, together
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Table 5.4
Terms from error analysis for Example 4.

ε κ2(B) maxωk maxµ2k maxπk

2−6 4e12 1.3e5 7.9 1.1e10

2−8 7e16 1.7e7 8.0 8.8e13

2−12 2e25 2.8e11 8.0 5.7e21
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Fig. 5.2. Backward errors for Cholesky–QR method before and after iterative refinement for
Kahan matrix example (Example 5). Dotted line denotes unit roundoff level.

with the number of iterations required by Algorithms 4.1 and 4.2, where “∗” denotes
no convergence after 50 iterations and in this case the quantities from the 50th itera-
tion are shown. Table 5.4 shows the size of the terms appearing in the error bounds
of section 3.3. The observed instability corresponds to large ωk and πk, but µ2

k is
small, as is usually the case. We see that, as expected from the theory [23], refining
with the unstable linear system solver produces the same limiting backward error as
when the stable solver is used, but that it can produce slower convergence and is
less likely to converge at all, as we saw also in Example 3. Iterative refinement also
improves the forward error e. As one entry in the table shows, it is possible for iter-
ative refinement to converge to a different eigenpair than expected when the original
approximate eigenpair is sufficiently poor. The Cholesky–QR method performs stably
on this example.

Example 5. The next example illustrates how ill condition of L can cause in-
stability. Here, n = 20, A = I, and B = RTR, where R is a Kahan matrix, and
κ2(B) ≈ 1/u, κ2(L) ≈ 3 × 104. Figure 5.2 plots the eigenvalues on the x-axis versus
the ∞-norm backward errors of the eigenpairs on the y-axis, for eigenpairs both be-
fore and after refinement. At most one step of iterative refinement was required. The
Cholesky–QR method was used, with Algorithm 4.2; Algorithms 2.1 and 4.1 give very
similar results. The quantities in the error bounds for Algorithm 2.1 are maxωk = 0.6,
maxµ2

k = 315, maxπk = 1.8. As expected, it is the small eigenvalues that have large
backward errors initially.
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Fig. 5.3. Behavior of the backward error for eigenvalue of smallest modulus of problem (5.2)
with α = 1, δ = 10−3. Dotted line denotes unit roundoff level.

Example 6. Our penultimate example is adapted from a problem used by Fix and
Heiberger [10] and shows that it is possible for the Cholesky–Jacobi method to be
stable when the Cholesky–QR method both with and without pivoting is unstable.
Let

A =


1 α 0 δ
α 2 0 0
0 0 3 0
δ 0 0 ε

 , B = diag(ε, 1, ε, 1), α, δ > 0, 0 < ε < 1.(5.2)

We solved the problem for α = 1, δ = 10−3 and a range of ε from 10−10 to 10−18

by Algorithm 2.1 and the Cholesky–QR method with pivoting. Figure 5.3 plots the
condition number of B against the backward error η2(x̂min, λ̂min) for the eigenvalue

λ̂min of minimal modulus. The Cholesky–QR method performs unstably for most of
the matrices B in the figure (strangely, producing generally better results without
pivoting), while Algorithm 2.1 displays excellent stability. For Algorithm 2.1 we have
maxk ωk = maxk πk = 1.0 and maxk µ

2
k = 1.71, so our error bounds predict the small

backward errors.
Example 7. Our final example uses a class of random test problems suggested by

Chandrasekaran [3]. They have the form

A = R+ (10−8nλn − λ[n/2])I, B = S + (|λ1|+ 10−8nmax(λ1, λn))I,

where R and S are random matrices from the normal (0,1) distribution and λ1 ≤ · · · ≤
λn are the eigenvalues of R (for A) or S (for B). With 5 ≤ n ≤ 100 the backward errors
of the eigenpairs produced by the Cholesky–Jacobi method and the Cholesky–QR
method with and without pivoting were almost always less than nu, with a maximum
value of 10−13 occurring for the Cholesky–QR method without pivoting for n = 60.
Iterative refinement by Algorithms 4.1 and 4.2 reduced the backward error to u in at
most three iterations, with only one iteration being required in over 95 percent of the
cases. For Algorithm 2.1 we have maxk ωk = maxk µ

2
k = 4 and maxk πk = 56.
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6. Conclusions. We have shown that the Cholesky–Jacobi method has better
numerical stability properties than the standard backward error bound (1.7) suggests.
For problems with an ill-conditioned B, the method can be, and often is, perfectly
stable, and numerical experiments show that our bounds predict the stability well.
The method is of practical use: it is easy to code, as Algorithm 2.1 shows, and the
Jacobi method is particularly attractive in a parallel computing environment.

In practice, the Cholesky–QR method appears to perform as well as the Cholesky–
Jacobi method, provided that complete pivoting is used in the Cholesky factorization.
As we noted in section 1 this can, to some extent, be explained by the QR method’s
good performance on graded matrices. However, except for a rarely used variant
employing Givens tridiagonalization, the best backward error bound for the Cholesky–
QR method continues to contain a factor κ2(B). It is an important open problem to
derive a sharper bound.

Instability of the Cholesky methods can be cured by iterative refinement, provided
it is not too severe, as we have illustrated. Drawbacks are that refinement is expensive
if applied to more than just a few eigenpairs, and practically verifiable conditions that
guarantee convergence to the desired eigenpair are not available, though the method
is surprisingly effective in practice.

The Cholesky–QR method (without pivoting) is the standard method for solving
the symmetric definite generalized eigenproblem in LAPACK, MATLAB 6, and the
NAG Library, all of which aim to provide exclusively backward stable algorithms. It
is clearly desirable for these implementations to incorporate pivoting in the Cholesky
factorization, in order to enhance the reliability, and to incorporate the option of
iterative refinement of selected eigenpairs, to ameliorate those instances, which are
rarer than we can explain, where the Cholesky–QR method behaves unstably.

Acknowledgment. We thank Sven Hammarling for many helpful discussions on
this work.
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