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Abstract

The generalized symmetric eigenvalue problem (GSEVP) Az = ABz, A symmet-
ric, B symmetric positive definite, occurs in many practical problems, but there is as
yet no numerically stable algorithm which takes full advantage of its structure. The
standard method (factor B = GGT, solve the ordinary symmetric eigenvalue problem
GYAG"T(GTz) = A(GTz)) is not numerically stable, while the backward stable QZ
algorithm takes no account of the special structure of the GSEVP. We show by example
a previously unrecognized deficiency in the eigenvectors produced by the QZ algorithm
for some cases of this special class of problems. We suggest a new method that takes
full advantage of the structure of the GSEVP yet appears not to suffer from either the
eigenvector deficiency of the QZ algorithm, nor the lack of accuracy that can be intro-
duced by the standard method when B has a large condition number x(B). The new
method first reduces the problem to an equivalent one A,y = AD2y, A, symmetric, D,
diagonal. It then implicitly applies Jacobi’s method to D;1A.D; !, while maintaining
the symmetric and diagonal forms. The results of numerical tests indicate the benefits
of this approach. A variant of the approach is amenable to parallel computation.
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1 Introduction

In this paper we introduce a new algorithm for the generalized symmetric eigenvalue problem
(GSEVP) : Given A € R™*" such that A = AT and B = BT € R"*" which is positive definite,
find Ay,..., A, € ® and linearly independent z,,...,z, € ®" which satisfy:

Az; = \;Bzx;. (1)

The approach applies equally well to Hermitian pairs (A, B) with B positive definite. This
problem occurs regularly in practical applications, arising for example from discretization
of structural problems involving vibrations. The broader class of definite Hermitian pairs
(A, B) also has real eigenvalues [3], see [9], but as these can be transformed to problems with
B positive definite, and as all the practical problems we have encountered already have B
positive definite, we concentrate on the standard GSEVP above.

Our essential motivation is to develop an algorithm which will offer an improvement over
other algorithms for those instances of the GSEVP where the matrix B, and possibly also
A, is ill-conditioned in the sense of having large condition number

k(B) = o1(B)/on(B), o1(B) > ... > o,(B)

being the singular values of B. In the sequel, we shall use the words “ill-conditioned” when
applied to matrices to mean just this. The algorithm is a step towards solving a long standing
open problem in matrix computations — how to take advantage of all the structure of the
GSEVP while still maintaining all possible numerical stability.

Note that the approach suggested by Crawford [3] can sometimes be used to produce a
related GSEVP with a B of improved condition. However if the optimal condition is still
poor, we still have to solve the resulting GSEVP accurately. Stewart and Sun [9] give a good
discussion of the properties of the GSEVP and its sensitivity.

We begin our exposition by reviewing two current algorithms for solving the GSEVP and
characterizing them in terms of their “numerical stability”, and the extent to which they
preserve structure. This exercise will also allow us to motivate our proposed algorithm.
We then proceed by outlining the framework of the proposed algorithm in Section 3. In
Section 4 we summarize the numerical tools we shall later apply in the algorithm design.
In Section 5 we show how the algorithm can be carried out. Section 6 presents a detailed
analysis of the algorithm, showing that it converges in theory, and to what extent it should
be numerically reliable. Finally, we conclude by giving numerical results obtained with a
FORTRAN implementation of the procedure and a summary of these results. The conclusion
also considers the possibility of a parallel implementation of this approach.

2 Two Algorithms and Concepts of Stability

The standard algorithm for solving the GSEVP is described in detail in [5, p. 469, Algorithm
8.7.1], see [7, 10] for an early implementation and discussion. It can be briefly summarized
in the following way :
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e Compute the Cholesky factorization of B, which has the form B = GGT, where G is a
lower triangular matrix;

e Form M = G~'AG-T taking full advantage of symmetry;

o Solve the symmetric eigenproblem My = Ay, whose eigenvalues are mathematically the
same as those of the original generalized eigenproblem and whose matrix of eigenvectors
Y is related to the matrix of eigenvectors X of the original problem by Y = GTX.

The second step of this method requires solving two systems of equations involving the
Cholesky factor ; thus when B, and therefore G, is ill-conditioned, all the eigenvalues
may incur severe losses in accuracy when they are computed — even those which are rel-
atively insensitive to small perturbations in A and B. The idea is that, in the presence
of rounding errors, this algorithm gives G such that B + AB = GGT which is symmet-
ric, where ||AB|| < cpul|B|. (We will use || - || = || - ||z to denote the Euclidean vector
norm and the matrix spectral norm, and || - ||z the Frobenius norm). Here and later co-
efficients like cg will denote some reasonable factor dependent on n alone. The standard
algorithm then produces symmetric M = fl(G"1AG~T), and eigenvalues which are exact for
symmetric M + AM with ||AM|| < epul|M||. The difficulty is that (for exact GGT = B)
|G AG™T|| < ||A|lJIGTY)|? = ||A||.]|lB~Y|| can be very large for ill-conditioned B, and a cor-
respondingly large perturbation AM may result in an eigenvalue which is insensitive in the
original problem being computed with a large error by this process. Thus even though the
standard algorithm is not numerically stable, it does take full advantage of all the structure
of the problem.

Another algorithm, the QZ algorithm [8], can also be used to solve the GSEVP. As
described in [5, § 7.7], the QZ algorithm computes unitary matrices @ and Z such that :

o Q7 AZ = T is upper triangular;
e Q¥ BZ = S is upper triangular.
Since B positive definite implies s;; # 0, it follows that
Ai = ti/ 8i, t=1,...,n.

Although this method is numerically stable, it has the disadvantage that it does not exploit
any of the structure inherent in the GSEVP, namely the symmetry of both A and B and the
positive definiteness of B. As our computations in Section 7 will show, the implementation
of the QZ algorithm we used can also produce eigenvectors which are inadequate for this
specialized problem in a subtle but important sense.

An algorithm is said to be backward stable when it always computes the exact solution to
a problem “close” (in some sense) to the original problem. The development and clarification
of this notion was one of the many important contributions of J.H. Wilkinson to the field of
numerical analysis, see for example [10]. Thus on a computer with u denoting the floating
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point unit round-off (see [5]), each eigenvalue computed by the QZ algorithm will be exact
for the pair A + §A, B + 8B, where

[6A[l < cauflAll,  [|6B] < caul Bl. (2)

Note that neither A + 6 A nor B + éB is likely to be symmetric, and the computed #;;, s
and so A; will often be complex. Nevertheless, they should be exact for a nearby problem.

Following [2], we can say an algorithm is strongly stable if it preserves the structure of
the matrices in the problem and it always gives the exact answer to a nearby problem. Thus
a strongly stable algorithm for the GSEVP would always produce intermediate symmetric
matrices A. and B, with the latter being positive definite, and eventually produce answers
which are exact for A+6A and B+ 6B with the same characteristics, where these equivalent
perturbations also satisfy (2). It seems reasonable to consider this notion of stability as the
most desirable for a numerical analyst.

Thus while the QZ algorithm is backward stable, and the standard method preserves
structure, the motivation for developing and implementing a new approach is to try to
obtain both these characteristics, that is, an algorithm for the GSEVP which will satisfy
the strong stability criterion. While we have not proven strong stability for our algorithm,
we have tried to achieve better accuracy for the solution of a GSEVP with ill-conditioned
B through the use of numerical transformations which are as well-conditioned as possible,
while ensuring preservation of the problem structure.

3 Algorithm Outline

The algorithm we present consists of two distinct steps, namely :

e Reducing the GSEVP to the special form
Ay = A\DZy

where A, is symmetric and D? is a positive diagonal matrix. The reduction is ideally by
well-conditioned transformations, so that A, has similar condition to the given matrix
A, and D? reflects nearly all the ill-conditioning of B;

e Iterating on this special form to reduce A, to a diagonal matrix D4 and D, to a different
diagonal matrix Dp while ensuring that the eigenvalues of the original problem will
correspond to those of

Daz = AD%z.

This final form of the GSEVP can then be solved by simple ratios of the diagonal entries
of these matrices, that is D = D4 D3? is the matrix of eigenvalues of the GSEVP.

It is important to note that in both steps we must always keep in mind the possible ill-
condition of the matrices A and B.
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The algorithm also computes an n x n matrix T' of (unnormalized) eigenvectors giving
TTAT = D,, TTBT = D%.

The condition of T' will be a good indicator of the condition of the transformations used
by the algorithm. Our aim is thus to obtain as well-conditioned as possible a T after the
algorithm terminates. Note that for the matrix X of normalized eigenvectors

X=TDg', XTAxX=D, XTBX=1, (3)

so we see B = (XXT)™, g(B) = #(X)?, and ill-conditioned B will necessarily result in a
matrix X of normalized eigenvectors which is never well-conditioned.

4 Numerical Linear Algebra Tools

4.1 Permutation Matrices

A permutation matrix P is the simplest tool we shall use. We will call
Apermuted = PTAP

a symmetric permutation of A.

4.2 Rotation Matrices

A matrix Q;; € R™*" is said to be a rotation if it is the identity matrix I, except for two
diagonal entries, say ¢;; and g;;, and two off diagonal entries, ¢;; and ¢;;, such that, if ¢ < 7,

gi = ¢jj = cosd,

gjii = —g¢ij =sind,

for some 6 € R. We will use these in the following way: Given the vector (a, 8)T, we design
a rotation to “zero” its first component o and put its weight onto the second component 8

by choosing 8 such that

B . o
cosf = —, sinf = —

P P
where p = +/a? + 2. This yields the desired rotation Q satisfying :

cosf  —sind o 0
sin  cosf B p ]

Rotations for n-vectors are built by simply embedding the 2 x 2 rotation in an n x n iden-
tity matrix, in the obvious way. Our use of rotations stems from their application in the
computation of the eigenvalues of symmetric matrices by Jacobi’s method [5, § 8.5].

?
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4.3 LDLY Factorization

We state some results for symmetric matrices. Given B = BT € R"*", there exists a unit
lower triangular matrix L and a diagonal matrix D such that

B = LDLY,

if and only if the n — 1 leading principal submatrices of B are nonsingular [5, § 4.1].

In the particular case where B is also positive definite, all principal submatrices are
nonsingular, and thus a unique factorization exists. The D matrix then has the additional
characteristic that all its diagonal entries are strictly positive. Given B symmetric positive
definite, we can thus always compute L unit lower triangular and D diagonal such that

B =LD*L", (4)

It is this latter form of the factorization that we shall use in the first step of our algorithm.

5 Algorithm Description

We now describe how the two steps of Section 3 can be carried out.

5.1 Reducing the GSEVP to the special form

Given a symmetric positive definite matrix B € R®"*", our algorithm computes the factoriza-
tion (4) of PT BP for some symmetric permutation of B. Because of the possible ill-condition
of B, we will require that the factorization has the following property : The matrix L should
be as well-conditioned as possible, and so, intuitively, we may say that all the “ill-condition”
should be kept in the matrix D. More specifically, we require L to be computed so that it
is unit lower triangular with all its off-diagonal entries relatively small, ideally having (see
Section 6)

;] < 1, 1<j<i<n.

This property is desirable because it will ensure that L is well-conditioned, and thus it can
be used in forming L=*AL~T without risking much loss of accuracy in the computation of
the eigenvalues. Although it is in general ineffective to just place the diagonal elements of
B in decreasing order prior to the computation of L and D, our objective can be attained
by judicious use of permutations as we now describe. The following is a slight variant of
the usual Cholesky factorization of B. The order of operations (sometimes called the outer-
product formulation) facilitates the choice of pivots later.

When there are no permutations, B is reduced to diagonal form in n — 1 steps using
elementary unit lower triangular matrices L; in

D*=1L, - LyLWBLTLT ... LT .
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Each L; has the foorm for i =1,...,n — 1,

Li=1—t:i, t:(?) L e R (5)
where €; is the 7th column of the n X n unit matrix.
If we write ,
D3, 0
( 1(,) 1 Bi,n) = Liy---L4BLT--. LT, (6)
where Dy ;1 is an ¢ — 1 x ¢ — 1 diagonal matrix, then this matrix is transformed in the ith
step via
I 0 0 D,y 0 0 I 0 0
0 1 0 0 by b 0 1 -If 7
0 — I 0 b Bin 00 I (7)

where taking

gives this the desired form

D2 . 0 0
2 1i—1
( D(;‘ B.O ) = 0 bi o | ®)
i+1lmn 0 0 Bi+1,n - bzbz_q,lsz

After n — 1 such steps D* = D} is diagonal. Since this is effectively the Cholesky factor-
ization, the b;; are positive when B is positive definite [5, § 4.2].
To preserve numerical stability in our transformations of A, we now introduce permuta-

tions in order to make b% the largest diagonal element of B;,, for each i. Hence, we actually
compute this factorization as

D2 =z L'n-lpqz:_1 L]PlTBplLf Pn-—an 12 (9)

where at the ith step a permutation P; is designed to bring the element of largest magnitude
in the diagonal of B;, to the (i,7) position.
If we apply these transformations to A, the original problem Az = ABz becomes

Acy = )\Dgya (10)
Ac = L,oPL, .- L,PTAPLY...P,_, LT |
D. = D,

y = LLPL - L7TPa.
Thus when we have found an eigenvector y of (10), the eigenvector z of (1) is

e=Ty, T.=PILT---P,_LT . (11)
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and computationally we can transform A to A. and produce 7, as we reduce B to diagonal
form. Note that
A.=TTYAT., D?=T7TBT,, (12)

where T, is our matrix of accumulated transformations.
The usual theory, see for example [5, §3.4.4], shows

B = PTLD*I"P, T.=P7L7T, (13)
p=pPL...P"  L=IL7'... L7

n—1?

where since L_1 = [+ t,e we have jfl =1+ el .e; with i, = PT Pz
subdiagonal elements of the ith column of L. However there does not appear to be any need
to keep this L and P separately. If we do not want to compute eigenvectors, we can apply
the transformations to produce D, and A, as in (9) and (10), and discard each one after
it has been used. When we want eigenvectors it appears preferable to compute, and later
update, T, in (11). This is partly because our next step uses transformations which are not

triangular.

“+1ti containing the

5.2 Iterating on the special form

We now present the iteration applied to (10) to obtain the final form of the problem
Daz = D%z, (14)

where both D4 and Dg are diagonal matrices.

This iterative algorithm executes a sequence of sweeps designed to bring the matrix A,
to diagonal form, while keeping D, diagonal. Here the rotations are not designed solely on
the entries of A., but rather on the entries of

D;'A.D7Y. (15)

We feel direct computation of the product (15) should be avoided, because with ill-condition
of D, much accuracy could be lost when later transformations are applied to (15).

The main idea for this part of the algorithm is to never form the product (15) during the
iterations. The key observation is that designing and applying a rotation Q to the matrix
(15) for the problem (10)

Q'DI'ADI'Qy =y,  §=Q Dy, (16)
actually corresponds to the “transformation” between the two D, matrices in
Ay = AD.QQT D.y = AD?y. (17)
N o

=7

Therefore, at each substep of our algorithm we shall design a rotation Qi; in the ¢, j-plane,
with 7 < j, based on the entries of (15), but we will not apply that rotation. Note we do
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not suggest the following is the optimal implementation, it is simply the one we chose to
experiment with. Following (11), we assume & = T,y is the corresponding eigenvector of (1),
so that T is the matrix of transformations to this point.

THE ITERATION :

1. Compute a rotation ();; such that Q,?;D;“IACD;‘IQZ-J- in theory makes the entries at
positions (z,) and (j,7) of the product (15) zero. It is important to note that only
three elements of (15) need to be considered here.

2. Choose a diagonal matrix D’ and form
N = D;IQ”DQ

Dy is chosen so N is as well-conditioned as possible. The theory for this is given in
Section 6.2.

3. Form ,
A, = NTA.N,

to again bring the problem to the form

!

Ay =Dy, ' =Ny

4. Since now z = TNy’ is the corresponding eigenvector of (1), we update the matrix of
eigenvector transformations as well (if we want to compute the eigenvectors)

T! = T.N.

This process is repeated for all (7,7), 1 < ¢ < j < n, until the sweep has been completed.
Note there can be different orderings to cover the range of valid (i,;) pairs within a sweep,
and the step need not be applied if elements are already sufficiently small. For testing the
algorithm we used the standard ordering by rows.

After each sweep, we expect to have significantly decreased the “weight” of the off-diagonal
elements of D' A.D;". Sweeps are repeated until all off diagonal entries of D71 A, D7 are
effectively zero (i.e. up to a given tolerance below which values are taken to be zero). This
is the same termination criterion as used in [6] and was good enough to show this approach
works. We would look for a more relevant criterion for the GSEVP in a production code.
On convergence the problem is reduced to the form (14) with D4 the limit of the A, and
Dp the limit of the D,. We also write T as the limit of the 7.

Finally, for the problem (14) we have

DngADglei = \e;,

so the eigenvalues are

1 <i<nm, (18)
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and (1) has corresponding eigenvectors z; = Te;, that is T is the matrix of unnormal-
ized eigenvectors of the original prOblem Since Dy = TTAT, Dy = TTBT, we see
D'TTBTDg' = I, s0 X = TDZ! is our matrix of normalized elgenvectors This gives
XTAX DngADB = D = diag(X;).

6 Theoretical Analysis

To try to understand why this approach seems to give numerically reliable results, we will
first show that the transformations used in the first stage, described in Section 5.1, are well-
conditioned, while we suspect those in the second stage, Section 5.2, will not be significantly
worse than the condition of the given problem merits. We also show that in theory the
process converges, eventually at a quadratic rate. After that we discuss the representation
of eigenvalues of the GSEVP in order to understand what to expect from a backward stable
algorithm for the GSEVP. We emphasize a particularly effective measure of the accuracy of
computed eigenvalues of the GSEVP.

6.1 Analysis of the reduction to the special form

Here we show the L; transformations in (9), see (10), are well-conditioned. First, we see
from (7) that I; = b;/b;; comes from the positive definite matrix with Cholesky factorization

B (8 ann) = (0 6l ) (5 L) s
Thus the jth element [j; of [; is
bji/bii = giigii/ 9% = gjil 9ii-
But with the pivoting strategy used in (9)
95> g5+ €?Gi+1 Glie; > 9is
since B, is positive definite, giving as desired
il = lg;i/ gl < 1.

It follows that every subdiagonal element of L; is less than 1 in magnitude, as is every
subdiagonal element of L in (13), and so these transformations are well-conditioned. In
Section 7, we illustrate some of the condition numbers found computationally, and these were
all small. As a result it would appear to be a waste of effort on a single processor computer
to find the eigendecomposition of B, see [10, p.337], (or the singular value decomposition of
(), if these are not already at hand, in order to diagonalize B in this step. Such an approach
might however be useful for multiprocessor computers, see Section 8.
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6.2 Convergence, and condition of the iteration transformations

In order to maintain the form A.y = AD?y with A, symmetric and D, diagonal, we consider
transformations N giving

Aly' = NTALN(N~'y) = ANTD2N(N~ty) = AD?y/,

such that D! remains diagonal. But this is only possible if D, ND’™* is an orthogonal matrix,

say (), so we restrict ourselves to a7 ﬂ;‘:&z@ g
S GG Y'Y (Ben(y Y )<
N=D'QD., QQ'=Q'Q=1, (19)

for some orthogonal matrix ¢ and diagonal matrix D', giving
Al = NTAN = D'.QTD*A.D7'QD..

We could choose @) in different ways, but the obvious computational choice is the Jacobi
rotation @) to zero the ¢,j and j,i elements of D;'A.D;!. Since we produce A’ and D!
from A. and D, where in theory

DI AT = QLD A Qi

we see we are implicitly applying Jacobi’s method to the D7'A.D;! produced by (10), so
we have all the theoretical convergence properties of Jacobi’s method, including fairly rapid
onset of quadratic convergence.

Ideally D should be such that N = D;'Q;; D!, is as well-conditioned as possible, so it will
be identical to D, in all but the ¢ and j elements. To choose these, we need only consider
the 2 x 2 case, where with obvious notation:

iy (A )(c —3) (d’l )_(cd;/dl —sdg/dl)
N=D7QD = ( i) \s o) =\sajdy eaja, ) 20

For any real 2 x 2 matrix N with ¢ = ||N||F, 6 = |det N|, it is straightforward to show

kp(N) = |IN|IplIN7 lF = 6°/6, (21)

K(N) = (dﬁ + /ot — 452) /(26)
= [/@F(N) + \/m} /2,

so #(N) clearly has its minimum when kp(N) does. Thus we only need analyse xp(N),
which is easier than x(V). ;From (20) we see

¢ = {’[(did))? + (d2d5)?] + P[(drdy)® + (dady)*]}/ (dud),
§ = detD™'.detD' = (d,d})?/(dids)?,
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and defining p = dy/ds and { = d}/d}, we obtain
kp(N) = ¢*[6 = [*(p* + (*) + 5% (p*C* + 1)1/ (pC),

which has just one unknown (. Taking derivatives with respect to { shows this has a minimum
when

ot = (87 + ) [(c + ps7), (22)
and at this value,

wE(N)min = 2/1+ s22(p— p71 2, (23)
S(Nmin = /14522 (p— p~1)2 + [sc(p = p7")].

We see for a given value of p that Kp(IN)pin is its worst for |sc| = 1/2, and then &p(N)pmin =
p+ p~t. But when either ¢ or s is small then KF(N)min is significantly less than the value
kr(N) = p+ p~! given by D’ = I. In many cases sc will be small, especially as convergence

proceeds, so this should have an advantage over Jacobi’s method applied directly to (15).
Now that we know the optimal ratio d}/d), = (opt, we consider the size of dj and so
1 = dCp:. Since at each step D;'A.D;! is the result of applying Jacobi steps to the
original such form, our choice of N satisfying (19) will not alter these, that is, the future Q;;.
Also since the future (,,; only depend on the ¢ and s from @Q;; and the ratio p = d;/d,, we
see in theory it makes no difference what scaling we choose. Computationally it is preferable

to limit the change in size, so we can insist || D.||r = || D.||r, and then

&} + d = df + d7 = (C3 + 1)d3.
But ( 3pt +1)=(1+ Pz)/(62 + 82/)2), giving
& = (di + d3)(+5°p) /(1 + p°) = Pd} + $°&5,
& = (Adi+ 82dB)(s* + 2pP)/(E + s%p?) = AP + 22,

21 42/02 —g. /s2 14 o2/ )2

N:(C‘/C +s2/p s\/s2+c2/p ) (24)
sv/s2 + c2p? cv/e? + s2p?

If in the Jacobi rotations we choose s? < ¢?, then d} will be closer to dy, and &, to dy, giving

as small a possible change from D, to D’ in some sense.
Alternate possibilities for N that save a little computation are

N= (CT?;/: _X/P)’ N= (‘rlp ;%Z:) ’ (25)

where 7 = s/c. In all cases it is sensible to form N fully, and then apply it, as this gives the
least computation and the most accuracy.

The reader might be concerned that these N matrices can still be ill-conditioned. This is
a important concern, and for many years we tried to avoid any such ill-condition. However
if we want to diagonalize a definite pair, we are forced in general to use such matrices. Qur
hope is that this algorithm introduces very little ill-condition that is not already inherent in
the problem.

and so
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6.3 Testing the computed results
We can multiply (1) by any positive number to give
BiAz; = a; Bz, (26)

and refer to (i, §;) as a generalized eigenvalue (GEN) of (A4, B). If a computed GEN (¢, )
and its eigenvector z are found using a backward stable algorithm, then

B(A+ 6A)z = a(B + 6B)z, (27)
[6A[l < caullAll, 6Bl < cpul Bl
This means that
|BAz — aBz|| = | —BéAz + abBz||

< (IBllIs Al + laflléBII|=|
< (|BleallAll + lefesl| Bl lu-

We would expect these upper bounds to be roughly approached by a backward stable
algorithm, so to check our computed results, we can compare the following performance

index
”Axcﬂc - chac”2

(Bl AllF + lecll BllF) |wellzu

with unity, for each computed GEN (e, B.) and corresponding eigenvector x,. Note we have
used the Frobenius matrix norm to attempt to include some of the effect of ¢4 and cg. But
for some scalings of the GEN this was found not to be a totally consistent index for problems
with a wide range of A;. By taking

B=14+X)Y2 a=)3, so o?+p =1,

we found computationally that this was a very consistent and effective performance index.

To test each algorithm consistently, we also formed the normalized matrix X of eigenvec-
tors as in (3), and checked

|AXDp — BXDallr, || XTAX — D||F, IXTBX — 1|,
with Dy = diag(e;), Dp = diag(f;). The surprising result was that eigenvectors from the
QZ implementation we used sometimes failed to diagonalize A at all well.
7 Numerical Results

This algorithm was implemented in FORTRAN 77 and was tested on several examples of
GSEVPs. The iterative process was stopped when all off-diagonal entries of D71 A.D>! had
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magnitude smaller than € = 107% relative to the largest element of D' A.D !, however a
better criterion may be desirable.

We include computational results for one significant example. The results of our algo-
rithm are compared with those from two other methods. One is the standard algorithm
(DSYGYV from Lapack [1]) which computes the Cholesky factor GG of B such that B = GG7,
G lower triangular, forms M = G~'AG™T and computes the eigenvalues of M, which are
mathematically the same as for the original problem (1). The other is the QZ algorithm
(using the sequence of routines QZHES, QZIT, QZVAL and QZVEC from Eispack [4]) for
the general Az = ABz problem, which does not assume any symmetry or positive definite-
ness of A or B. Since the eigenvalues are in general complex valued, QZVAL returns two
components (real and imaginary) for each eigenvalue. After calling QZVAL, our code ver-
ifies that | imaginary component | < €| maximum eigenvalue | for each eigenvalue, a weak
condition which was never violated during our tests. In the results below, we list only the
real component returned by QZVAL as representing the eigenvalue computed by the QZ
algorithm.

We also illustrate the effectiveness of the step of our algorithm that computes the factor-
ization (13) with L very well-conditioned. In our tests we used a variety of B matrices with
various conditions. We give here a listing of the condition numbers of a small selection of
those symmetric positive definite matrices together with the conditions for the computed L
and D?.

Our computations were performed in FORTRAN 77 using DOUBLE PRECISION vari-

ables on a SUN 4 computer for which the machine precision as given by MATLAB is
u = 2.22F — 16.

TEST EXAMPLE :

This example was constructed by choosing a random orthogonal matrix Q of size 8§ x 8,
plus the two diagonal matrices

D, = diag(1,2,3,4,-5,6,7,8),
Dy, = diag(0.0008, 800000, 8,0.08, 80, 0.00008, 80000, 0.008),

and forming A = QD,QT, B = QD;QT. We thus know, by construction of A and B , that
the real eigenvalues are A\; = D,(4,1)/Dy(3,7) fori = 1,...,8.

Results :

The matrix A with x(A) = 8.801 and ||Al|F = 14.28 is :

Columns 1 to 4

0.7998E + 00 —0.2007E +01 0.4772E +00  0.2622F + 01

—0.2007E +01 0.6987E +01  0.2478E — 01  0.1407E — 02

0.4772E 400  0.2478E — 01  0.6037E +01 —0.1937E + 01
0.2622E + 01 0.1407E — 02 —0.1937TFE +01 0.2860F + 01
—0.3499E +01 —0.1390F +00 0.1192E +01  0.1278F + 01
—0.1042F + 01 —0.4810F + 00 —0.2277E +00 —0.3337E + 00
0.1399EF + 01 0.2929FE +00 —0.2671E +00 —0.6261F + 00
—0.7488F£ + 00 —0.1532E 400 0.1473E +00 0.3407F + 00
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Columns 5 to 8

—0.3499F 4 01
—0.1390F + 00
0.1192F + 01
0.1278FE + 01
0.1284F + 01
—0.1885F + 01
0.8942F + 00

—0.1042F + 01
—0.4810F 4+ 00
—0.2277E + 00
—0.3337E£ 4+ 00
—0.1885E + 01
0.4672F + 01
—0.6121F + 00

—~0.4736F +00 0.2630F + 00

0.1399F + 01
0.2929F + 00
—0.2671E + 00
—0.6261F + 00
0.8942EF 4 00
—0.6121F + 00
0.2032F + 01
—0.5794E + 00

—0.7488E + 00
—0.1532F + 00
0.1473FE + 00
0.3407E + 00
—0.4736 £ + 00
0.2630F + 00
—0.5794F + 00
0.1327FE 4 01

The matrix B with x(B) = 1.229EF + 10 and ||B||r = 8.040E + 05 is :
Columns 1 to 4

0.4612F + 02
—0.3923F + 03
0.8760F + 03
0.6374F 4 02
0.5566F + 03
0.5059E + 03
0.5190F + 03
—0.3262F + 03

Columns 5 to 8

Our modified Cholesky gives the factorization (13) with x(L) = 4.716 and x(D?)

0.5566F + 03
0.2968E + 04
0.5316E + 05
0.1284E + 06
0.1446 E + 06
0.1747E + 06
0.1782F + 06
—0.1117F 4 06

—0.3923E + 03
0.1712F + 05
—0.2764F + 05
0.1868F + 05
0.2968F + 04
0.9384F + 04
0.8629F + 04
—0.5416EF + 04

0.5059E + 03
0.9384F + 04
0.5446F + 05
0.1606 E + 06
0.1747E + 06
0.2131F + 06
0.2171F + 06
—0.1361E + 06

0.8760E 4 03
—0.2764F + 05
0.6793E + 05
0.2018F + 05
0.5316EF + 05
0.5446F + 05
0.5716F + 05
—0.3582F + 05

0.5190F + 03
0.8629F + 04
0.5716E + 05
0.1630E + 06
0.1782F + 06
0.2171F + 06
0.2212F + 06
—0.1387F + 06

0.6374E + 02
0.1868E + 05
0.2018E + 05
0.1291F + 06
0.1284E + 06
0.1606E + 06
0.1630F + 06
—0.1022F + 06

—0.3262F + 03
—0.5416E + 04
—0.3582F + 05
—0.1022F + 06
—0.1117F + 06
—-0.1361F + 06
—0.1387E + 06
0.8694F + 05

15

L.708E + 09. Furthermore, our iterative algorithm converged after 4 sweeps during which it
applied 94 rotations.

For each of the algorithms the condition of X such that XTBX = [ is about (X) =

9.F + 04.

RESIDUALS — these should not be significantly greater than 1 :

!XTBX-—IH
HXQ,FHBHFU
X+*AX<D
XI5 HAl
HAXDp~BXD 4l

XN A(IANF+HIBllp)u

0.14
0.03
0.30

0.09
3.5
0.25

New Algorithm Standard Algorithm QZ Algorithm

0.13
5.2E + 06
0.53
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Note that all three methods gave eigenvector matrices X which diagonalized B very effec-
tively, and with the eigenvalue matrices D4 and Dp gave small residuals relative to the size
of X. However large X can hide the fact that some eigenvalues could be far less accurate
than necessary. Unfortunately we see the X from the QZ algorithm gives a very poor di-
agonalization of A, and both the standard method and our method are far superior in this
respect. This “failure” of QZ for the GSEVP is quite significant in size, and surprising, as it
has not been mentioned previously in the literature to our knowledge. This was confirmed
by further tests performed in MATLAB with its 'qz’ function, but as this presumably uses
the same EISPACK routines, it did not tell us much. For the matrix B, however, our com-
putational experience so far suggests that poor diagonalization residuals do not occur with
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this QZ algorithm. We have not yet looked for explanations of this behaviour.

Computed results for each method

For the new method :
Real lambda Comp.alpha

=0,
.2500E-05
.8750E-04
.3750E+00
.5000E+02
.1000E+04
.1250E+04
.7T500E+05

(oI « I« I o I B o B o}

For the standard method :

6250E-01

=0

0

OO OO OO0

.6238E~01
.2500E-05
.8750E-04
.3511E+00
.9988E+00
.1000E+01
.1000E+01
.1000E+01

Real lambda Comp.alpha

-0
0

O OO O OO

For

.6250E~01 ~0.6238E~01
.2500E-05 0.2500E-05
.87T50E~04 0.8750E-04
~3750E+00 0.3511E+00
.5000E+02 0.9998E+00
<1000E+04 0.1000E+01
.1250E+04 0.1000E+01
.T500E+05 0.1000E+01
the QZ method :

Real lambda Comp.alpha
-0.6250E-01 -0.6238E-01
0.2500E-05 0.2500E-05
0.8750E-04 0.8750E-04
0.3750E+00 0.3511E+00

Comp.beta Comp.lambda

.1000E+01
.1000E+01
.9363E+00
.2000E-01
.1000E-02
.8000E-03
.1333E-04

OO O O O O OO

Comp.beta

.9981E+00
.1000E+01
.1000E+01
.9363E+00
.2000E-01
.1000E-02
.8000E-03
.1333E-04

S O O O O O O O

Comp .beta
0.9981E+00
0.1000E+01
0.1000E+01
0.9363E+00

.9981E+00 -0

.6250E-01
.2500E-056
.8750E-04
.3750E+00
.5000E+02
.1000E+04
.1250E+04
.7500E+05

OO OO0 O OO

Comp.lambda
-0

.6250E-01
.2500E-05
.8750E-04
.3750E+00
.5000E+02
.1000E+04
.1250E+04
.7500E+05

OO O O O O O

Comp.lambda
-0.6250E~-01

0.2500E-05
0.8750E-04
0.3750E+00

Abs.error

.7994E~14
.0000E+00
.0000E+00
.B600E~12
.3231E-08
.3366E~06
.1500E-03
.3653E~01

OO OO OO OO

Abs.error

.3997E~14
.1197E-15
.1330E~15
.1010E-11
1220E~-07
.4804E-06
.2145E-04
.1518E~01

OO O O OO OO

Abs.error
0.6994E~14
0.0000E+00
0. 0000E+00
0.4200E-12

Sin angle
.6987E-14
.0000E+00
.8674E-18
.58562E-12
.1292E-11
.3366E-12
.9600E-10
.6494E-11

OO OO O O OO

Sin angle

.3990E-14
.1197E-15
.1339E-15
.8860E-12
.4878E-11
.4804E-12
.1373E-10
.2699E-11

OO O O O O O O

Sin angle
0.6987E-14
0.0000E+00
0.0000E+00
0.3640E-12



0.5000E+02
0.1000E+04
0.1250E+04
0.7500E+05
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0.9998E+00
0.1000E+01
0.1000E+01
0.1000E+01

0.2000E-01
0.1000E-02
0 .8000E-03
0.1333E-04

0.5000E+02
0.1000E+04
0.1250E+04
0.7500E+05

0.1795E-07
0.1026E-05
0.9434E-04
0.3938E-02

0.7177E-11
0.1026E-11
0.6038E~10
0.7000E-12

17

PERFORMANCE INDICES — again these should be compared to unity :
5

A$cﬁc rOlc 2
Computed as : g BT e dhe

Eigenvalue New Algorithm Standard Algorithm QZ Algorithm

—-0.6250F — 01 0.76 0.21 1.08
0.2500F — 05 1.38 28766.42 0.93
0.8750F — 04 0.28 2247.46 0.33
0.3750F + 00 1.17 0.21 0.91
0.5000F + 02 0.49 0.18 0.48
0.1000E + 04 0.15 0.07 0.32
0.1250F + 04 0.54 0.38 0.64
0.7500F + 05 0.26 0.23 0.52

Although the standard algorithm consistently achieves a good diagonalization of both
A and B, it nevertheless suffers from a lack of backward stability, as demonstrated by
performance indices having large magnitudes for some eigenvalues of this test problem.

This simple but testing example suggests our algorithm can offer an improvement over
the two main algorithms used for solving the GSVEP. It is reasonable to believe a more
sophisticated implementation of our ideas will improve further on these results.

The standard algorithm used in the comparisons was that supplied in LAPACK [1], and
appears to have been very well implemented, easily outperforming earlier versions we used.
There was no QZ algorithm available in the LAPACK set of subroutines when we carried
out these tests, but the EISPACK [4] implementation we used is well known as an effective
one. That our first rough implementation of this new approach showed neither of the main
weaknesses of these two suggests this new approach may be a good one.

FACTORIZATION : Below is a listing of the condition numbers of symmetric positive definite

matrices together with the condition numbers for the computed L and D? of the factorization

(13).

k(B)

0.2473F + 03
0.1313F + 07
0.1384F + 09
0.4164F + 11
0.4271F + 13
0.4050F + 15

k(L)
0.3553E + 01
0.6145F + 01
0.6973F 4 01
0.1036E + 02
0.6572F + 01
0.3471E + 01

x(D?)
0.4007E + 02
0.3272F + 06
0.1585F + 08
0.8660F + 10
0.6740F + 12
0.1790F + 15

In retrospect it seems obvious that lower triangular L with all subdiagonal elements less
than unity will tend to be well-conditioned, and so D? will tend to contain most of the
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ill-condition of B, but what is surprising is how little this has been used in problems like
this.

8 Conclusion, and thoughts on Parallel Processor Im-
plementations

We have introduced a new algorithm for the GSVEP whose computational properties ap-
pear to combine the advantages of both the standard algorithm and the QZ algorithm, two
common algorithms used to solve a GSEVP, but with neither of their weaknesses. An im-
portant step of our algorithm is the use of the well-known Cholesky factorization to compute
the factorization of a (possibly ill-conditioned) symmetric positive definite matrix B into its
factors L and D in such a way that most of the ill-condition is reflected in D only. The
resulting L was very well-conditioned in all the examples we tried, suggesting this could
be used more often in similar problems involving symmetric positive definite matrices. Nu-
merical results obtained with a preliminary FORTRAN implementation of our algorithm
showed a promising improvement over the results yielded by production codes for the two
other algorithms for solving the GSEVP, as well as confirming the excellent behaviour of the
modified Cholesky procedure referred to above.

The pivoting requirement in the modified Cholesky factorization will limit to some extent
the amount of parallelism that can be achieved in the first stage. However the Jacobi based
second stage is amenable to parallel computation. This suggests that a parallel implemen-
tation could be cast in two stages:

e Solve the eigenproblem B = QD?*QT, QTQ = I (or the SVD of G in B = GGT, as this
requires no pivoting) using a parallel approach, such as a Jacobi (or Kogbetliantz, see
[6]), based approach;

e solve the resulting GSEVP QTAQy = AD?y using a parallel implementation of the
implicit Jacobi method recommended here.

This would give fairly similar methods in the two stages.
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