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Variations on a theme of Timmesfeld:
A finite group-theoretic analogue

of the classification of groups
of finite Morley rank and even type

A Discussion Document

Alexandre V. Borovik

Abstract. The paper addresses a question whether there is a reason-
able self-contained theory of finite simple groups of even type which is
closely parallel to the theory of groups and finite Morley rank.

1. Groups of finite Morley rank and even type

The underlying methodology of the classification theory of groups of fi-
nite Morley rank and even type is the systematic use of ideas from the
Classification of Finite Simple Groups (CFSG), both from the original (first
generation) papers and from the later revisionism, especially from the Third
Generation Proof. One specific feature of our theory, however, is the system-
atic use of definable connected subgroups. Almost all subgroups appearing
in the proofs are definable. Moreover, we are trying to ignore the finite fac-
tor groups H/H◦ wherever possible. In particular, we work with 2-Sylow◦

subgroups, that is, connected components of 2-Sylow subgroups, and many
standard operators, such as NG(X), CG(X) are systematically used in their
connected versions: N◦

G(X), C◦
G(X), etc.

The aim of these notes is to outline some problems arising from an attempt
to reverse the transfer of ideas and formulate a fragment of CFSG closest
to the classification of groups of finite Morley rank and even type.

Indeed, let G be a simple group of finite Morley rank and even type. Take
A a minimal infinite definable connected 2-subgroup in G. Then A has the
following properties:
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• For all elements g ∈ G, A ∩Ag is either finite or coincides with A.
• If g ∈ NG(A), then either CA(g) is finite1 or CA(g) = A.
• If Q > 1 is a definable connected 2-group then Z(Q) contains a

minimal infinite definable connected 2-subgroup.

When looking for a finite group analogue, the idea to use elementary abelian
TI-subgroups as substitutes for minimal connected subgroups appears to
be natural, especially in the light of Franz Timmesfeld’s fundamental works
[31, 32]. Indeed, in the finite groups context, it is so natural to interpret
the word ‘finite’ in the statements above as ‘trivial’.

This is a very raw and not carefully read draft; essentially, it is a stream
of conscience. Blunders and howlers are more than possible. I have not
checked the existing literature yet, and apologise for any omissions. Any
comments and criticism are most welcome.

2. Back to finite groups

2.1. Atomic subgroups. Therefore let us consider a finite group G
with a normal set A of elementary abelian 2-subgroups of order ≥ 4, called
atomic subgroups. We assume the validity of the following axioms for all
A,B ∈ A.

A1. For any g ∈ G, A ∩ Ag = 1 or A. We say in this situation that A
is a TI-subgroup, “TI” meaning “trivial intersection”.2

A2. CG(A) = CG(a) for all a ∈ A#.
A3. If A,B ∈ A and [A,B] 6= 1 then [A,B] contains a subgroup from

A. 3

If [A,B] = 1 for all A,B ∈ A such that 〈A,B〉 is a 2-group,
then we shall say that A is degenerate.

A4. G = 〈A〉.

Notice that it means, in particular, that A is of root-type in the sense of
[30]. Recall that an elementary abelian p-subgroup A of the finite group G
is of root-type if the following two conditions are satisfied.

(1) A is a TI-subgroup, and
(2) for all g ∈ G, if NA(Ag) 6= 1, then [A,Ag] = 1.

1Moreover, I believe Frecon has proven in that case that CA(g) = 1.
2Michael Aschbacher suggested to replace A1 by a stronger axiom: If A, B ∈ A and

A 6= B then A ∩B = 1.
3This axiom has been significantly strengthened on advice from Franz Timmesfeld.

The previous version read: if 〈A, B〉 is a 2-group then either [A, B] = 1 or Z(〈A, B〉)∩[A, B]
contains a subgroup from A.
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2.2. Abstract root subgroups. It is instructive to compare the def-
inition of atomic subgroups with that of abstract root subgroups, due to
Timmesfeld [32].

A set of abstract root subgroups of a group G (not necessarily finite!) is
a normal set (that is, invariant under conjugation) Σ of nontrivial abelian
subgroups of G such that G = 〈Σ〉 and, for any two A,B ∈ Σ, one of the
following holds:

(1) [A,B] = 1;
(2) 〈A,B〉 is a rank one group;
(3) [A,B] = [a,B] = [A, b] ∈ Σ for any a ∈ A# and b ∈ B# and

[A,B] ≤ Z(〈A,B〉).

Here, a rank one group is a group X generated by two different nilpotent
subgroups A and B such that for each a ∈ A# there exists b ∈ B satisfying
Ab = Ba. Equivalently, a rank one group is a group with a split BN -pair of
rank 1. When case (3) never occurs, Σ is said to be degenerate.

As a simplified test bench problem one might consider the one arising from
a hybrid condition which picks the best features of atomic and abstract root
subgroups.

2.3. A simplified hybrid version of the theory. Here, we assume
that a finite group G is generated by a normal system H of elementary
abelian 2-subgroups of order ≥ 4 such that, for every A,B ∈ H, the following
holds:

H1. A is a TI-subgroup
H2. CG(a) = CG(A) for all a ∈ A#.
H3. If 〈A,B〉 is a proper subgroup of G then one of the following holds:

(1) [A,B] = 1;
(2) 〈A,B〉 is a rank one group;
(3) [A,B] = [a,B] = [A, b] ∈ H for any a ∈ A# and b ∈ B# and

[A,B] ≤ Z(〈A,B〉).

Franz Timmesfeld has kindly informed me that the hybrid condition groups
can be classified. I quote his e-mail of 21 August 2003:

If H is a normal set of TI-subgroups of a group G satisfy-
ing your conditions 2.3 and O2(G) = 1, it follows imme-
diately that D(H) (in the sense of p. 68 of my book [32])
is a set of root-involutions of G.

3. Atomic group theory?

Now I shall try to outline the theory of finite groups G generated by a
system of atomic subgroups as it emerges from the theory of groups of finite
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Morley rank. In many aspects, it appears to be an alternative approach to
Timmesfeld’s theory of root subgroups.

For a subgroup H < G, denote by H◦ the subgroup generated in H by
atomic subgroups contained in H, together with all elements of odd order
in H. We shall call H◦ the connected component of H. A subgroup H is
connected if H = H◦. Connected 2-subgroups will be called unipotent.

We use also another version of the connected subgroups: for a subgroup H,
we define B(H) = 〈A ∩H〉 and call it the bounded part of H. A subgroup
H is bounded if H = B(H).

Let T be a 2-Sylow subgroup of G. We shall work mostly with S = T ◦,
despite encountering the disturbing fact of the existence of simple groups
with disconnected 2-Sylows, say, SU3(22n) and Sz(22n+1). We shall call S
a 2-Sylow◦ subgroup. We use usual conventions for symbols like N◦

G(X) =
(NG(X))◦, etc.

The following problems are word-for-word reformulations of theorems from
the theory of groups of finite Morley rank and even type. We shall be happy
to prove them even under the additional assumption that G is a K*-group.
However, an absolute proof, one which does not use the K*-assumption, will
be of some interest. Indeed, it would make the theory of atomic groups a
self-contained chapter of finite group theory.

3.1. First obstacle: quadratic modules. As Franz Timmesfeld pointed
out, we have, unfortunately, a pretty nasty behaviour of O2(G). The first
piece of news is actually quite good.

Lemma 3.1 (Timmesfeld). If A is root-type 2-subgroup in a finite group G
then either A 6 O2(G) or A ∩ O2(G) = 1. In particular, this dichotomy
holds for atomic subgroups.

However, we may encounter a situation when O2(G) contains no unipotent
subgroups, A ∩ O2(G) = ∅. If this is the case and A ∈ A then it follows
from Axiom A3 that [A,Ax] = 1 for every x ∈ O2(G). It follows that
[O2(G), A, A] = 1. Assume that G = 〈A〉; then the composition factors
of G in O2(G) are quadratic modules for the group G/O2(G). Modulo the
CFSG, quadratic actions of almost quasisimple finite groups are described
[13, 22, 23, 28]. A pretty powerful form of Axiom A3 allows to reduce the
classification of G/O2(G) to the case of the quasisimple group G/O2(G).
However, it is really unclear how to handle the situation without the CFSG.

And here is an example, provided by Franz Timmesfeld: If we take for G the
semidirect product of the natural module O2(G) for SL2(2n) with SL2(2n),
and for A the set of all elementary abelian subgroups of order 2n in G which
intersects trivially with O2(G) and are invariant under the action of some
cyclic subgroup of order 2n − 1 from G, then Axioms A1–A4 are obviously
satisfied, but O2(G) contains no atomic subgroups.
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Question 3.1. Given a group G generated by a class of atomic subgroups,
G = 〈A〉 and such that

• A ∩O2(G) = ∅ and
• G/O2(G) is a simple group,

list possibilities for G/O2(G) without the use of the CFSG.

In finite group theory, such configurations appeared in works on failure of
factorisation in 2-constrained groups [7, 8]. Some of them have been pin-
pointed and formalised by Ron Solomon [25] under the name of 2-blocks.

By definition, a 2-block X of a finite group G is a subgroup X subnormal
in some 2-local subgroup M of G and satisfying the following conditions:

• X = O2(X) and X/O2(X) is quasisimple;
• X has a unique non-central 2-chief factor and [O2(X), X] 6 Ω1(Z(O2(X))).

A block is said to be of SL2(2n)-type if X/O2(X) ' SL2(2n) and V =
[O2(X), X] is such that V/CV (X) is isomorphic to the standard 2n-dimensional
(over F(2)) irreducible SL2(2n)-module. To give some flavour of the theory,
we quote one of the results by Ron Solomon.

Theorem 3.2. [Solomon [25, Theorem 1.8]] Assume that

• G is a simple group of characteristic 2-type;
• M is a maximal 2-local subgroups of G;
• X is a block of M of SL2(2n)-type, n > 2; and
• M is a unique 2-local subgroup of G containing X.

Then either

• X/O2(X) ' SL2(4) and G ' M22,M23 or J3;
• X/O2(X) ' SL2(2n) and G ' PSL3(2n) or PSp4(2n).

It still has to be seen whether the study of blocks involving quadratic mod-
ules can be avoided in a proof of a CGT-Theorem (see Section 3.6); it is a
context where they naturally appear in the classical CFGG.

3.2. Second obstacle: the axioms are not inductive. If G is a
group generated by a family of atomic subgroups, it is not clear why this
condition can be transferred to factorgroups G/N , even if the normal sub-
group N is connected or unipotent.

There is strong temptation to resolve this problem by adding an extra axiom,

A5. If N is a connected subgroup of G, G = G/N and

A = {A | A ∈ A, A ∩N = 1},

then A is a family of atomic subgroups in G.
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Unfortunately, it comes too close to cheating: this condition is very unnat-
ural in the context of finite group theory. However, one may wish to prove
it in the special case when subgroups from A intersect with N trivially.

Still, it might happen that the only feasible approach is to never work with
factorgroups, trying just ignore O2(G), especially in the situation when
O2(G) contains no atomic subgroups.

3.3. Weakly embedded subgroups. However, despite the difficulties
outlined, let us try to say something positive.

Let S be a 2-Sylow◦ subgroup of G.

We call a proper subgroup M < G weakly embedded in G if S 6 M and, for
every non-trivial unipotent subgroup U 6 M ,

B(NG(U)) 6 M.

Some observations help to clarify the nature of this concept.

First of all, I very much hope that the following normaliser condition is
true (it should be an easy corollary of Axiom A3).

Lemma 3.3. If W < U are unipotent subgroups then N◦
U (W ) > W

Next, let U be the graph whose vertices are all non-trivial unipotent sub-
groups of G, with two vertices U, V being connected by an edge iff UV is
a group (in which case it is, of course, UV is unipotent). If U is discon-
nected and W its connected component, then its setwise stabiliser M in G
(with respect to action by conjugation) is a weakly embedded subgroup.
Vice versa, if M is a weakly embedded subgroup then U ∩M is a union of
connected components of U . After replacing M by NG(U ∩M), we come to
the following result.

Lemma 3.4. If G contains a weakly embedded subgroup then G contains a
weakly embedded subgroup M such that NG(U) 6 M for every non-trivial
unipotent group U 6 M .

Question 3.2. If a finite group G contains a weakly embedded subgroup M ,
then is it true that G/O2(G) is one of the groups PSL2(2n), SU3(22n) or
Sz(22n+1)?

Richard Lyons pointed out that this question is likely to lead to a strongly
embedded subgroup or a standard subgroup configuration: for some invo-
lution t ∈ M , B(CG(t)) ' PSL2(2n), SU3(22n) or Sz(22n+1); but this is
exactly what has happened in the finite Morley rank context.

Franz Timmesfeld suggests a geometric way of getting a positive answer to
Question 3.2: one has to consider the graph D whose vertices are involutions
in atomic subgroups of G, and edges connect commuting involutions. It is
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easy to see that, if G contains a weakly embedded subgroup, D is discon-
nected. To prove that G actually contains a strongly embedded subgroup
and therefore is known by Bender’s Theorem [10], it suffice to check that
D is closed under commuting products, that is, if a, b ∈ D and ab = ba then
ab ∈ D; then the normaliser of a connected component of D is strongly
embedded in G by Aschbacher [4].

3.4. Corollaries from the Weakly Embedded Subgroup Theo-
rem. The following is likely to be very easy:

Question 3.3. If so, can the previous result be used to prove that

O(N◦
G(U)) = 1

for every connected 2-subgroup U?

Notice that we have an easy to prove but extremely useful fact:

if a connected 2-group U normalises a 2′-group R then
[U,R] = 1,

which lends to a nice signaliser functor theory.

3.5. Special cases of the Weakly Embedded Subgroup Theo-
rem. We encounter, as an important special case of the weakly embedded
subgroup problem (and, which is very likely, crucially important), the clas-
sical configuration of a TI-subgroup weakly closed in its centraliser [29]. It
is worth quoting [29, Corollary B]:

Theorem 3.5. (Timmesfeld 1975 [29, Corollary B]) Let G be a finite
group and A an elementary abelian TI 2-subgroup of G. Assume, in addition,
that, for any g ∈ G, [A,Ag] = 1 implies A = Ag. Set G∗ =

〈
AG

〉
. Then

either

(a) G∗ is solvable, or
(b) G∗ contains a normal elementary abelian 2-subgroup N such that

G∗/N is isomorphic to a covering group of PSLn(2m), Sz(22m+1),
SU3(22m), Alt6, Alt7, Alt8, Alt9, M22, M23, or M24.

I have not checked the details but it is unlikely that groups Alt6, Alt7, Alt8,
Alt9, M22, M23, or M24 are generated by atomic subgroups.

Another special case of Question 3.2 is on simple groups with a degenerate
system of atomic subgroups, which is equivalent to the following question.

Question 3.4. Assume that a 2-Sylow◦ subgroup S of G is abelian. Is it
true that G/O2(G) is one of the groups PSL2(2n), SU3(22n) or Sz(22n+1)?

Observe that, under the assumptions of Question 3.4, NG(S) is weakly em-
bedded in G.
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This is the point of the development of the theory where we expect, by
analogy with [1], the so-called pseudoreflection subgroups of N◦

G(B)/CG(B)
to come into play (see Question 4.3 in Section 4).

Question 3.4 would play in our theory the role of classical Goldschmidt’s
theorem on groups with strongly closed abelian subgroup [14]. However, it
is unlikely that we can find a shorter alternative proof of a version of [14]
specialised and adapted for our context.

3.6. Continuously characteristic subgroups and the Global CGT-
Theorem. Let Q ≤ P be connected 2-subgroups. We say that Q is contin-
uously characteristic in P if Q is invariant under the action of N◦

G(P ). If T
is a 2-Sylow◦ subgroup of G, we denote

C(G, T ) = 〈N◦
G(Q) | Q is continuously characteristic in T 〉

and

BC(G, T ) = 〈B(NG(Q)) | Q is continuously characteristic in T 〉

Question 3.5. Is it true that if C(G, T ) < G then G contains a proper
weakly embedded subgroup?

Is it true that if BC(G, T ) < G then G contains a proper weakly embedded
subgroup?

This would make a finite group theoretic analogue of [2].

However this is a context where we may have complications related to the
so-called “failure of factorisation” and where we might need a study of “qua-
dratic module 2-blocks”, see Section 3.1.

3.7. Pushing Up. We shall need an analogue of another result from
[2].

For a finite group H, denote by either of two symbols OA(H) = Ru(H) the
maximal normal connected 2-subgroup of H.

Question 3.6. Let Q be a connected 2-group of G such that Q = Ru(N◦
G(Q))

and B(N◦
G(Q))/Q ' SL2(2n), SU3(22n) or Sz(22n+1). Is it true that N◦

G(Q)
contains a 2-Sylow◦ subgroup of G?

Here, B(H) = 〈A ∩H〉.

3.8. Parabolic subgroups. Let S be a 2-Sylow◦ subgroup of G. A
connected subgroup P is parabolic if it has the form P = N◦

G(R) where R
is a B-subgroup containing S as a proper subgroup.4

4This definition has been adjusted after Richard Lyons pointed out that more tradi-
tional definition, “P is a proper connected subgroup containing N◦

G(S)”, leads to some
difficult configurations of the kind present in D4 extended by the triality automorphism.
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Question 3.7. For a parabolic subgroup P , prove that

• Ru(P ) 6= 1 and
• C◦

G(Ru(P )) ≤ Ru(P ).

It is here that we expect the use of the strongly closed abelian subgroup
theorem and some rudimentary component analysis.

3.9. Minimal parabolic subgroups and the final identification.
Let M be the set of minimal parabolic subgroups properly containing a
2-Sylow◦ subgroup S.

Question 3.8. Prove that if |M| ≤ 1 then G has a proper weakly embedded
subgroup.

Question 3.9. If |M| = 2 then G/O2(G) is a Lie rank 2 group over a field
of characteristic 2.

This would be an analogue of the result on groups of finite Morley rank [3],
which, in its turn, is an analogue (or, possibly, even a direct consequence)
of well-known papers by Delgado-Stellmacher [12] and Stellmacher [27].

Question 3.10. If |M| ≥ 3 then G/O2(G) has a BN -pair of rank at least
3 and thus is a group of Lie type over a field of characteristic 2.

This is an analogue of [11], which, in its turn, is a direct analogue of Niles
[24].

Question 3.11. In this plan, are there any shortcuts via the theory
of groups generated by abstract root subgroups?

4. Questions on finite linear groups

I list a few questions about finite linear groups which arise in 2-local analysis
of finite groups generated by atomic subgroups. Some of these questions are
probably easy and relatively well known. In any case, I would appreciate
any information on their status.

In all cases the setting is the same: X is a finite group which acts irre-
ducibly on an elementary abelian group V of order pn, p a prime. Questions
are formulated in greater generality than needed for the theory of groups
generated by atomic 2-subgroups. In particular, we actually need only the
case p = 2.

4.1. TI-submodules.

Question 4.1. Assume that V contains a subgroup W < V of order q > p
such that, for all x ∈ X, W x = W or W x ∩W = 1.

Under the additional assumption that V is primitive and tensor indecom-
posable module, does this imply that V is actually a GF (q)X-module?
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As Bob Guralnick pointed out, without the additional assumption about the
action of X the answer is “no”. Indeed, if X acts imprimitively (i.e. the
module is induced), then a counterexample is provided by GLm(2) o Symr

acting on a space of dimension n = mr. Similarly, if G preserves a tensor
product on V , e.g. GLa(2)×GLb(2) acting on Va⊗Vb, and take W = Va⊗ v
for a fixed vector v, then its conjugates are precisely Va ⊗ v′ ranging over v′

and these are all disjoint.

Question 4.2. We again assume that V contains a subgroup W < V of
order q > p such that, for all x ∈ X, W x = W or W x ∩W = 1. This time
we are not making the assumption that the action of X on V is primitive and
tensor indecomposable. Can V be made into a GF (q)X-module if we add, in
addition, the requirement that CX(w) = CX(W ) for all non-zero elements
w ∈ W? This is, of course, the case when W is an atomic subgroup of
V o X.

Bob Guralnick suggested a possible approach to Question 4.2. If you have
such a W , consider the lattice of subspaces generated by its conjugates—it
seems plausible that this is a proper sublattice (and is clearly X-invariant).
If this is the case, then it is shown in [16] that X either preserves a tensor
structure, or is imprimitive, or preserves a field extension structure or a
subfield structure, or dim W = n/2. In the latter case, Bob points out there
are lots of such examples, but not one immediately over F2 and certainly
not with the CX(w) = CX(W ) assumption.

4.2. Pseudoreflection groups. Assume that X is generated by a con-
jugacy class of abelian subgroups K of order coprime to p and such that K
acts irreducibly on W = [V,K] and W < V . We may also assume that W is
much smaller than V , by demanding that dim W ≤ 1

2 dim V . Let q = |W |.
A prominent example is, of course, X = GL(m, q), with K being the group
consisting of diagonal matrices of the form diag(λ, 1, . . . , 1). We call K a
pseudoreflection group.

Question 4.3. Can groups generated by pseudoreflections be easily clas-
sified? If we assume that the composition factors of X are known simple
groups (that is, assume CFSG), what one can say about X?

There are still too many examples of groups generated by pseudoreflections.
Question 4.3 is possibly easier if we assume, in addition, that W is a TI-
subgroup.

Question 4.4. Assume, in addition, that W is a TI-subgroup, W x = W or
W x ∩W = 1 for all x ∈ X. Classify pairs (X, V ).

The case when K ' Zq−1 is of special interest.

Question 4.5. A very small special case is |K| = 3 and |W | = 4. In that
case for any x ∈ X the group 〈K, Kx〉 is isomorphic to Z3 × Z3, Alt4 or
SL2(4) ' Alt5.
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Aschbacher and Hall [5] and Stellmacher [26] classified abstract finite groups
with a conjugacy class of subgroups of order 3 with these properties.

Theorem 4.1 (Aschbacher and Hall). If the finite group G with no non-
trivial soluble normal subgroups is generated by a conjugacy class D of sub-
groups of order 3, and any two non-commuting elements of D generate a sub-
group isomorphic to SL2(3) or to PSL2(3), then G is isomorphic to Spn(3),
Un(3) or PGUn(2), for some n.

Theorem 4.2 (Stellmacher). Let G be a finite group with the following prop-
erties.

(1) G is generated by a conjugacy class D of elements of order 3. Any
two non-commuting elements in D generate a subgroup isomorphic
to Alt4, Alt5, or SL(2, 3), and Alt5 occurs for some pair.

(2) O2(G) = Z(G) = 1.

Then G is isomorphic to a symplectic group Sp(2n, 2), n ≥ 3, an orthogonal
group Oε(2n, 2), ε = ±1, n ≥ 3, an alternating group Altn, n ≥ 5, the
Chevalley group G2(4), or one of the sporadic groups HJ, Sz, Co (·1).

Question 4.3 is in a sense dual to the setting of the paper by Guralnick et al.
[15] who have recently classified linear groups with elements whose orders
are large primitive prime divisors.

Although in the context of the present paper we are primarily concerned
with the case p = 2, the odd characteristic version of pseudoreflection groups
also have analogues in the theory of groups of finite Morley rank. Assume
now that p > 2and that K ' Zq−1, so that K contains an involution. A
natural approach to Question 4.3 and 4.4 in that case is to study subgroups
H = 〈K, Kx〉 for x ∈ X and to try to show that H ' GL2(q) and acts on
V/CV (K)∩CV (Kx) as on its natural 2-dimensional (over Fq) module. Take
J = [H,H] ' SL2(q) and let z be the involution from Z(J). Then one can
see that J C CX(z) and therefor z is a classical involution in X in the sense
of Aschbacher [6], which identifies X with a Chevalley group over a field of
characteristic p. This approach would mimic Ho’s treatment of quadratic
pairs in odd characteristic [19, 20, 21].

5. Technical lemmas

Notice that the concept of atomic subgroup fairs well when we pass from
the ambient group G to a subgroup H such that A ∩ H 6= ∅, and not so
well when we pass to factor groups G/K. This has to be kept in mind when
discussing the inductive argument.

A lot of minor results will be needed. Some of them are fairly obvious, but
some analogues of very useful results about groups of finite Morley rank
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are no longer true. For example, if a 2′-element α acts on a connected 2-
group Q, it is not any longer true that the subgroups [Q,α] and CQ(α) are
connected. A counter example is provided by the group

Q = A1 ×A2 ×A3

with A ∩ Q = {A1, A2, A3} and an element α of order 3 which cyclically
permutes Ai.

However, I am relatively optimistic about the following questions.

Let H be a subgroup of G generated by atomic subgroups, H = B(H).

Question 5.1. Prove that if H is solvable then H is a 2-group.

Question 5.2. Prove that, for a connected 2-group Q, Z◦(Q) 6= 1.

Question 5.3. Prove that for connected 2-groups Q < P ,

A ∩Q 6= A ∩NP (Q).

[This is an analogue of the fact on 2-groups of finite Morley rank: |NP (Q)/Q|
is infinite.]

Question 5.4. Describe K*-groups generated by atomic subgroups.
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