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1 Introduction

Model theory has evolved in two sharply different directions. One is set-
based, centred around pure model theory and applications to various mathe-
matical structures: here even the language of category theory is only begin-
ning to be heard. In contrast is the sort of model theory which is set in rather
general category-theoretic, or topos-theoretic, contexts and which often looks
to non-classical logics or computer science for its inspirations and applica-
tions. Our results sit in the rather sparsely populated territory between these
and our hope is that this paper will help to bridge the gap between these
rather different kinds of model theory. Our paper is directed mainly to set-
based model-theorists in that we show how finitely presented and coherent
functors arise through the imaginaries construction. This opens a door to
the use of functorial techniques in model theory. Use of such techniques has
proved to be enormously effective in the model theory of additive structures
and we see no reason why this will not extend to the model theory of more
general structures. The distances between these different sorts of model the-
ory should not, however, be underestimated. As we ourselves found, it is
quite possible to prove a result and then discover that it, or something very
close to it, exists already in the literature but in a form which, without the
benefit of hindsight, looks completely different.

What we do here is show the equivalence of categories of imaginaries
(of various kinds) with categories of “small” (finitely generated, finitely pre-
sented, coherent) functors. We do this first for certain locally finitely pre-
sented categories and then, by localising, for much more general “definable
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categories” (categories of models of coherent theories). Then we discuss the
corresponding notion of interpretation.

Some of our results may be derived from the results and proofs in [19],
[17], [8] but our proofs, indeed our whole approach, is very different, being
rooted in set-based model theory and the development of the model theory
of additive categories. The emphases also are different: here we present
the results as equivalences between categories of certain functors and certain
imaginaries; in the category-based literature the final form of the results
is usually a “conceptual completeness” theorem (see [16], [17], [18]) which
might be expressed as an equivalence of 2-categories (see [8] for a number of
examples).

Because our paper is addressed mainly to set-based model-theorists we
do include proofs of category-theoretic results which can be found in (or
can be deduced from) the literature. We hope that we have thereby made
the paper sufficiently self-contained that it is readable to such an audience
(though, inevitably, we must refer the reader elsewhere, for instance to [14]
or introductory parts of [1], [3], [15], for notions that are standard for users
of category theory).

Now we describe the results in more detail.

The origin of our results lies in the model theory of modules. In that
context a theorem of Burke [5, 3.2.5] showed how to translate between the
two sorts (set-based/functor-based) of model theory. More precisely, if R is
a ring and Mod-R is the category of right R-modules then there is an equiv-
alence between, on the one hand, the category (mod-R,Ab) of additive
functors from the category, mod-R, of finitely presented R-modules to that
of abelian groups and, on the other hand, the category (Mod-R)eq+ of pp-
defined imaginaries for R-modules. Imaginaries belong to set-based model
theory. Indeed, thinking of them as forming a category was a novel step
which was taken by Herzog [6] when he defined the category (Mod-R)eq+.
This equivalence has the consequence that there are two quite different lan-
guages for talking about the same circle of ideas. More important, it allows
an effective transfer between model-theoretic and functor-category-theoretic
ideas and it led to new results as well as improved proofs of existing ones.
But all this, fruitful as it was, was set within the additive context: a context
more general than modules (one may replace Mod-R by any locally finitely
presented additive category and one may also localise), but always with the
additive structure on hom-sets available for use.
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It was natural to ask whether this, in particular the key equivalence be-
tween finitely presented functors and imaginaries, could be extended to non-
additive situations. Here we show that the answer is positive.

We state his result precisely. Fix a ring R. Denote by (Mod-R)eq+ the
category whose objects are pairs of positive primitive (pp) formulas ϕ/ψ
where ψ → ϕ. Such a pair defines a functor Mod-R → Ab, namely that
given on objects by M 7→ ϕ(M)/ψ(M). The morphisms of (Mod-R)eq+ are
the pp-definable functions between such pairs. Formally, they are equiva-
lence classes of pp-formulas ρ : ϕ/ψ → ϕ′/ψ′, where the notation means
that, on any module M , ρ defines a subset of ϕ(M)× ϕ′(M) which induces
a function from ϕ(M)/ψ(M) to ϕ′(M)/ψ′(M). The equivalence relation is,
of course, that of two formulas defining the same function at each mod-
ule M . Clearly every pp-pair defines a functor from mod-R to Ab (in-
deed from all of Mod-R to Ab), which turns out to be finitely presented,
and every morphism of (Mod-R)eq+ defines a natural transformation be-
tween the corresponding functors. The theorem is that this is an equivalence
(Mod-R)eq+ ' fp(mod-R,Ab) (we use fpC to denote the full subcategory
of finitely presented objects of a category C).

In fact there is a relative/localised version. First note that any functor
F ∈ fp(mod-R,Ab) has a unique extension to a functor in (Mod-R,Ab)
which commutes with directed colimits (see Lemma 2,3.1). We can denote

this extension
−→
F but, in practice, we use the same notation, F , for this ex-

tension. Suppose that {Fλ}λ is a family of finitely presented objects in the
category (mod-R,Ab). To this family one may associate the full subcategory
D of Mod-R consisting of those modules M such that FλM = 0 for every λ.
By Burke’s theorem each Fλ is isomorphic to one of the form ϕλ/ψλ for some
pair of pp formulas with ψλ → ϕλ. Thus D is exactly the class of models
of the theory T obtained by adding, to axioms for R-modules, the implica-
tions ϕλ → ψλ. To the set {Fλ}λ of finitely presented functors one also can
associate a finite type hereditary torsion theory τ on (mod-R,Ab), namely
that which has torsion class generated by the Fλ. The full subcategory of
finitely presented objects in the corresponding localisation of (mod-R,Ab)
is equivalent to the quotient of fp(mod-R,Ab) by the Serre subcategory of
fp(mod-R,Ab) generated by the Fλ. The localised version of the theorem
is that this quotient category of finitely presented functors is equivalent to
Deq+, where the latter category has the same objects as (Mod-R)eq+ but
has, for morphisms, the equivalence classes of pp formulas which define mor-
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phisms when evaluated on members of D. Of course, if we take the family
{Fλ}λ to consist of only the zero functor, then we obtain the original theorem.

Taking this as our starting point, we set out to prove a non-abelian version
of Burke’s result for modules. Being aware of, but not conversant with,
the book [19] of Makkai and Reyes, it was only later that we realised the
degree of relevance of their work. Our Proposition 2.13, the equivalence of
the category of coherent functors with the category of “pe-imaginaries” can
be extracted from [19, Chpts. 8,9] but our approach is different and more
direct (and our aims are rather different from those of [19]). We also obtain
characterisations of finitely generated and finitely presented functors in terms
of model-theoretic imaginaries (certain quotients of pe-defined sorts).

Thus our results are strongly related to work of Makkai and coworkers,
[17], [8], [18], [19]. Their “conceptual completeness” results are expressed
succinctly as equivalences of certain 2-categories but the details show how to
obtain various types of theories (construed as categories) from their categories
of models, and vice versa. Additive analogues of these were initiated by
Herzog’s observation that modules are just the exact functors on the relevant
category of pp-imaginaries and have been continued in, for example, [13], [21].
Our Proposition 4.4 is a generalisation of this to the non-additive setting
and is, as the referee has pointed out, the finitary case of Hu’s extension [8,
Thm. 5.10(ii)] of Makkai’s [17, 5.1]. With [17, Sec. 6] one can also derive,
by a route very different from that taken in [21], the additive version. Our
emphasis here is on obtaining equivalences of certain model-theoretically (in
the “classical” sense) and functorially defined categories, with an aim of
making it easier to use functorial techniques and ideas to prove results in “set-
based” model theory. The approach we take, combining the set-based and
category-based methods, has proved to be extremely effective in the model
theory of modules ([22] contains many illustrations of this) and we believe
that what we have done here will make it easier to use the rich and powerful
technology of functor category theory in other specific model-theoretic areas
of investigation.

Fix an arbitrary (finitary) first-order language L and let C denote the
category of L-structures (in fact, we begin with any locally finitely presented
category). Recall that a coherent theory is one which is axiomatised by
universal implications of positive existential (pe) formulas. Following the
terminology used for locally finitely presented abelian categories, we say that
the category of models of a coherent theory is a definable subcategory of the
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category C. We show that such a definable subcategory gives rise to a finite
type Grothendieck topology on the category of finitely presented L-structures
and the corresponding category of sheaves is a locally finitely presented topos.
Actually, because we deal with covariant functors (since pe formulas define
such) we deal with “cosheaves”, that is covariant functors from fpC to Set,
and the corresponding notion of topology. From the viewpoint of “classical”
model theory this is the natural variance. That is, in this paper, by a (pre-
)sheaf we mean an object of (fpC,Set), rather than the more usual meaning
of an object of ((fpC)op,Set) so, if one prefers, a (pre-)sheaf on (fpC)op.

The additive case suggested that we should attempt to characterise the
subcategory of finitely presented sheaves as some kind of an “eq+” category.
We show that the full subcategory of finitely presented sheaves is indeed
equivalent to the category with objects ϕ/θ̃ where ϕ and θ are pe-formulas,
θ ⊆ ϕ × ϕ, and θ̃ denotes the equivalence relation generated by θ, and
with maps given by pe-formulas ρ : ϕ/θ̃ → ψ/η̃ which define functions,
as opposed to just relations, (more generally, in the localised case, when
restricted to objects of a definable subcategory D ⊆ C). We also obtain a
similar characterisation of the category of finitely generated sheaves.

Now we overlap with results of Makkai and Reyes. The category of
sheaves corresponding to a coherent theory T of the kind described is a well
understood coherent topos called the classifying topos of T , so called because
of a certain universal property. Rather than studying the finitely presented
objects, Makkai and Reyes had considered the full subcategory of coherent
objects of this topos and had obtained the following logical characterisation
of this category: the coherent objects are pairs of pe-formulas ϕ/θ where
θ ⊆ ϕ× ϕ and T ` (θ is an equivalence relation), and the maps ϕ/θ → ψ/η
are pe-formulas ρ satisfying T ` (ρ defines a function ϕ/θ → ψ/η).

In the abelian situation coherent and finitely presented objects coincide.
In the non-abelian case, there may be finitely presented objects which are not
coherent. Having realised this, it was relatively easy to derive the Makkai-
Reyes result from our characterisation of finitely presented objects.

In summary, given a coherent theory T in a first-order language L, there
is an associated category of “positive existential imaginaries” - a functorial
version of Shelah’s imaginaries - which can be defined in purely categorical
terms as a certain category of coherent sheaves. The objects of this category
are certain functors defined on the category of finitely presented models of T .
The requirements that these functors be coherent, finitely presented or just
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finitely generated, correspond to successively more general kinds of (possibly∧
-definable) imaginaries. We prove the results first for the case that Mod(T )

is a locally finitely presented category (equivalently, the category of models
of a finite limit theory) and then, by localising, extend to the general case.
In the last part of this paper we define and investigate those interpretations
between coherent theories which are given by certain types of functor between
the associated “imaginaries” categories of coherent sheaves.

Throughout this paper “definable” means definable without parameters.

The work reported in this paper will form part of the doctoral thesis of
the first author, who has been supported by a MATHLOGAPS Marie Curie
Fellowship (MEST-CT- 2004-5040290).

2 Finitely presented and coherent functors

2.1 Categorical preliminaries

In an arbitrary category, an object is said to be finitely presented (f.p.) if
its associated covariant Hom-functor commutes with directed colimits. This
can be restated as follows. An object X is finitely presented if whenever
((Yi)i, (uij : Yi → Yj)i<j) is a directed system and Y = lim−→Yi is the directed
colimit, any map f : X → Y factors through some object Yi as f = uig
where ui : Yi → Y is the canonical colimit map. Moreover, this factorisation
is essentially unique in the sense that if f = uig

′ for some other map g′ then g
and g′ are equalised by some diagram map uij : Yi → Yj, that is uijg = uijg

′.
An object is finitely generated (f.g.) if it cannot be expressed as a directed

union of proper subobjects. An object X is coherent if it is f.g. and whenever
Y is f.g. and f : Y → X is any map, then the pullback Y ×X Y is finitely
generated.

A set of objects G is a generating set for a category if for any pair of maps
f, g : X → Y such that f 6= g, there is an object G ∈ G and a map h : G→ X
such that fh 6= gh. Furthermore, G is a strong generating set if, in addition,
whenever X ′ → X is a proper subobject of X, there is a G ∈ G and a map
h : G→ X which does not factor through the subobject. A category is locally
finitely presented (LFP) if it is cocomplete and has a strong generating set of
f.p. objects. Equivalently, a category is LFP if it is cocomplete and has a set of
f.p. objects such that every object is a directed colimit of these (see [1, p. 17]).
The following proposition gives a characterisation of f.g. and f.p. objects in
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an LFP topos, mirroring the abelian situation. A (Grothendieck) topos is
simply the category of (set-valued) sheaves on a Grothendieck site, that is,
on a small category with a Grothendieck topology. All these notions will be
defined later. The topologies that will arise in this paper will all be of finite
type, a fact which ensures that the corresponding categories of sheaves are
LFP topoi. The proof of the following proposition does not mention sheaves,
but uses instead certain completeness and exactness properties of topoi. In
fact, a topos can be characterised as a category with certain completeness
and exactness properties (this is the content of Giraud’s theorem). All this
is explained in the book of MacLane and Moerdijk [15].

The next results can be deduced from results in the category-theoretic
literature but we include direct proofs here to make the paper more accessible
to readers from set-based model theory. The first part of the result below
follows from [1, 1.69].

Proposition 2.1. Let E be an LFP topos (so in particular E is Grothendieck)
with a generating set G of f.p. objects.
(a) An object X ∈ E is finitely generated if and only if there are objects

G1, . . . , Gn ∈ G and an epimorphism

n∐
i=1

Gi
-- X

(b) An object X ∈ E is finitely presented if and only if there are objects
G1, . . . , Gn, H1, . . . , Hm ∈ G and a coequaliser diagram of the form

n∐
i=1

Gi
--

m∐
i=1

Hi
- X

Proof. (a)
(⇒) Write G = {Gi}i, and put Ai = Hom(Gi, X). Define the map

∐
i

G
(Ai)
i

p- X

by pi,f = f (for f ∈ Ai). Then p is epic. To see this, suppose we have two
maps g 6= h : X → Y . Since G generates the category, there is an i and a
map t : Gi → X with gt 6= ht. This gives gpi,t 6= hpi,t and so (gp)i,t 6= (hp)i,t
which implies that gp 6= hp.
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The components of p determine maps from any finite subcoproduct of∐
iG

(Ai)
i to X. The images of these maps determine a directed system of

subobjects of X, with colimit X. Since X is f.g., X = im(
∐n
i=1Gi → X) for

some G1, . . . , Gn ∈ G. So there is an epimorphism

n∐
i=1

Gi
-- X

as required.
(⇐) Now suppose there is an epimorphism

∐n
i=1Gi → X. Since a finite

colimit of f.p. objects is f.p. (see [1, p. 12]), X, as a quotient of a f.p. object,
is f.g. For if X = lim−→Xi as a directed union of subobjects, then the epimor-
phism factors through some subobject Xj as fig so the inclusion fi must be
epic hence, as we’re in a topos, is idX .

(b) (⇒) Suppose that X is finitely presented. Then in particular, X is
f.g. and so by (a) there must be an epimorphism p :

∐m
i=1Hi → X where

Hi ∈ G. Let

Y
π1-

π2

-
m∐
i=1

Hi

be the kernel pair of p. So

Y
π1-

π2

-

m∐
i=1

Hi
p- X

is a coequaliser. Let {Mi}i be a directed system of subobjects of Y as in (a).
So each Mi is the image of map from a finite coproduct of objects from G

into Y . Let Xi be the coequaliser of the maps

Mi
- - Y

π1-

π2

-

m∐
i=1

Hi

Note that an inclusion Mi ⊆Mj induces an epimorphism uij : Xi → Xj. The
Xi with the uij form a directed system with X = lim−→Xi and with the cone
maps ui : Xi → X given by the universal property of the coequaliser. Since
X is f.p., idX factors through some Xj. So idX = ujf for some f : X → Xj.
There is an epimorphism

l∐
i=1

G′
i

-- Mj
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where G′
i ∈ G hence, since the G′

i are finitely presented, there is a coequaliser
diagram of the form

l∐
i=1

G′
i

-
-

m∐
i=1

Hi
- Xj

Since Xj is a finite colimit of f.p. objects, Xj is itself f.p. Hence the factori-
sation

Xj
uj - X

Xj

u j

-

id -

of ui as ujid is essentially unique (in the sense defined earlier). So, since
also uj = uj(fuj), there is a k ≥ j such that ujk = ujkfuj. We claim that
uk : Xk → X is an isomorphism. First note that uk(ujkf) = (ukujk)f =
ujf = idX . But also ((ujkf)uk)ujk = (ujkf)(ukujk) = ujkfuj = ujk. So since
ujk is epic, (ujkf)uk = idXk

. So indeed uk is invertible. Hence X ∼= Xk and
there is a coequaliser diagram

n∐
i=1

Gi
--

m∐
i=1

Hi
- X

as required.
(⇐) This direction is direct from the fact that a finite colimit of f.p. objects
is f.p.

Corollary 2.2. Let E and G be as above. If X is a coherent object of E, then
X is finitely presented.

Proof. Since X is f.g., there is an epimorphism
∐n
i=1Gi

-- X where Gi ∈ G.
Let G =

∐
iGi and put Y = G ×X G. Y is f.g. since X is coherent and so

there is an epimorphism
∐m
j=1Hj

-- Y . This gives us a coequaliser∐
j

Hj
-
- G - X

Hence X is f.p. as required.

A functor category is an LFP topos and is generated by the set of repre-
sentable functors. So we get the following useful corollary.
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Corollary 2.3. Let C be a small category and let F be a set-valued functor
on C.
(a) F is finitely generated if and only if there are objects C1, . . . , Cn ∈ C and

an epimorphism
n∐
i=1

Hom(Ci,−) -- F

(b) F is finitely presented if and only if there are objects C1, . . . , Cn, D1, . . . , Dm ∈
C and a coequaliser diagram

n∐
i=1

Hom(Ci,−) --
m∐
i=1

Hom(Di,−) - F

2.2 Finitely generated and finitely presented functors

We begin with a locally finitely presented category C. For instance, the
category of modules over a ring, the category of groups, or of rings, et cetera.
In particular, if L is a (finitary, but possibly many-sorted) first-order language
then the category of L-structures is such a category, as is the category of
models of any finite limit theory in L (meaning a theory axiomatised by
sentences of the form ∀x(ϕ(x) → ∃!y ψ(x,y)) where ϕ, ψ are

∧
-atomic).

Indeed (see [1, 5.9]), conversely, every locally finitely presented category can
be regarded as the category of models for a finite limit theory in a suitable
language L. Choose and fix such L.

It may be that the category of definable sets in objects of C already
has disjoint unions in the sense that if U , V are definable sets then there
is a definable set W (in some sort) and definable injections f : U → W ,
g : V → W such that W is the disjoint union of the images of f and g.
If not, then we use the following device. Expand the language, to L′, by
adding one new sort and two constants of this new sort {c0, c1}. Add the
axiom c0 6= c1 and the sentence expressing that there are exactly two elements
of the new sort. Variables of the new sort will be denoted by x′1, x

′
2, . . . etc.

This will ensure that we can form definable disjoint unions of (finitely many)
definable sets. Let C′ be the category (with the usual homomorphisms) of L′-
structures satisfying these sentences and axioms for C (or just the category
C if we did not add the extra sort). Then C′ is an LFP category with a
skeletally small class fpC′ of finitely presented objects (see [1, p. 201]) and
these have the form M ∪ {c0, c1} where M is a f.p. object of C. By, e.g. [1,
p. 201], an object of C′ is f.p. if it is isomorphic to a quotient of the term
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algebra on finitely many variables by finitely many term equations and is
such that the interpretations of the relation symbols have just finitely many
edges. From now on we write L for L′, C for C′ and assume that the language
was added to as above if this was necessary.

A crucial observation in what follows is that a positive existential for-
mula, being preserved by homomorphisms, defines a functor C → Set by
associating to each object C ∈ C the set it defines and with the obvious
action on morphisms. In particular each positive existential formula ϕ is
identified with an element of the functor category (fpC,Set) (we use the
same notation for the formula and the functor).

It is worth singling out the following two properties of the category C.
We say that a tuple a of elements of A ∈ C generates A if for every b ∈ A
there is a term t(x) of L such that b = t(a). Proofs of these properties are
easily extracted from [1, Sec. 5A].

FR If ϕ(x) is a finite conjunction of atomic formulas, then there is
an object A ∈ fp(C) and a tuple of generators a ∈ ϕ(A) for A
with the property that if B is any object and b ∈ ϕ(B) then
the map a 7→ b extends to a morphism A → B. Following the
terminology used (for a more general notion) in the additive case
([23, Sec. 8.3]), we say that the pair (A,a) is a free realisation of
ϕ.

PF If C ∈ fp(C) and c is a tuple of generators for C, then there is
a finite conjunction of atomic formulas ϕ(x) with c ∈ ϕ(C) such
that whenever D ∈ C and d ∈ ϕ(D), the map c 7→ d extends
to a morphism C → D. Such a formula is called a presentation
formula for C.

Note that FR implies that any finite conjunction of atomic formulas de-
fines a representable functor. Conversely, PF implies that any representable
functor is isomorphic to a functor defined by a finite conjunction of atomic
formulas.

Let ϕ be a pe-formula and R a subfunctor of ϕ×ϕ in (fpC,Set). Suppose
C ∈ fpC and a, b are tuples from ϕ(C). Then we write R(a, b) when
(a, b) ∈ R(C). If for every C ∈ fpC it is the case that R(C) is an equivalence
relation on ϕ(C), then we say that R is a functorial equivalence relation on
ϕ. We write ϕ/R for the functor which associates to C ∈ fpC the set of
equivalence classes of ϕ(C) modulo R(C).
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Proposition 2.4. Let F be a functor in (fpC,Set).
(a) Suppose that F is finitely generated Then there is a positive quantifier-

free L-formula ϕ(x) and a functorial equivalence relation E(x,y) such
that

F ∼=
ϕ

E

(b) Suppose that F is finitely presented Then there is a positive quantifier-
free L-formula ϕ(x) and a positive existential formula θ(x,y) such that

F ∼=
ϕ

θ̃

where θ̃ denotes the equivalence relation generated by θ.

Proof. (a) Suppose F is finitely generated. By Corollary 2.3, there are
D1, . . . , Dm ∈ fpC and an epimorphism∐

j

Hom(Dj,−) -- F

Let ϕj be a presentation formula for Dj and assume without loss of generality
that the ϕj all have the same number of free variables. For if the largest
number of free variables among the ϕj is l and ϕj = ϕj(x1, . . . , xr) where
r < l, then simply add to ϕj a conjunction of equations xr+1 = x1∧· · ·∧xl =
x1.

Now let ϕ′j(x1, . . . , xl, x
′
1, . . . , x

′
m) be the formula

ϕj(x1, . . . , xl) ∧ x′1 = c0 ∧ · · · ∧ x′j = c1 ∧ · · · ∧ x′m = c0

so that ϕ = ϕ′1 ∨ · · · ∨ ϕ′m defines the disjoint union of the sets defined by
ϕ1, . . . , ϕm. In particular, ϕ ∼=

∐m
j=1 ϕj as a coproduct of functors (note that,

in the functor category, coproduct is given pointwise by disjoint union) and
we have an epimorphism

ϕ
p-- F

Let R ⊆ ϕ× ϕ be the functor given by

M - {(x,y) ∈ ϕ(M)2 : pM(x) = pM(y)}

and let E(x,y) be the equivalence relation generated by R. Then F ∼= ϕ/E
as required.
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(b) Now suppose that F is f.p., so there is a presentation for F of the
form

n∐
i=1

Hom(Ci,−)
p-

q
-

m∐
j=1

Hom(Dj,−) - F

We can write this as
n∐
i=1

ψi
p-

q
- ϕ - F

where ϕ ∼=
∐
j ϕj as in part (a) and ψi is a presentation formula for Ci.

Since p and q are natural transformations, their components pi and qi are
determined by their actions at Ci on the identity map idCi

. So if k is such
that (pi)Ci

(idCi
) ∈ Hom(Dk, Ci) ' ϕk(Ci) then pi is a natural transformation

ψi → ϕk. So since pi is a natural transformation between two representable
functors, it must be induced by a map f : Dk → Ci. In other words pi = f ∗

(the latter is the notation we will use for Hom(f,−)).
Let c be a tuple of generators for Ci and d a tuple of generators for Dk.

Let E ∈ fp(C) and consider the component

ψi(E)
pi- ϕk(E)

For each dj from the tuple d, there is a term tj such that f(dj) = tj(c). Let
t(c) be the tuple whose jth component is tj(c). Then the action of (pi)E on
a tuple e ∈ ψi(E) is given simply by

e - t(e)

So we see that pi is a definable map (that is, its graph is, uniformly over C,
a definable subset of the product of its domain and codomain). Clearly pi
can be regarded as a definable map into ϕ′k by extending the tuple t(x) in
the obvious way.

Let θ(x,y) be the relation on ϕ which holds when there is an element
a ∈ ∐n

i=1 ψi such that p(a) = x and q(a) = y. This is expressible by the
formula

∃z(
n∨
i=1

(ψi(z) ∧ pi(z) = x ∧ qi(z) = y))

It should be clear that
F ∼=

ϕ

θ̃

as required.
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In the additive case the corresponding results, see [5, 3.2.5], [23, Chpt. 12],
require only positive primitive (pp) formulas. These are the formulas built up
from atomic formulas using just conjunction and existential quantification.
To obtain a converse to the above proposition we will need the following
lemmas.

Lemma 2.5. Any positive primitive L-formula defines a finitely presented
functor.

Proof. Let ϕ(x) be the positive primitive formula ∃yθ(x,y) where θ is a con-
junction of atomic formulas. Let (C, c,d) be a free realisation of θ. Clearly
C has the property that if E is any other object with e ∈ ϕ(E), there is a
map f : C → E with f(c) = e. So the map

Hom(C,−) - ϕ

defined by
f - f(c)

is epic. Hence ϕ is finitely generated.
Now let ψ(x,y1,y2) be the formula θ(x,y1) ∧ θ(x,y2). As a finite con-

junction of atomic formulas, ψ is representable, hence finitely presented.
Define the map pi : ψ → Hom(C,−) to be that whose component at E takes
(a, b1, b2) ∈ ψ(E) to the map defined by (c,d) 7→ (a, bi). Then the diagram

ψ
p1-

p2
- Hom(C,−) - ϕ

is a coequaliser. Since ψ and Hom(C,−) are f.p., ϕ is also finitely presented.

Lemma 2.6. Any positive existential formula defines a finitely presented
functor.

Proof. Any positive existential formula ϕ is a disjunction of positive primitive
formulas. We proceed by induction on the number n of disjuncts. If n = 1
then ϕ is positive primitive and so finitely presented by the above. Now
suppose n > 1. Write ϕ =

∨n
i=1 ϕi where each ϕi is positive primitive. The

following diagram, with the obvious maps from the conjunction to the union,
is a coequaliser.

(
n−1∨
i=1

ϕi) ∧ ϕn -
- (x′ = c0 ∧

n−1∨
i=1

ϕi) ∨ (x′ = c1 ∧ ϕn) - ϕ

14



Both
∨n−1
i=1 ϕi and (

∨n−1
i=1 ϕi) ∧ ϕn have n − 1 disjuncts so the induction hy-

pothesis applies. It now easily follows that ϕ is finitely presented since the
functor in the middle is a coproduct of f.p. functors.

Proposition 2.7.
(a) Any functor of the form ϕ/E where ϕ is positive existential and E is a

functorial equivalence relation on ϕ is finitely generated.
(b) Any functor of the form ϕ/θ̃ where ϕ is a positive existential formula

and θ is a positive existential relation on ϕ is finitely presented.

Proof. (a) There is a natural epimorphism ϕ -- ϕ/E. Hence ϕ/E is f.g.
(b) Consider the diagram

θ -- ϕ - ϕ/θ̃

where the maps are the obvious ones. This is clearly a coequaliser. So ϕ/θ̃
is finitely presented as required.

Combining Propositions 2.4 and 2.7 we get the following corollary.

Corollary 2.8. Let F be a functor in (fpC,Set).
(a) F is finitely generated if and only if F ∼= ϕ/E where ϕ is positive exis-

tential and E is a functorial equivalence relation.
(b) F is finitely presented if and only if it is of the form ϕ/θ̃ where ϕ and θ

are positive existential.

We will now characterise the natural transformations between f.g. functors
in terms of positive existential formulas. Let ϕ/E1 and ψ/E2 be two f.g.
functors. A positive existential formula ρ(x,y) clearly defines a natural
transformation ϕ/E1 → ψ/E2 if the following are satisfied for each A ∈
fpC.

• For every a ∈ ϕ(A) there is a b ∈ ψ(A) with ρ(a, b).

• If a,a′ ∈ ϕ(A) are such that E1(a,a
′) and for some tuples b, b′

we have ρ(a, b) and ρ(a′, b′), then b, b′ ∈ ψ(A) and E2(b, b
′).

As ρ is a natural transformation, ρA takes an equivalence class [a]E1 to the
equivalence class [b]E2 where ρ(a, b) holds.

Proposition 2.9. Every natural transformation in fg(fpC,Set), the full
subcategory of finitely generated functors, is defined by a positive existential
formula.

15



Proof. Let α : ϕ/E1 → ψ/E2 be a natural transformation in fg(fpC,Set).
The positive existential formula ϕ will be of the form

∨
i ∃zσi(x, z) where

σi is a conjunction of atomic formulas. Let (Ai,ai, bi) be a free realisation
of σi. For each i choose a representative a′

i for the E2-equivalence class
αAi

[ai]E1 . Since (ai, bi) generates Ai, there will be a tuple ti of terms such
that ti(ai, bi) = a′

i. Let ρ(x,y) be the formula∨
i

∃z(σi(x, z) ∧ ti(x, z) = y)

Suppose that c, c′ are tuples from an object C and that ρ(c, c′) holds. Then
there is an i and a tuple d such that σi(c,d) and ti(c,d) = c′. So there is
a map f : Ai → C defined by (ai, bi) 7→ (c,d). Since α is a natural trans-
formation, the following diagram commutes, where f∗ denotes the obvious
induced map.

Ai (ai, bi)
ϕ

E1

(Ai)
αAi-

ψ

E2

(Ai)

C

f

?
(c,d)

? ϕ

E1

(C)

f∗

?

αC

-
ψ

E2

(C)

f∗

?

Clearly c ∈ ϕ(C) so we can investigate the action of αC on the equivalence
class [c]E1 .

αC [c]E1 = αC [f(ai)]E1

= αCf∗[ai]E1

= f∗αAi
[ai]E1

= f∗[a
′
i]E2

= f∗[ti(ai, bi)]E2

= [f(ti(ai, bi))]E2

= [ti(f(ai, bi))]E2

= [ti(c,d)]E2

= [c′]E2

So we see that if ρ(c, c′) holds in C, then αC [c]E1 = [c′]E2 . We now check
that ρ defines the natural transformation α.

16



Let a ∈ ϕ(A). Then there is an i and a tuple b such that σi(a, b). Clearly
ρ(a, ti(a, b)) holds. By above, this implies that αA[a]E1 = [ti(a, b)]E2 so we
must have, in particular, that ti(a, b) ∈ ψ(A). Now suppose that E1(a,a

′),
ρ(a, b) and ρ(a′, b′). Then [b]E2 = αA[a]E1 = αA[a′]E1 = [b′]E2 . So we
have b, b′ ∈ ψ(A) and E2(b, b

′). Hence ρ defines a natural transformation
ϕ/E1 → ψ/E2 which is, therefore, α.

2.3 Local coherence of the functor category

We will show that our functor category (fpC,Set) is a locally coherent cat-
egory in the sense that every finitely generated subobject of a finitely pre-
sented object is finitely presented. In the abelian context, but not here, this
is equivalent to the class of f.p. functors being closed under finite limits. For,
we will see that our f.p. functors are closed under finite products but need
not be closed under equalisers.

Proposition 2.10. Any finitely generated subfunctor of a finitely presented
functor is itself finitely presented.

Proof. Let F be f.p. and G ⊆ F be a f.g. subfunctor. By Corollary 2.8 above
F ∼= ϕ/θ̃ for pe-formulas ϕ and θ, and G ∼= ψ/E for a pe-formula ψ. By
Proposition 2.9 the embedding of G in F is defined by a pe-formula ρ:

ψ/E- ρ- ϕ/θ̃

The functor G is isomorphic to the following subfunctor of F :

∃z(ψ(z) ∧ ρ(z,x))

θ̃

Which is finitely presented.

Corollary 2.11. Any finitely generated subfunctor of a representable functor
is defined by a pe-formula.

Proposition 2.12. The category fp(fpC,Set) is closed under finite products
but need not be closed under equalisers.

Proof. Given a positive existential relation θ(x,y), define θs(x,y) to be the
positive existential relation

θ(x,y) ∨ θ(y,x) ∨ x = y

17



Then θs is the symmetric and reflexive closure of θ and θ̃ = θ̃s.
Let ϕ/θ̃ and ψ/η̃ be finitely presented functors. We claim that

ϕ(x)

θ̃(x,x′)
× ψ(y)

η̃(y,y′)
∼=
ϕ(x) ∧ ψ(y)

θ̃s ∧ ηs

To see this, suppose that ([x], [y]) = ([x′], [y′]) in the product. Then θ̃(x,x′)
and η̃(y,y′). So there is a sequence x0, . . . ,xn ∈ ϕ and a sequence y0, . . . ,yn ∈
ψ with θs(x,x0)∧ · · · ∧ θs(xn,x′) and ηs(y,y0)∧ · · · ∧ ηs(yn,y′). The claim
follows.

Consider, with notation as above, an equaliser diagram

E - ϕ/θ̃
p1-

p2
- ψ/η̃

The natural transformations p1 and p2 can be expressed by positive existential
formulas ρ1 and ρ2 respectively (by Proposition 2.9). We then have

E = {[x] ∈ ϕ/θ̃ : ∃y,y′ρ1(x,y) ∧ ρ2(x,y
′) ∧ η̃(y,y′)}

So E is the functor given by

ϕ(x) ∧ ∃y,y′(ρ1(x,y) ∧ ρ2(x,y
′) ∧ η̃(y,y′))

θ̃

The formula on the top need not be reducible to a first-order formula. Here
is an explicit example.

Let L be the language of rings and let θ(x, y) be the relation x = y + 1.
Let E be the equaliser of the maps

x = x
x-

2x
-
x = x

θ̃

Then E defines the set of x such that 2x = m + x for some m ∈ Z. So
E(R) = Z. If E where reducible to a finitary first-order formula, then this
would imply that Z was definable in R, which is not the case. So E cannot be
finitary first-order. This is in contrast to the additive case where the group
structure gives finitary first-order definability of such relations.

18



2.4 Coherent functors

We are now in a position to characterise the category coh(fpC,Set) of co-
herent functors.

Proposition 2.13. F ∈ (fpC,Set) is coherent if and only if F ∼= ϕ/θ where
ϕ and θ are positive existential formulas and θ defines an equivalence relation
on ϕ.

Proof. (⇒) Suppose that F is coherent. So in particular F is f.p. and by
Corollary 2.8, F ∼= ϕ/θ̃. Since F is coherent, ϕ×F ϕ is f.g. But ϕ×F ϕ ∼= θ̃
so θ̃ is f.g. Since θ̃ ⊆ ϕ× ϕ, the proof of Proposition 2.10 implies that θ̃ ∼= η
for some pe-formula η.

(⇐) Now suppose that F ∼= ϕ/θ where ϕ and θ are pe-formulas. Let G
be a f.g. functor and f : G → F a map. By Corollary 2.8 and Proposition
2.9 we can write this as

ψ

E

ρ-
ϕ

θ

for some pe-formulas ψ and ρ. Let ∼ be the equivalence relation on ψ × ψ
defined by

(x,y) ∼ (x′,y′) ⇔ E(x,x′) and E(y,y′)

Let γ(x,y) be the formula

∃w, z(ψ(x) ∧ ψ(y) ∧ ρ(x,w) ∧ ρ(y, z) ∧ θ(w, z))

Then G×F G ∼= γ/ ∼ which is f.g.

We collect together the above proposition and Proposition 2.9 in the
following theorem.

Theorem 2.14. The category coh(fpC,Set) of coherent functors is equiv-
alent to the category with objects ϕ/θ where ϕ and θ are pe-formulas and θ
defines an equivalence relation on ϕ, and with maps the pe-definable functions
ϕ/θ → ψ/η.
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3 Finitely presented and coherent sheaves

3.1 Extending functors

In defining localisations of our functor category we will need to make use of
the notion of an extension of a functor defined on f.p. objects to the category
of all objects. The well-definedness of the extension depends on the following
lemma (which has an analogue in the additive case; see, e.g. [2, pp. 4-5], [13,
5.6]). We prove this directly (it is, e.g., contained in [1, 2.26]).

Lemma 3.1. Let F : fp(C) → Set be a functor defined on the category of
finitely presented objects of C. Let X, Y ∈ C.
(a) If ((Ai)i, (aik : Ai → Ak)i<k) and ((Bj)j, (bjl : Bj → Bl)j<l) are directed

systems where Ai, Bj ∈ fp(C) and with X = lim−→i
Ai = lim−→j

Bj then

lim−→i
F (Ai) ∼= lim−→j

F (Bj).

(b) If X = lim−→i
Xi and Y = lim−→i

Yj and f : X → Y , then there is a canoni-
cally induced map

f∗ : lim−→
i

F (Xi) - lim−→
j

F (Yj)

which is functorial in the obvious sense.

Proof. (a) Suppose
X = lim−→

i∈I
Ai = lim−→

j∈J
Bj

Since the Ai are f.p., for each i ∈ I, there is an fi : Ai → Bki
such that the

following diagram commutes.

Ai
ai - X

Bki

b k i

-

f
i -
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Now consider the following diagram.

Ai
aij - Aj

Bki

fi

? bkikj - Bkj

fj

?

X �
bl

�

b k j
b
k
i -

Bl

b
k
j l

-

Although the square does not necessarily commute, there will be an l ∈ J
such that bkj lbkikj

fi = bkj lfjaij. This implies that the following diagram is a
cocone on the F (Ai).

F (Ai)
F (aij) - F (Aj)

F (Bki
)

F (fi)

?

F (Bkj
)

F (fj)

?

lim−→
j∈J

F (Bj)
� π k j

π
k
i -

(Here the πj : F (Bj) → lim−→l∈J F (Bl) are the canonical maps to the limit.

Similarly we write σi : F (Ai) → lim−→k∈I F (Ak).) Hence there is a unique ρ
such that the following diagram commutes.

F (Ai)
F (aij) - F (Aj)

lim−→
i∈I

F (Ai)
�

σ j
σ
i -

F (Bki
)

F (fi)

?

F (Bkj
)

F (fj)

?

lim−→
j∈J

F (Bj)

ρ

?� π k j
π
k
i -
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Similarly, for each j ∈ J there will be a map gj : Bj → Amj
such that

bj = amj
gj and one gets a map ρ′ : lim−→j

F (Bj) → lim−→i∈I F (Ai) such that

ρ′πj = σmj
F (gj).

Now consider the following diagram.

Ai
fi- Bki

gki- Amki

X

bki

?� am
k i

a
i -

By essential uniqueness, there is an li ∈ I such that akiligki
fi = aili . Then

ρ′ρσi = ρ′πki
F (fi)

= σmki
F (gki

)F (fi)

= σmki
F (gki

fi)

= σliF (akili)F (gki
fi)

= σliF (aili)

= σi

So ρ′ρ is the identity on lim−→F (Ai). By symmetry, ρρ′ is the identity on
lim−→F (Bj) so ρ is an isomorphism.

(b) The argument for this is similar to that in part (a).

We are now in a position to define the extension of a functor F ∈
(fpC,Set) to the whole of C. We will denote this extension of F also by F ,
and put for C ∈ C,

F (C) = lim−→F (Ci)

where C = lim−→Ci is a directed colimit of f.p. objects. The action of F on
maps of C is given canonically as in the above lemma.

One can also extend a natural transformation σ : F → G in the category
(fpC,Set) to a natural transformation between the extensions by defining,
for C = lim−→Ci ∈ C, a directed colimit of f.p. objects,

σC = lim−→ σCi

(One may check that this is independent of representation of C as a directed
colimit of finitely presented objects.) Any f.p. functor ϕ/θ̃ in (fpC,Set)
extends to the functor ϕ/θ̃ : C → Set defined by the same formulas and this,

22



it is easily checked, commutes with directed colimits. Similarly, a natural
transformation given by a pe-formula ρ extends to a functor given by the
same formula and which commutes with directed colimits.

3.2 Definable subcategories and finite type topologies

Let A be a small category. Any subfunctor S of Hom(A,−) may be thought
of as a collection of maps with domain A which is closed under composition
on the left: i.e. if f ∈ S and g is a composable map (in the sense that
dom g = cod f), then gf ∈ S. We say that S is a (left) ideal of A. Given an
ideal S of A and a map f : A→ B in A, one gets an ideal f∗(S) of B defined
to be {g : dom g = B and gf ∈ S}. A (left) Grothendieck topology J on A
is a function which associates to any object A ∈ A a set J(A) of left ideals
of A. The elements of J(A) are called covers of A or dense subfunctors of
Hom(A,−) and must satisfy the following conditions.

G1 Hom(A,−) ∈ J(A) for every A ∈ A;

G2 If S ∈ J(A) and f : A→ B is an arrow of A, then f∗(S) ∈
J(B);

G3 If S ∈ J(A) and R ⊆ Hom(A,−) is such that, for any arrow
f ∈ S , f∗(R) ∈ J(cod f), then R ∈ J(A).

Fix a subcategory D of C. We associate to D a Grothendieck topology
JD on fp(C) defined by

S ∈ JD(A) ⇔ S(D) = Hom(A,D) for all D ∈ D

In this definition we are using the extension of S from fpC to C as explained
in the previous section. One easily verifies that this extension does satisfy
the above axioms for a Grothendieck topology.

Conversely, to a given Grothendieck topology J on fp(C) one can asso-
ciate a full subcategory V (J) of C by

D ∈ V (J) ⇔ S(D) = Hom(A,D) for all A ∈ fp(C) and S ∈ J(A)

The following notion (central in the model theory of modules) is needed
to describe the “closed” points of this correspondence.
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If C ⊆ D in C then C is a pure subobject of D if for every commutative
diagram

A
f - B

C

g

?
- - D

?

with A and B finitely presented, the map g factors through f .

Proposition 3.2. (e.g. [1, 5.15]) The subobject C ⊆ D is pure if and only if,
for every positive existential formula ϕ(x) and any tuple c from C, C |= ϕ(c)
if D |= ϕ(c).

Proof. It is clearly sufficient to prove the statement for positive primitive
formulas.
(⇒) Suppose that C ⊆ D is pure. Let ϕ(x) be the positive primitive
formula ∃yσ(x,y) where σ is a conjunction of atomic formulas. Suppose
D |= ϕ(c) where c is a tuple from C. Then there is a tuple d from D such
thatD |= σ(c,d). Let (A,a, b) be a free realisation of σ. We get the following
commutative diagram, where Fr(x) is the free L-structure generated by a
tuple of variables x (e.g. see [1, p. 202]).

x - a

x Fr(x) - A (a, b)

c
?

C
?

- D
?

(c,d)
?

By purity, we get a map f : A→ C such that f(a) = c. Since a ∈ ϕ(A) we
must have c ∈ ϕ(C) as required.
(⇐) Suppose we have a commutative square

A
f - B

C

h

?
- - D

g

?

where A and B are finitely presented. Let a be a tuple of generators for A
and b a tuple of generators for B. Let ϕ be a presentation formula for B.
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There is a tuple of terms t such that f(a) = t(b). Let ψ(x) be the
positive primitive formula

∃y(ϕ(y) ∧ t(y) = x)

Then D |= ψ(gf(a)) since D |= ϕ(g(b)) and

t(g(b)) = g(t(b)) = gf(a)

Since gf(a) = h(a) lies in C, the hypothesis implies that C |= ψ(h(a)).
So there is a tuple c ∈ ϕ(C) such that t(c) = h(a). By the definition of
presentation formula, there is a map f ′ : B → C with f ′(b) = c. So

h(a) = t(c) = t(f ′(b)) = f ′(t(b)) = f ′f(a)

and we see that h factors through f as required.

Following terminology used in the additive case, we will say that a cat-
egory D ⊆ C closed in C under ultraproducts and pure subobjects is a
definable subcategory of C. As the following result shows, this means defin-
able by sentences of a particular sort.

Theorem 3.3. The following are equivalent.
(i) D is a definable subcategory;
(ii) D can be axiomatised by a coherent theory.

This result is a direct consequence of a result of Keisler’s [11] (also see
[24]). Recall that a coherent theory is one whose axioms are of the form
∀x(ϕ(x) → ψ(x)) where ϕ and ψ are positive existential. Keisler’s result is
that an elementary class of structures is closed under directed colimits if and
only if it can be axiomatised by sentences of the form

∀x∃y
∧
i∈I

∨
j∈J

(gij(x) → hij(x,y))

where the gij and hij are atomic formulas and I and J are finite. But the
above sentence is equivalent to the following collection of coherent sentences∀x

∧
i∈I′

∧
j∈J

gij(x) → ∃y
∧
i∈I′

∨
j∈J

hij(x,y)


I′⊆I
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Now a definable subcategory D is an elementary class closed under directed
colimits. The fact that D is elementary follows (by [12], Corollary 6.1.16)
from the fact that D is closed under ultraproducts and its complement is
closed under ultrapowers (since every structure is purely, even elementarily,
embeddable in any of its ultrapowers via the diagonal map). The fact that
D is closed under directed colimits follows from the fact that for any directed
system of structures (Di : i ∈ I) there is an ultrafilter U on I and a pure
embedding of lim−→Di in

∏
iDi/U (see, e.g., [25]). Hence, Keisler’s result gives

us that a definable subcategory D can be axiomatised by a coherent theory.
The converse is easy.

Using Theorem 3.3, we see that the class of integral domains forms a
definable subcategory of the category of commutative rings: this class is
defined by the coherent axiom

∀x, y(xy = 0 → x = 0 ∨ y = 0)

We shall say that a Grothendieck topology J is of finite type if every
cover has a finitely generated cover below it. In our context this is equivalent
to there being a positive existential formula dense below every cover (by
Corollary 2,2.11). If J has the stronger property that any cover has a positive
primitive formula dense below it, then we shall say it is of finite pp type.

Proposition 3.4.
(a) If D is definable, then JD is of finite type. If in addition D is closed

under finite products, then JD is of finite pp type.
(b) If J is of finite type, then V (J) is definable. If J is of finite pp type,

then V (J) is also closed under products.

Proof. (a) Suppose D is definable. Let S ⊆ Hom(C,−) be a cover with
respect to JD. Let ϕ be a presentation formula for C, so Hom(C,−) ∼= ϕ. If
{ϕλ : λ ∈ Λ} is the set of positive existential formulas below S, then clearly

S =
⋃
λ∈Λ

ϕλ

Suppose that none of them is dense. So for each λ there is a Dλ ∈ D such
that ϕλ(Dλ) $ ϕ(Dλ). Let p be the partial type

{ϕ ∧ ¬ϕλ : λ ∈ Λ}.
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Then p is closed under finite conjunctions. Define

〈λ〉 = {µ ∈ Λ : ϕλ ⊆ ϕµ}.

Then
〈λ〉 ∩ 〈µ〉 = 〈ν〉

where ϕν = ϕλ ∨ ϕµ. So the set {〈λ〉 : λ ∈ Λ} has the finite intersection
property and there is an ultrafilter U containing it. The ultraproduct D∗ =∏
λDλ/U realises p. More concretely, the tuple [(aλ)λ] where aλ ∈ ϕ(Dλ) \

ϕλ(Dλ) is a realisation. To see this, take any ϕ ∧ ¬ϕλ ∈ p. Then

〈λ〉 ⊆ {µ ∈ λ : Dµ |= ϕ ∧ ¬ϕλ(aµ)}

and so the right hand side is in U . So D∗ |= p([(aλ)λ]). But this means that
S(D∗) 6= Hom(C,D∗) which is a contradiction. So JD must be of finite type.

Now suppose that in addition D is closed under finite products. We
know from above that any cover S ⊆ ϕ ∼= Hom(C,−) has a dense positive
existential formula ψ below it. Write ψ as ψ1 ∨ · · · ∨ ψn where each ψi is
positive primitive. Suppose that none of the ψi is dense. Then for each i
there is Di ∈ D and ai ∈ ϕ(Di) \ ψi(Di). Let D =

∏n
i=1Di. Then

ψ(D) =
n⋃
k=1

(
n∏
i=1

ψk(Di)

)
⊆

n∏
i=1

ϕ(Di) = ϕ(D)

Since D ∈ D and ψ is dense, we must have ψ(D) = ϕ(D). But ak ∈
ϕ(Dk) \ ψk(Dk) implies that

(a1, . . . ,an) ∈
n∏
i=1

ϕ(Di) \
n∏
i=1

ψk(Di)

for each k which is a contradiction.
(b) Suppose J is a finite type topology. For each A ∈ fpC, let ϕA be a

presentation formula for A. Now let T be the coherent theory with axioms

{ϕA → ψ : A ∈ fpC, ψ ∈ J(A)}

Then V (J) = ModT (the class of models of T ). By Theorem 3.3, V (J) is
definable.
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Suppose now that J is of finite pp type. Let ψ ⊆ S ⊆ ϕ be dense where
ψ is positive primitive. Let D =

∏
iDi where each Di is in V (J).

ψ(D) =
∏
i

ψ(Di) =
∏
i

ϕ(Di) = ϕ(D)

so S(D) = ϕ(D) and we must have D ∈ V (J) as required.

Proposition 3.5. Suppose D is a definable subcategory. Then D = V (JD).

Proof. Obviously we have D ⊆ V (JD). For the other direction we use The-
orem 3.3.

There is a coherent theory T ′ such that D = ModT ′. Suppose C ∈
V (JD). We want C |= T ′. So consider an arbitrary formula ∀x(ϕ(x) →
ψ(x)) from T ′. We may clearly assume that ϕ is positive primitive and ψ is
positive existential. Since ϕ is positive primitive, there is a finitely presented
object A and an epimorphism

Hom(A,−)
f-- ϕ

Consider the pullback diagram

f−1(ψ ∧ ϕ) -- ψ ∧ ϕ

Hom(A,−)
?

?

-- ϕ
?

?

Let D ∈ D. Then (ψ ∧ ϕ)(D) = ϕ(D), hence f−1(ψ ∧ ϕ)(D) = Hom(A,D).
So f−1(ψ ∧ ϕ) ∈ JD(A). But this means f−1(ψ ∧ ϕ)(C) = Hom(A,C) which
implies that (ψ ∧ϕ)(C) = ϕ(C). So C |= ∀x(ϕ(x) → ψ(x)) as required.

Recall ([4, 6.7]), or note from the above, that if D is a definable subcate-
gory closed under finite products, then it is closed under arbitrary products.

In order to prove that there is a bijection between definable subcategories
and finite type Grothendieck topologies we will need some sheaf theory.

3.3 Some general sheaf theory

Fix a Grothendieck topology J on a skeletally small category A. A presheaf
P ∈ (A,Set) is called a separated presheaf if whenever A ∈ A and f, g :
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Hom(A,−) → P are maps such that f �S= g �S for some cover S ∈ J(A),
then f = g. A presheaf F ∈ (A,Set) is called a sheaf if for any object A ∈ A
and any cover S ∈ J(A), every map α : S → F has a unique extension to a
map Hom(A,−) → F .

S
α- F

Hom(A,−)
?

?

!

-

Given a Grothendieck topology J on A, one can form the category of
sheaves Sh(A, J) which will be a reflexive subcategory of (A,Set). So we
have an adjoint pair

Sh(A, J)
i-

�
a

(A,Set)

where a is the associated sheaf functor and i is the inclusion functor. The
functor a is left adjoint to i and commutes with finite limits.

The construction of the associated sheaf is usually done by two appli-
cations of Grothendieck’s plus functor. This functor takes a presheaf P in
(A,Set) to the presheaf P+ which is defined on objects C ∈ A as follows.

P+C = lim−→
R∈J(C)

Nat(R,P )

where the directed colimit is taken over the decreasing family of covers. Note
that since a finite intersection of covers is a cover, we do indeed have a
directed system over which we can take a limit. Here Nat(R,P ) = Hom(R,P )
is the set of natural transformations R → P . The elements of P+C can be
represented by pairs (R,α) where α : R→ P is a natural transformation and
R ∈ J(C). We factor by the equivalence relation

(R,α) ∼ (S, β) ⇔ there is a cover T ⊆ R ∩ S s.t. α �T= β �T

Given a map f : C → C ′, the induced map P+f : P+C → P+C ′ is defined
as follows.

[R,α] - [f∗R,αf
∗]

Here f ∗ : Hom(C ′,−) → Hom(C,−) is the induced map and f∗R is the cover
(f ∗)−1R (since an inverse image of a cover is a cover).
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The plus functor takes a natural transformation ϕ : P → Q to the natural
transformation ϕ+ : P+ → Q+ which is defined as follows.

ϕ+
C [R,α] = [R,ϕ ◦ α]

The canonical map η : P → P+ is defined as follows.

ηC(x) = [Hom(C,−), x]

On the right hand side we identify the element x ∈ P (C) with the corre-
sponding element of Nat(Hom(C,−), P ). Clearly η is a monomorphism if
and only if P is a separated presheaf. For any presheaf P , P+ is separated.
If P is separated, then P+ is a sheaf. So P++ is always a sheaf. The asso-
ciated sheaf functor is equivalent to two applications of the plus functor, so
that aP = P++.

The following lemmas will be important for us. The first is direct from
the definition of P+.

Lemma 3.6. For every map Hom(A,−) → P+, there is a cover S ∈ J(A)
and a map S → P such that the following square commutes.

S - P

Hom(A,−)
?

?

- P+
?

Lemma 3.7. Let f : a(Hom(A,−)) → aP be a map of sheaves. Then there
is a cover S ∈ J(A) such that for every h ∈ S there is an xh ∈ P (C = codh)
such that a(xh) = f ◦ a(h∗) as in the following diagram (which uses the
Yoneda identification of PC with Nat(Hom(C,−), P )).

a(Hom(C,−))
a(xh) - aP

a(Hom(A,−))

f

-

a(h ∗
) -

Proof. By applying Lemma 3.6 to the composition

Hom(A,−) - a(Hom(A,−))
f- aP
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there is a cover R ∈ J(A) and a map R → P+ s.t. the following diagram
commutes.

R - P+

Hom(A,−)
?

?

- a(Hom(A,−))
f- aP

?

Let g ∈ R and put D = cod g. Then, again by Lemma 3.6 there is a cover
Rg ∈ J(D) and a map Rg → P such that

Rg
- P

Hom(D,−)
?

?

g∗
- R - P+

?

commutes.
Let S ⊆ Hom(A,−) be defined by S = {g′g : g ∈ R, g′ ∈ Rg}. By G3 of

the axioms for a Grothendieck topology S ∈ J(A). Suppose h ∈ S. Then
h = g′g for some g ∈ R and g′ ∈ Rg. The map

Hom(C = codh,−)
(g′)∗- Rg

- P

corresponds to an element xh ∈ P (C) and

Hom(C,−)
xh - P

S

h∗

?

Hom(A,−)
?

?

- a(Hom(A,−))
f- aP

?

commutes. Hence a(xh) = f ◦ a(h∗) as required.

As described above, the associated sheaf functor a is equivalent to two
applications of the plus functor, but it is also equivalent to one application
of the “sep-functor” followed by one application of the plus functor. The
sep-functor will be relevant to us so we describe it now.
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We define an equivalence relation on P (C) by

x ∼ y ⇔ ∃S ∈ J(C) s.t. x �S= y �S

Define PsepC = P (C)/ ∼. A map f : C → C ′ induces a map f∗ : Psep(C) →
Psep(C

′) in the obvious way. This association is functorial and so Psep is a
well defined element of (A,Set). Moreover, the map

P - Psep

is also functorial as one can check (the induced maps are the obvious ones).
There is a canonical epimorphism σ : P → Psep.

Lemma 3.8. Psep is separated.

Proof. Let S ∈ J(C) and let x, y ∈ P (C) with x̄, ȳ the corresponding equiv-
alence classes in PsepC. Suppose that x̄ �S= ȳ �S. So for each f ∈ S, there
is an Rf ∈ J(cod f) such that

f∗(x) �Rf
= f∗(y) �Rf

Let S ′ be the set
{gf : f ∈ S, g ∈ Rf}

Then S ′ ∈ J(C) (by Grothendieck topology axiom G3) and x �S′= y �S′ . So
x̄ = ȳ and Psep is separated as required.

Since Psep is separated, the canonical map η : Psep → (Psep)
+ is a

monomorphism and (Psep)
+ is a sheaf. Since σ is universal from P to sep-

arated presheaves and η is universal from P to sheaves (these statements
are easily verified), it follows that (−)+ ◦ (−)sep = a. We have the following
picture.

P -- Psep
- - aP

Let P be any presheaf. A subobject P ′ ⊆ P is dense (w.r.t. the ambient
Grothendieck topology J) if for any representable functor Hom(A,−) and
any map f : Hom(A,−) → P , the inverse image f−1(P ′) is in J(A). For any
presheaf P , we use the notation D(P ) for its set of dense subobjects. This
set is closed under finite intersections so forms a downward directed family.

Lemma 3.9.
Nat(aP, aQ) ∼= lim−→

P ′∈D(P )

Nat(P ′, Qsep)
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Proof. First note that Nat(aP, aQ) ∼= Nat(P, aQ). Define the map

Φ : Nat(P, aQ) - lim−→
P ′∈D(P )

Nat(P ′, Qsep)

by
Φ(α) =

[
α−1Qsep, α(, rather α � α−1Qsep

)
]

In the other direction, we define the map

Ψ : lim−→
P ′∈D(P )

Nat(P ′, Qsep) - Nat(P, aQ)

by
Ψ [P ′, α]C (x) =

[
x−1P ′, α ◦ x

]
Note that the morphism α ◦ x : x−1P ′ → Qsep has a unique extension to a
morphism Hom(C,−) → aQ, that is, to an element of aQ(C). It is easily
checked that, since Qsep is separated, Ψ is well defined. We claim that Ψ =
Φ−1.

We first show that Ψ ◦ Φ = id.

Ψ(Φ(α))C(x) = Ψ
[
α−1Qsep, α

]
C

(x)

=
[
x−1(α−1Qsep), α ◦ x

]
Write R = x−1(α−1Qsep). Suppose that αC(x) = [S, β]. We want to show
that there is a cover T ⊆ R ∩ S such that α ◦ x �T= β �T .

For any f : C → D in R,

(α ◦ x)(f) = αD(f∗(x))

= f∗(αC(x))

= f∗ [S, β]

= [f∗S, βf
∗]

But we know that (α ◦ x)(f) is the element [Hom(D,−), (α ◦ x)(f)] ∈ aQ.
So there is a cover Sf ⊆ f∗S such that

βf ∗ �Sf
= (α ◦ x)(f) �Sf

So setting
T = {gf : f ∈ R, g ∈ Sf}
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we see that T is a cover such that α ◦ x �T= β �T as required.
We now show that Φ ◦Ψ = id. Let β = Ψ[P ′, α], so

βC(x) =
[
x−1P ′, α ◦ x

]
Then we have

Φ(β) =
[
β−1Qsep, β

]
.

Now, P ′ ⊆ β−1Qsep since if x ∈ P ′C then βC(x) = [Hom(C,−), α ◦x] ∈ Qsep.
Clearly β �P ′= α and the result follows.

3.4 Geometric morphisms, points, and coherent toposes

The class of all toposes can be made into a category (actually it is a 2-
category, see [3, Vol. 1, 7.1]). A map of toposes ϕ : E → F is defined to be a
geometric morphism, meaning an adjoint pair

E
ϕ∗-�
ϕ∗

F

where ϕ∗ is left adjoint to ϕ∗ and ϕ∗ is left exact (i.e. commutes with finite
limits). Composition can be defined by composing the adjoints (see [14,
p. 101]). A point p of a topos E is a geometric morphism p : Set → E. A
topos E is said to have enough points if for any two subobjects A,B of a
given object E ∈ E, we have that

A ⊆ B ⇔ p∗(A) ⊆ p∗(B) for all points p : Set → E

A site is a pair (A, J) consisting of a small category A with a Grothendieck
topology J . The site is called coherent if J is of finite type. So if C is an
LFP category and D ⊆ C a definable subcategory, then the site (fpC, JD) is
coherent (by Proposition 3.4(a)). A coherent topos is a topos which can be
realised as the category of sheaves for a coherent site. The following theorem
is proved in [15, IX, §11].

Theorem 3.10 (Deligne). A coherent topos has enough points.

Suppose that p is a point of the presheaf topos (A,Set). Since every
presheaf is a colimit of representables, and p∗, as a left adjoint, commutes
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with all colimits, p∗ is determined by its action on those representables. So
p∗ is determined by its composition with the Yoneda embedding

Aop - (A,Set)

Conversely, any functor F : Aop → Set determines a functor (A,Set) → Set
by associating to a presheaf P ∈ (A,Set) the set∐

A∈A F (A)× P (A)

∼
where (xu, y) ∼ (x, uy) for all u : A → B in A, x ∈ F (B) and y ∈ P (A)
(here xu is defined to be F (u)(x) and uy is P (u)(y)). This functor has an
obvious action on maps and is denoted by F ⊗A − (see [15, VII, §2]). Like
the tensor product for modules, it has a right adjoint Set → (A,Set) given
by

X - Hom(F (−), X)

So F determines a geometric morphism Set → (A,Set) if and only if F⊗A−
is left exact. A functor F : Aop → Set such that F⊗A− is left exact is called
a flat functor. Now every functor F ∈ (Aop,Set) is a colimit of representable
functors in a canonical way: the indexing category is the category of elements
of F whose objects are pairs (A, x) where A ∈ A and x ∈ F (A) and whose
maps (A, x) → (B, y) are those maps f : A→ B such that F (f)(y) = x. Let
U be the forgetful functor from the category of elements of F to A. Then
the maps Hom(−, U(A, x)) → F corresponding to x ∈ F (A) give a cocone
on F . This cocone is in fact a colimit and will be said to be canonical. If
the category of elements of F is a filtered category (see [1, p. 13]), then we
can express F canonically as a filtered colimit of representable functors. It
turns out that this property is equivalent to flatness: F is flat if and only if
its category of elements is filtered ([15, VII, Thm 9.1]).

We have seen that a flat functor F ∈ (Aop,Set) determines a point of
(A,Set). In fact, all points of (A,Set) arise in this way (see [15, VII, Thm
5.2]). Now, suppose that J is a Grothendieck topology on A and p is a
point of Sh(A, J). The inclusion of sheaves in presheaves has a left exact left
adjoint and so gives a geometric morphism

Sh(A, J) → (A,Set)

By composition with this arrow, the point p gives a point of (A,Set) and
so must be induced by a flat functor F : Aop → Set. The functor F then
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has the property that, whenever S ⊆ Hom(A,−) is a cover, the induced
monomorphism F ⊗A S → F ⊗A Hom(A,−) is an isomorphism. Such a
functor is said to be J-continuous or simply continous if the context is clear.
Conversely, given a flat J-continuous functor F , the induced point of (A,Set)
factors through the sheaf category and gives a point of Sh(A, J). Every point
of Sh(A, J) arises in this way (see [15, VII, Lemma 5.3]).

Lemma 3.11. Let J be a Grothendieck topology on fpC. A functor F :
(fpC)op → Set is flat and J-continous if and only if it is of the form
Hom(−, D) for some object D ∈ V (J).

Proof. Firstly, suppose thatD ∈ V (J). The functor Hom(−, D)⊗fpC− is iso-
morphic to evD (the “evaluation at D” functor). That is, if P ∈ (fpC,Set),
then (Hom(−, D)⊗P ) ∼= P (D) in a natural way. In an LFP category, directed
colimits commute with finite limits (see [1, Prop 1.59]). Since C is LFP and
the extension of P to C is computed via directed colimits (see Lemma 3.1),
we have that evD commutes with finite limits. So Hom(−, D) ⊗ − is left
exact which implies that Hom(−, D) is flat. Now, if S ⊆ Hom(C,−) is a
cover, then Hom(−, D) ⊗ S → Hom(−, D) ⊗ Hom(C,−) is the inclusion
S(D) ⊆ Hom(C,D). Since D ∈ V (J), this inclusion is an equality. Hence
Hom(−, D) is continuous.

Conversely, suppose that F is a continous flat functor (fpC)op → Set.
Since F is flat, we can write F = lim−→i

Hom(−, Ai) as a filtered colimit of rep-
resentables. Since, for any C ∈ fpC we have that Hom(C,−) commutes with
filtered colimits in C (see [1, Cor 1.5]), we have that F ∼= Hom(−, lim−→Ai).
Let D = lim−→i

Ai. Then (F ⊗−) ∼= evD and for any object C ∈ fpC and any
cover S ⊆ Hom(C,−), we have that SD = Hom(C,D) since F is continous.
So D ∈ V (J) as required.

We can use Deligne’s theorem and the above lemma to prove the following.

Proposition 3.12. Let J be a finite type topology on fpC. Then J = JV (J).

Proof. We clearly have that J ⊆ JV (J) so we need only establish that JV (J) ⊆
J . Let C ∈ fpC and S ∈ JV (J)(C). Let a : (fpC,Set) → Sh(fpC, J) be
the associated sheaf functor. Consider the inclusion aS ⊆ a(Hom(C,−)). If
p is a point of Sh(fpC, J), by Lemma 3.11 and the description of points of
Sh(fpC, J), there is an object D ∈ V (J) such that for any presheaf P , we
have p∗(aP ) ∼= (Hom(−, D)⊗ P ) ∼= PD. So we have that p∗(aS) = S(D) =
Hom(C,D) = p∗(aHom(C,−)) since S ∈ JV (J)(C) and D ∈ V (J). Since
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J is of finite type, the topos Sh(fpC, J) has enough points (by Deligne’s
Theorem). Hence we have that aS = a(Hom(C,−)). But this implies that
S ∈ J(C). So we have that JV (J) = J as required.

Combining Propositions 3.5 and 3.12 we get the following corollary which
is completely analogous to the additive case (see [22, 13.3.6]).

Corollary 3.13. There is a bijection between definable subcategories of C
and finite type topologies on fpC.

That Deligne’s Theorem could be used to prove Proposition 3.12 was
suggested to us by Tibor Beke.

3.5 Finitely presented sheaves

Let J be a Grothendieck topology on fpC. We have an adjunction

Sh(fpC, J)
i-

�
a

(fpC,Set)

as before, where the associated sheaf functor a commutes with finite limits.
Note that a monomorphism f is a dense embedding of presheaves if and only
if a(f) is invertible in the category of sheaves. The next result is general:
if a functor with a left adjoint commutes with directed colimits then its left
adjoint preserves finitely presented objects.

Lemma 3.14. Suppose i commutes with directed colimits. Then for any
finitely presented (resp. finitely generated) functor P in the presheaf category
(fpC,Set), aP is finitely presented (resp. finitely generated) in the category
of sheaves.

Proof. Let P be a f.p. (resp. f.g.) presheaf and let lim−→Gi be a directed col-
imit (resp. directed union) of sheaves. Note that since i preserves monomor-
phisms, directed unions are taken to directed unions. Then:

Nat(aP, lim−→Gi) ∼= Nat(P, i(lim−→Gi)) ∼= Nat(P, lim−→ iGi)

∼= lim−→Nat(P, iGi) ∼= lim−→Nat(aP,Gi)

Proposition 3.15. The topology J is of finite type if and only if the inclusion
functor i commutes with directed colimits.
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Proof. (⇒) Suppose J is of finite type. Let {Fi}i be directed system of
sheaves and let lim−→Fi, with limit maps fk : Fk → lim−→Fi be their directed
colimit as presheaves. Let ψ be a finitely presented cover of an object A ∈
fp(C). Consider a natural transformation α : ψ → lim−→Fi. Since ψ is f.p. α
factors essentially uniquely through some Fk as fkβ, as shown. But since Fk
is a sheaf, β extends uniquely to a natural transformation ρ on Hom(A,−)
as in the following diagram.

ψ
α - lim−→Fi

Hom(A,−)
?

?

ρ

- Fk

fk

6

β

-

Clearly fkρ is the unique extension of α to Hom(A,−), so lim−→Fi is a sheaf.
(⇐) Now suppose that i commutes with directed colimits. Let S ⊆

Hom(A,−) be a cover. Write

S =
⋃
λ

ϕλ

as a directed union of finitely presented subobjects. Since a is a left adjoint
it commutes with directed colimits. It also commutes with finite limits and
so preserves monomorphisms. Hence

a(Hom(A,−)) = aS =
⋃
λ

a(ϕλ)

is a directed union in the sheaf category. Since i commutes with directed
colimits, we have, by Lemma 3.14, that a(Hom(A,−)) is finitely presented
in the sheaf category. So a(Hom(A,−)) = a(ϕλ) for some λ. But this means
that ϕλ ⊆ Hom(A,−) is dense. This proves that J is of finite type.

Proposition 3.16. Let J be a finite type topology.
(a) If F is a finitely generated sheaf, there is a finitely generated presheaf P

such that F ∼= aP ;
(b) IF F is a finitely presented sheaf, then there is a finitely presented presheaf

P such that F ∼= aP .
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Proof. (a) By Lemma 3.14 if J is a finite type topology, then Sh(fpC, J) is
an LFP topos with a generating set

{a(Hom(A,−)) : A ∈ fpC}

of finitely presented objects. By Proposition 2.1 there is an epimorphism∐
i

a(Hom(Ai,−)) -- F ∼= aF

where the coproduct is finite. By Lemma 3.7, for each component a(Hom(Ai,−)) →
aF there is a cover Si of Ai such that for each C ∈ fpC and h ∈ SiC, the
composition

a(Hom(C,−)) - a(Hom(Ai,−)) - aF

is of the form a(fi,h) for some fi,h : Hom(C,−) → F . Since the topology
J is of finite type, we can assume that Si is finitely presented, so there are
finitely many Ck and hk ∈ SiCk and an epimorphism∐

k

Hom(Ck,−) -- Si

This gives an epimorphism∐
k

a(Hom(Ck,−)) -- a(Hom(Ai,−))

Given all this, and since a commutes with coproducts, it is clear that we can
choose the Ai such that our epimorphism∐

i

a(Hom(Ai,−)) -- aF

is of the form a(f) for some f :
∐
i Hom(Ai,−) → F . Put P = im f . Then

P is f.g. and aP ∼= aF ∼= F .
(b) Now suppose that F is f.p., so there is a presentation for F of the

form ∐
i

a(Hom(Ai,−))
p-

q
-

∐
j

a(Hom(Bj,−)) - F

where all coproducts are finite. The argument of part (a) applies here to give
us that, when the Ai are chosen suitably, p = a(f) and q = a(g) for maps∐

i

Hom(Ai,−)
f-

g
-

∐
j

Hom(Bj,−)
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Since a commutes with colimits, F ∼= aP where P is the, clearly finitely
presented, coequaliser of the above diagram.

For the remainder of this section, let J = JD for a definable subcategory
D ⊆ C. In this case we have the following neat characterisation of dense
subobjects of presheaves (involving the extension of functors from fpC to C
defined earlier).

Lemma 3.17. P ′ ⊆ P is a dense inclusion of presheaves if and only if
P ′(D) = P (D) for all D ∈ D.

Proof. Let D ∈ D and x ∈ P (D). Then there is a f.p. object C ∈ C, an
element y ∈ P (C) and a map f : C → D s.t. f∗(y) = x. Since P ′ is dense in
P , we have that (y−1P ′)(D) = Hom(C,D). So f∗(y) ∈ P ′(D), i.e. x ∈ P ′(D)
as required.

For the converse, assume P ′(D) = P (D) for allD ∈ D. Let A ∈ fpC, and
f : Hom(A,−) → P a natural transformation. Then our assumption implies
that (f−1P ′)(D) = f−1(P ′D) = f−1(PD) = Hom(A,D). So by definition of
JD, we have that f−1P ′ is dense in Hom(A,−). This implies that P ′ is dense
in P .

We are now in a position to prove a characterisation result for the category
of finitely presented sheaves fp(Sh(fpC, JD)) where D ⊆ C is a definable
subcategory. Let P and Q be finitely presented presheaves. So P ∼= ϕ/θ̃ and
Q ∼= ψ/η̃ say. Let E ⊆ ψ × ψ be the functorial equivalence relation defined
by

E(C) = {(x,y) ∈ ψ(C)× ψ(C) : ∃R ∈ JD(C) s.t. ∀g ∈ R, η̃(g(x), g(y))}

It is clear that Qsep = ψ/E.
Note that η̃ ⊆ E is dense. To see this, let C ∈ fpC and suppose that

(x,y) ∈ E(C). We need to show that (x,y)−1η̃ is a cover of C. That is,
S = {f ∈ Hom(C,−) : η̃(f(x), f(y))} is in JD(C). Let f : C → D be a
map with D ∈ D. We know there is an R ∈ JD(C) such that for all g ∈ R,
η̃(g(x), g(y)) holds. But since R(D) = Hom(C,D) we have f ∈ R(D) and
so η̃(f(x), f(y)) which implies f ∈ S. This shows that S is a cover of C and
that η̃ ⊆ E is dense.

We claim that E is in fact the closure of η̃ in ψ × ψ (that is, E is the
largest subobject of ψ × ψ in which η̃ is dense). Let E ⊆ F ⊆ ψ × ψ be
such that E(D) = F (D) for all D ∈ D. We want to show that E = F .
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So take (x,y) ∈ FC. This element defines a natural transformation α :
Hom(C,−) → F and we can take the pullback as in the following diagram.

α−1E - E

Hom(C,−)
?

?

- F
?

?

Since E ⊆ F is dense, α−1E is in JD(C). For all f ∈ α−1E, α(f) = f∗(x,y) =
(f(x), f(y)) ∈ E(cod f). So there is a cover Rf such that for all g ∈ Rf ,
η̃(gf(x), gf(y)). So putting

T = {gf : f ∈ α−1E, g ∈ Rf}

we have that T ∈ JD(C) and for all h ∈ T , η̃(h(x), h(y)). So (x,y) ∈ E(C)
which means that E = F . This shows that E is indeed the closure of η̃ in
ψ × ψ.

Now let us write E as the directed union of positive existential formulas ηλ
such that η ⊆ ηλ ⊆ E. Then ψ/E = lim−→λ

ψ/η̃λ as a directed colimit of finitely
presented functors. Since JD is a finite type topology, any dense subobject
P ′ of P will have a dense f.p. object (of the form given by Corollary 2.11)
below it. This can be seen from the following diagram.

ϕ′ -- α(ϕ′)

α−1P ′
?

?

-- P ′
?

?

Hom(C,−)
?

?

α
- P

?

?

Here α(ϕ′) is the image of the restriction of α to the positive existential
formula ϕ′ ∈ JD(C). Since α(ϕ′) is the quotient of a f.p. functor, it must be
f.g. But since P is f.p. and our functor category is locally coherent, α(ϕ′) is
in fact f.p. Moreover, it is easy to see that it is dense in P .

So we can assume that D(P ) is the filter generated by {ϕµ/θ̃}µ where
ϕµ/θ̃ is dense in ϕ/θ̃. Then

Nat(aP, aQ) ∼= lim−→
µ

lim−→
λ

Nat

(
ϕµ

θ̃
,
ψ

η̃λ

)
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We know that any map ϕµ/θ̃ → ψ/η̃λ is given by a positive existential
formula ρ (which defines a map on the whole of C). Restricted to D, ρ will
define a map ϕ/θ̃ → ψ/η̃. Moreover, any other representative for the class
of ρ in the directed colimit will define the same map ϕ/θ̃ → ψ/η̃ on D.

Conversely, suppose that ρ : ϕ/θ̃ → ψ/η̃ defines a map on D. Without
loss, we can asssume that ∀x,y(ρ(x,y) → ψ(y)) holds on C. Let ϕ0(x) be
the positive existential formula

ϕ(x) ∧ ∃yρ(x,y)

Then clearly ϕ0/θ̃ is dense in ϕ/θ̃. Now let η0(y, z) be the formula

∃x,x′(θ(x,x′) ∧ ρ(x,y) ∧ ρ(x′, z)) ∨ η(y, z)

It is clear that η̃0(D) = η̃(D) for all D ∈ D so that η ⊆ η0 ⊆ E. Note that ρ
defines a map

ϕ0/θ̃ → ψ/η̃0

Thus we obtain a “relativized/localized” version of the results in Part I.

Theorem 3.18. Let D ⊆ C be a definable subcategory. The category fp(Sh(fpC, JD))
has the following logical characterisation. Its objects are pairs of positive ex-
istential formulas of the form ϕ/θ̃ and its morphisms are positive existential
formulas which define maps ϕ/θ̃ → ψ/η̃ when restricted to D.

3.6 Finitely generated and coherent sheaves

The above argument which yielded the characterisation result for f.p. sheaves
may also be applied to f.g. sheaves. In fact the argument is slightly simpler.
If P ∼= ϕ/E1 and Q ∼= ψ/E2 are two f.g. presheaves, then

Nat(aP, aQ) ∼= lim−→
λ

Nat(ϕλ/E1, ψ/E)

where ϕλ is dense in ϕ, and E ⊇ E2 is the closure of E2 in ψ×ψ (so ψ/E ∼=
Qsep). Any map ϕλ/E1 → ψ/E is given by a pe-formula (Proposition 2.9)
which, when restricted to D, defines a map ϕ/E1 → ψ/E2. Two formulas
representing the same maps in the directed colimit will define the same map
on D.
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Conversely if ρ is a pe-formula which defines a map ϕ/E1 → ψ/E2 when
restricted to D, then the formula ϕ0 expressing (as above) that this map is
total is dense in ϕ, and the equivalence relation generated by

E2(y, z) ∨ (∃x,x′(E1(x,x
′) ∧ ρ(x,y) ∧ ρ(x′, z)))

is contained in E (since E is the closure of E2), so ρ defines a natural trans-
formation ϕ0/E1 → ψ/E. This gives us the following result.

Proposition 3.19. Let D ⊆ C be a definable subcategory. The category of
finitely generated sheaves fg(Sh(fpC, JD)) is the category with objects ϕ/E
where ϕ is a pe-formula and E is a functorial equivalence relation on ϕ, and
with maps pe-formulas ρ : ϕ/E1 → ψ/E2 which define actual maps on the
subcategory D.

With our characterisation of the category of finitely generated sheaves
fg(Sh(fpC, JD)) we can deduce a logical characterisation of the category of
coherent sheaves coh(Sh(fpC, JD)).

Proposition 3.20. The coherent objects of Sh(fpC, JD) are those isomor-
phic to one of the form ϕ/θ where ϕ, θ are pe and θ defines an equivalence
relation on ϕ when restricted to objects of the definable subcategory D.

Proof. Let F be a coherent sheaf. Then F is f.g. so we can write F in the
form ϕ/E. Since F is coherent, there is a pullback diagram of the form

θ′/E ′ ρ1 - ϕ

ϕ

ρ2

?
- ϕ/E

?

in the sheaf category. By the previous proposition, we can assume that the
maps ρi are pe-formulas which define functions on D. So

E(x,y) ⇔ ∃z(θ′(z) ∧ ρ1(z,x) ∧ ρ2(z,y))

holds on D. Let θ(x,y) be the pe-formula on the right hand side. Then θ
defines an equivalence relation on D and ϕ/θ̃ ∼= ϕ/E in the sheaf category.
We can write ϕ/θ̃ simply as ϕ/θ where θ defines an equivalence relation on
D.
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Now suppose F ∼= ϕ/θ where θ defines an equivalence relation on D.
We want to show that F is coherent. Let G ∼= ψ/E be a f.g. sheaf and let
ρ : ψ/E → ϕ/θ be a pe-formula which defines a map on D. If γ(x,y) is the
formula

∃w, z(ψ(x) ∧ ψ(y) ∧ ρ(x,w) ∧ ρ(y, z) ∧ θ(w, z))

then G ×F G is a quotient of γ in the sheaf category, so G ×F G is finitely
generated. Therefore F is coherent as required.

We describe the category coh(Sh(fpC, JD)) in the following theorem.

Theorem 3.21. Let D ⊆ C be definable. The category coh(Sh(fpC, JD))
has as objects pairs of pe-formulas ϕ/θ where θ defines an equivalence relation
on ϕ on all objects of D. The maps ϕ/θ → ψ/η are given by pe-formulas ρ
which define actual functions ϕ/θ → ψ/η when restricted to objects of D.

This result can be found in [19] (see p. 269), although it is not so easy
to recognise it as the same result. Makkai and Reyes’ proof is very different
from ours, as is their terminology.

Definable subcategories D ⊆ C are categories of models of coherent the-
ories. Given a coherent theory T , the category of sheaves Sh(fpC, JModT )
is the classifying topos of T . We have shown that the full subcategory of
coherent objects in this topos is equivalent to the category with objects

{ϕ/θ : ϕ, θ pe-formulas s.t. T ` (θ is an equivalence relation on ϕ)}

and with Hom-sets Hom(ϕ/θ, ψ/η) of the form

{ρ : ρ is a pe-formula s.t. T ` (ρ defines a function ϕ/θ → ψ/η)}

We will denote this category by T eq+ or Deq+ where D = ModT .

4 Interpretations

4.1 Interpretations as functors

Fix two first-order signatures L and K. For simplicity of notation we write
as if L and K are one-sorted but all our definitions and results are easily
generalised to many-sorted languages. Let C be the category of L-structures
and A the category of K-structures. Let D ⊆ C and B ⊆ A be definable
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subcategories. We define an interpretation of B in D to be an exact (i.e.
commuting with finite limits and finite colimits) functor

Γ : Beq+ - Deq+

Note that although the eq+ categories are closed under finite limits, they need
not be closed under finite colimits. However it still makes sense to talk of
an exact functor between such categories, meaning one which preserves finite
limits and such finite colimits as do exist. In practice specific interpretations
are usually defined by specifying data as in the next result.

Proposition 4.1. Fix an object ϕ/θ of Deq+. Associate to each n-ary func-
tion symbol f ∈ K a map

Γf :
(
ϕ

θ

)n
-
ϕ

θ

of Deq+, and to each m-ary relation symbol R ∈ K an object

ΓR ⊆
(
ϕ

θ

)m
such that for each D ∈ D the K-structure (ϕ

θ
(D),Γf (D),ΓR(D))f,R∈K is in

B. Then the function

x = x - ϕ/θ

f - Γf

R - ΓR

has a unique extension to an interpretation Γ : Beq+ → Deq+.
(Constants can be treated as special cases of the above.)

Proof. We extend the function as follows. First put Γ(x=x)n = (ϕ/θ)n for
each n. Now, any term t(x1, . . . , xn) of K defines a map

t : (x = x)n - x = x

of Beq+. Suppose that t is the term f(f1(x), . . . , fm(x)) where f, f1, . . . , fm
are function symbols of K. Then we put

Γt = Γf ◦ (Γf1 , . . . ,Γfm)
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We now define the action of Γ on a term equation t(x) = s(x) where
x = (x1, . . . , xn). The functor t = s is an equaliser as shown.

t = s - (x = x)n
t-

s
- x = x

So we define Γt=s to be the equaliser of Γt and Γs. Note that Γt=s will indeed
be an object of Deq+ since this category has all finite limits.

We now consider an atomic formula R(t1, . . . , tk) in m free variables.
Define ΓR(t1,...,tk) to be Γ−1

(t1,...,tk)(ΓR) as in the following diagram.

Γ−1
(t1,...,tk)(ΓR) - ΓR

(
ϕ

θ

)m?

?

Γ(t1,...,tk)

-
(
ϕ

θ

)k?

?

Again, ΓR(t1,...,tk) will be an object of Deq+.
For a functor ψ of the form

∨n
i=1

∧m
j=1 ψij where ψij is atomic, we define

Γψ =
⋃
i

⋂
j

Γψij

Suppose now that ψ = ψ(x,y) where x is of length n and y of length m.
Then Γψ embeds in (ϕ/θ)n+m. We define Γ∃yψ to be the image of Γψ under
the projection map

(ϕ/θ)n+m - (ϕ/θ)n

So far, we have extended Γ to all positive existential formulas (as well
as maps defined by terms). This map corresponds exactly to the syntactic
interpretation map of the Reduction Theorem as described in [7, p. 214].

To complete the definition of Γ, we need to define its action on pairs of
positive existential formulas ψ/η and maps between them. Note that ψ/η is
the coequaliser of the two projection maps

η -- ψ

so we can define Γψ/η to be the coequaliser of the corresponding projection
maps

Γη
-- Γψ
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The fact that η is an equivalence relation on ψ is expressible by a K-formula.
Since the above process takes structures in D to structures in B, the Reduc-
tion Theorem gives us that the corresponding L-formula holds on D so that
Γη is an equivalence relation on Γψ. Hence Γψ/η ∼= Γψ/Γη.

So how should Γ act on a positive existential map

ρ : ψ/η → χ/ζ

of Beq+? Note that ρ defines a subfunctor of ψ × χ which satisfies the K-
formulas

∀x(ψ(x) → ∃yρ(x,y))

∀x,x′,y,y′(η(x,x′) ∧ ρ(x,y) ∧ ρ(x′,y′) → ζ(y,y′))

on the definable subcategory B. Regarding ρ as an object of Beq+, Γρ defines
a subfunctor of Γψ×Γχ. The two K-formulas above have obvious translations
to L-formulas which say exactly that Γρ defines a function

Γρ : Γψ/η - Γχ/ζ

These L-formulas will hold on D by the Reduction Theorem. It is easy to
check that this action of Γ on maps ρ is functorial.

This extension to a functor Γ : Beq+ → Deq+ is clearly the unique such
extension to a functor commuting with finite limits and finite colimits.

The above proof shows, amongst other things, that the interpretation
functor Γ takes positive existential formulas to their syntactic translations
in the sense of the Reduction Theorem (see [7]). We will henceforth refer to
the following restricted form of this theorem as the Reduction Theorem. Its
proof is a direct consequence of the above proof and the proof in [7]. The
notation Γϕ is as in the proof of Proposition 4.1.

Theorem 4.2 (Reduction Theorem). Let Γ : Beq+ → Deq+ be an exact
functor. Fix D ∈ D and let B = (Γx=x(D),Γf (D),ΓR(D))f,R∈K. Then, for
any ([a1], . . . , [an]) ∈ Γx=x(D), and any pe K-formula ϕ(x1, . . . , xn) we have

B |= ϕ([a1], . . . , [an]) ⇔ D |= Γϕ(a1, . . . ,an)

¿From this it follows that an exact functor Γ : Beq+ → Deq+ induces a
functor D → B which does indeed correspond to an interpretation in the
sense of model theory: we are interpreting B in D in a definable way.
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Proposition 4.3. Let B and D be definable subcategories as above. An exact
functor Γ : Beq+ → Deq+ induces a functor Γx=x : D → B via

D - (Γx=x(D),Γf (D),ΓR(D))f,R∈K

Moreover, this functor commutes with directed colimits and pure embeddings.

Proof. We first need to show that for every D ∈ D the K-structure
(Γx=x(D),Γf (D),ΓR(D))f,R∈K is in B. Suppose B = ModT for a coherent
theory T . Choose a coherent axiom ϕ→ ψ of T . Let ρ(x,y) be the relation
defined by the pe-formula

ϕ(x) ∧ ψ(y) ∧ x = y

Then ρ defines a monomorphism ϕ → ψ in Beq+. By left exactness of Γ, ρ
is taken to a monomorphism Γρ : Γϕ → Γψ in Deq+, so

D |= Γϕ → Γψ

By the reduction theorem,

(Γx=x(D),Γf (D),ΓR(D))f,R∈K |= ϕ→ ψ

for every D ∈ D.
That the association

D - (Γx=x(D),Γf (D),ΓR(D))f∈K

is functorial is obvious. So we indeed have a functor Γx=x : D → B. It
remains to show that this functor commutes with directed colimits and pure
embeddings.

Since Γx=x, Γf and ΓR have expressions as quotients of pe-formulas, which
we know commute with directed colimits, we have the first statement. As
for the second, suppose that D ⊆ D′ is a pure embedding in D. Then
Γx=x(D) → Γx=x(D

′) is a monomorphism. For suppose Γx=x ∼= ϕ/θ. Let
a, b ∈ ϕ(D) such that D |= θ(a, b). By purity, D |= θ(a, b), so ϕ/θ(D) →
ϕ/θ(D′) is monic.

To show that the embedding ϕ/θ(D) → ϕ/θ(D′) is pure, let ψ be a
positive existential K-formula and let a1, . . . ,an ∈ ϕ(X) such that(

ϕ

θ
(D′),Γf (D

′),ΓR(D′)
)
f,R∈K

|= ψ([a1], . . . , [an])
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We can now apply the reduction theorem to get

D′ |= Γψ(a1, . . . ,an)

Since D ⊆ D′ is pure, we have

D |= Γψ(a1, . . . ,an)

and so, by applying the reduction theorem once more, we have that(
ϕ

θ
(D),Γf (D),ΓR(D)

)
f,R∈K

|= ψ([a1], . . . , [an])

as required.

It is easy to see that interpretations behave well with respect to compo-
sition. For suppose that we have interpretations

Beq+ Γ- Deq+ ∆- Feq+

where Γx=x = ϕ/θ and ∆x=x = ψ/η. Then one can check that Γx=x ◦∆x=x =
∆ϕ/θ so

(∆ ◦ Γ)x=x = Γx=x ◦∆x=x

So now that we have a nice definition of interpretation, we can give a
relatively simple and natural definition of a bi-interpretation. We say that a
pair (Γ,∆) is a bi-interpretation between definable subcategories B and D if

Beq+
Γ-�
∆

Deq+

are interpretations such that

(Γ ◦∆)x=x ∼= x = x

(∆ ◦ Γ)x=x ∼= x = x

as objects of Deq+ and Beq+ respectively. So these natural isomorphisms
will be given by positive existential formulas, corresponding to the notion of
definable isomorphism in the classical definition of a bi-interpretation.

We shall give some examples of interpretations and bi-interpretations
in the next section. But first we show that one can recover a definable
subcategory D as the category of exact functors on Deq+. Our notation for
this category of exact functors is Ex(Deq+,Set). As mentioned earlier, in
the additive case this was noticed by Herzog but in the category-theoretic
literature such results go back at least as far as [19]. Indeed, the next result
is the finitary case of [8, 5.10(ii)].
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Proposition 4.4. Given a definable subcategory D in a first-order language
L,

D ' Ex(Deq+,Set)

Proof. We define a functor

ev : D - (Deq+,Set)

by evD(F ) = F (D) and evf (F ) = F (f). It is easily checked that evD is an
exact functor Deq+ → Set, so ev maps to Ex(Deq+,Set). It is also easy to
see that ev is a faithful functor. For suppose f, g : X → Y are parallel arrows
in D such that evf = evg. Then evf (x = x) = evg(x = x), so f = g.

Now suppose that we have a map Φ : evD → evE in (Deq+,Set). Evaluate
Φ at (x = x) ∈ Deq+ to obtain a map f : D → E of sets. For each n consider
the map

∧n
i=1(xi = xi) → (xk = xk) of Deq+ corresponding to projection

onto the kth factor. The naturality of Φ gives us the following commutative
square.

Dn Φ(x=x)n- En

D

πk

?

f
- E

πk

?

By letting k vary we see that Φ(x=x)n = fn.
Now, for every n-ary function symbol σ : (x = x)n → (x = x) naturality

of Φ gives a commutative square

Dn fn
- En

D

σD

?

f
- E

σE

?

and, for every relation symbol R ⊆ (x = x)m, a commutative square

R(D)
ΦR- R(E)

Dm
?

?

fm
- Em

?

?
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Thus f is a homomorphism D → E. That is, f ∈ D.
Since every pe-formula ϕ in n variables defines a subobject of (x = x)n

in Deq+, it is easy to see that Φϕ is the restriction of fn to ϕ(X). Also since
ϕ/θ is a quotient object of ϕ in Deq+, one can deduce that Φϕ/θ takes an
equivalence class [x] in ϕ/θ(X) to the equivalence class [fn(x)] in ϕ/θ(Y ).
Hence Φ = evf . That is, the functor ev is full.

We now show that ev is an equivalence. Let Γ : Deq+ → Set be any exact
functor. Let D be the L-structure (Γ(x = x),Γ(f),Γ(R))f,R∈L. Using the
exactness of Γ, it is easily checked that Γ(ϕ) = ϕ(D) for every pe-formula ϕ.
We claim that D ∈ D. Suppose that D = ModT for a coherent theory T .
Let ϕ→ ψ be a coherent axiom of T . Let ρ(x,y) be the relation defined by

ϕ(x) ∧ ψ(y) ∧ x = y

Then ρ defines a monomorphism ϕ → ψ in Deq+. By exactness of Γ, Γ(ρ) :
Γ(ϕ) → Γ(ψ) is a monomorphism of sets, so Γ(ϕ) ⊆ Γ(ψ), i.e. ϕ(D) ⊆ ψ(D),
that is

D |= ϕ→ ψ

Thus D ∈ D = ModT . Clearly Γ ∼= evD, so ev is indeed an equivalence as
required.

4.2 Examples of interpretations

Let L = K be the language of rings. Let D be the category of real closed fields
and B the category of algebraically closed fields. It is easy to see that D and
B are definable subcategories. The standard two dimensional interpretation
of an algebraically closed field in a real closed field is an instance of an
interpretation in our sense.

In fact any classical interpretation by positive existential formulas of a
K-structure B in an L-structure D can be thought of as an interpretation
in our sense between the category of K-structures and a suitable definable
subcategory D of the category of L-structures. For suppose that

B ∼=
(
ϕ

θ
(D),Γf (D),ΓR(D)

)
f,R∈K

where θ(D) is an equivalence relation on ϕ(D). Let D be the category of
L-structures on which θ is an equivalence relation and the Γf are definable
maps (ϕ/θ)n → ϕ/θ, where n is the arity of f . The sentences expressing
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these facts can be checked to be coherent sentences. This implies that D is
a definable subcategory and it can easily be seen that this is an instance of
an interpretation (K-Str)eq+ → Deq+ via the map

x = x - ϕ/θ

(f ∈ K) - Γf

We now look at an example of a bi-interpretation. This example shows
that our theory is also well-suited to what is traditionally regarded as the
domain of abelian model/category theory. Let Q be the quiver

1 •
α-

β
- • 2

and let k be any field. Then the path algebra of Q over k, written kQ, has
a basis {e1, e2, α, β} over k. For any kQ-module M , left multiplication by
α and β restricted to e1M define maps of e1M into e2M . Let D be the
definable subcategory of kQ-Mod consisting of those modules in which this
restriction of α is invertible. Define the interpretation

Γ : (k[X]-Mod)eq+ - Deq+

by putting Γx=x = ∃z(x = e2z) and ΓX(x, y) = ∃z(αe1z = x ∧ βe1z = y). In
other words, Γx=x(M) = e2M and ΓX = βα−1 : e2M → e2M .

Now let ∆ be the interpretation

∆ : Deq+ - (k[X]-Mod)eq+

defined by ∆x=x(M) = (x = x ∧ y = y) and

∆α : (x, y) - (0, x)

∆β : (x, y) - (0, X(x))

∆e1 : (x, y) - (x, 0)

∆e2 : (x, y) - (0, y)

One can check that with this definition one does indeed get a kQ-module
structure on the direct sum M ⊕ M of the k[X]-module M . We claim
that the pair (Γ,∆) gives a bi-interpretation between the categories D and
k[X]-Mod. To see this, note that ∆x=x ◦ Γx=x(M) = e2M ⊕ e2M and the
natural isomorphism

M
∼=- e2M ⊕ e2M

is given by x 7→ (αe1x, e2x).
Conversely, Γx=x◦∆x=x(M) = M . So we do indeed have a bi-interpretation.
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4.3 Interpretations and coherent morphisms

Recall that a coherent topos is a category of sheaves for a coherent site. It is
a result of topos theory (see [10, Vol. 2, p. 910]) that any coherent topos is
the classifying topos of a coherent theory. Hence, any coherent topos will be
of the form Sh(fpC, JD) for an LFP category C and a definable subcategory
D ⊆ C, since this category of sheaves is precisely the classifying topos for
the coherent theory defining D (see [19, p. 293]). It follows that the results
of this chapter apply to general coherent toposes.

Let E be a coherent topos and let J be the finite type right Grothendieck
topology on coh E generated by finite epimorphic families. More precisely,
we say that S ⊆ Hom(−, C) is in J(C) if and only if there are finitely many
maps si ∈ S such that

∐
i si is an epimorphism onto C. Then, it turns

out that E ' Sh(coh E, J) (see [9, 7.3.1], [20, p. 1]). Suppose now that E

and F are two coherent toposes and Γ : coh E → coh F is an interpretation.
Then since Γ commutes with finite colimits, it will take finite epimorphic
families to finite epimorphic families. Let J and K be the finite type right
Grothendieck topologies generated by finite epimorphic families on coh E and
coh F respectively. Then Γ has the property that if S ∈ J(C), then the set

{Γ(s) : s ∈ S}

generates a cover of Γ(C) (i.e. the smallest subfunctor of Hom(−,Γ(C)) con-
taining the set is a cover of Γ(C)).

Whenever there are two small categories with finite limits A and B, both
endowed with a Grothendieck topology, and a left exact functor F : A → B
such that for any A ∈ A and cover S of A the set {F (s) : s ∈ S} generates a
cover of F (A), F is said to be a morphism of sites. So Γ above is a morphism
of sites (coh E, J) → (coh F, K). As such, it will induce a map of sheaves

Φ : Sh(coh F, K) - Sh(coh E, J)

The direct image functor Φ∗ is simply Φ∗(F ) = F ◦ Γ. The inverse image
functor Φ∗ is slightly more complicated and its definition requires left Kan
extensions (see [10, Vol. 1, A4.1.4]). However, in this case E ' Sh(coh E, J),
and Φ∗ �coh E= Γ. In particular Φ∗ takes coherent objects to coherent objects.
Any geometric morphism between coherent toposes which has the property
that the inverse image functor restricts to a functor on coherent objects is
called a coherent morphism. So any interpretation Γ : coh E → coh F induces
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a coherent morphism F → E, and conversely, any coherent morphism Φ :
F → E induces an interpretation Φ∗ �coh E coh E → coh F (since the inverse
image functor preserves finite limits by definition and preserves colimits by
the fact that it is a left adjoint).

In summary, our interpretation functors defined at the start of this sec-
tion correspond exactly to coherent geometric morphisms between coherent
toposes (objects which have been studied in the category-theoretic litera-
ture). As we have seen, these abstractly defined maps can be regarded as
genuine model-theoretic interpretations by positive existential formulas. The
relationship between our interpretations and coherent morphisms was sug-
gested to us by Tibor Beke.
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