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In this thesis we consider algorithms for solving the quadratic eigenvalue problem,
(λ2A2 +λA1 +A0)x = 0 when the leading or trailing coefficient matrices are singular.
In a finite element discretization this corresponds to the mass or stiffness matrices
being singular and reflects modes of vibration (or eigenvalues) at zero or “infinity”.
We are interested in deflation procedures that enable us to utilize knowledge of the
presence of these (or any) eigenvalues to reduce the overall cost in computing the
remaining eigenvalues and eigenvectors of interest. We first give an introduction to
the quadratic eigenvalue problem and explain how it can be solved by a process called
linearization.

We present two types of algorithms, firstly a modification of an algorithm pub-
lished by Kublanovskaya, Mikhailov, and Khazanov in the 1970s that has recently
been translated into English. Using these ideas we present algorithms that are able
to reduce the size of the problem by “deflating” infinite and zero eigenvalues that
arise when the mass or stiffness matrix (or both) are singular.

Secondly we look at methods that deflate zero and infinite eigenvalues by the
use of Householder reflectors; this requires a basis for the null space of the mass or
stiffness matrix (or both), so we also summarize various decompositions that can
be used to give this information. We consider different applications that yield a
quadratic eigenvalue problem with singular leading and trailing coefficients and after
testing the implementations of the algorithms on some of these problems we comment
on their stability.
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Chapter 1

Introduction

We give a brief introduction to the Quadratic Eigenvalue Problem. The Quadratic

Eigenvalue Problem (QEP) is to find scalar eigenvalues λ, left eigenvectors y and

right eigenvectors x such that

y∗Q(λ) = 0, Q(λ)x = 0, x, y 6= 0,

where

Q(λ) = λ2A2 + λA1 + A0, with Ai ∈ Cn×n, i = 0, 1, 2, and A2 6= 0,

and throughout this thesis we will assume that Q(λ) is regular, that is detQ(λ) 6≡ 0.

We call Q(λ) a quadratic matrix polynomial, quadratic, or a λ-matrix.

Note that we specify A2 6= 0. If we allow A2 = 0 then we obtain linear eigenvalue

problems more generally known as

• the Standard Eigenvalue Problem (SEP) Ax = λx, or (−λI + A)x = 0 if we

take A0 = A, and A1 = −I.

• the Generalized Eigenvalue Problem (GEP) Ax = λBx or (−λB +A)x = 0 on

choosing A0 = A and A1 = −B.

QEPs arise in a variety of applications including dynamic analysis of structures dis-

cretized by the finite element method (for example the effects of damping), fluid

mechanics and vibro-acoustics (examples are reducing the level of noise of cars and

12



CHAPTER 1. INTRODUCTION 13

aircraft). In Chapter 6 we will give further examples of problems yielding QEPs.

There are fundamental differences in the quadratic case compared to the SEP and

GEP. We now outline these differences and explain some properties of QEPs.

Starting with the standard eigenvalue problem Ax = λx, there are n eigenvalues

for an n-by-n matrix (possibly repeated) and they are all finite. Direct methods

such as the QR algorithm for dense problems (where factorization methods can be

employed) are based on applying unitary transformations to convert the matrix A to

Schur form and reveal A’s eigenvalues. The matrix U ∈ Cn×n is a unitary matrix if

U∗U = UU∗ = In (In is the n-by-n identity matrix). Given a matrix A ∈ Cn×n there

exists a unitary matrix U and an upper triangular matrix T such that

U∗AU = T.

The matrix T is a Schur form of A. (When A is real with A ∈ Rn×n, we can work

using only real arithmetic and U can be taken orthogonal (UTU = UUT = In) and

T is then upper quasi-triangular with 1-by-1 and 2-by-2 blocks on the diagonal. An

n-by-n matrix F is called upper quasi-triangular if it has the structure
F11 F12 . . . F1n

0 F22 . . . F2n

0 0
. . .

...

0 0 0 Fnn


,

where the diagonal blocks are either 1-by-1 or 2-by-2.)

On moving from the standard eigenvalue problem to the generalized eigenvalue

problem Ax = λBx, we consider the matrix pencil A − λB. When we let B = I

we obtain the SEP, however whereas the identity matrix is nonsingular in the SEP,

when we look at the GEP the matrix B can be singular (if B is singular there are

some infinite eigenvalues). For an n-by-n matrix pencil there are n eigenvalues that

can be finite (including zero) or infinite. We consider infinite eigenvalues as zero

eigenvalues of the pencil −B + λA. In this thesis we assume all pencils are regular,

this eliminates the possibility that the pencil may have an eigenvector for which any
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scalar is an eigenvalue. To illustrate this, consider the pencil A− λB with

A = B =

0 0

0 1


since Ae1 = Be1 = 0, any scalar λ satisfies Ax = λBx = 0 with x = e1.

For the numerical solution of dense GEPs we use the QZ algorithm which is based

on applying unitary transformations to convert the pencil A−λB to generalized Schur

form, (it can be considered as an analogue of the QR algorithm used in SEPs).

We now explain the generalized Schur decomposition (based on Stewart [30]).

Given a pencil A − λB, with A,B ∈ Cn×n, there exists unitary matrices U and V

such that

U∗AV = S, and U∗BV = T

where S and T are upper triangular. (When A and B are real we can work in

real arithmetic, then U and V can be taken orthogonal and S is then upper quasi-

triangular and T is upper triangular; this is a generalized real Schur form of the

pencil.)

The QZ algorithm applied to a regular pencil X − λY , with X, Y ∈ Rn×n deter-

mines orthogonal matrices Q and Z to convert the pencil to generalized real Schur

form. We have that QTXZ = S is upper triangular and QTY Z = T is upper quasi-

triangular.

Finally, when moving from the GEP to the QEP, we have Q(λ) = λ2A2+λA1+A0,

for an n-by-n quadratic there are 2n eigenvalues λ, that can be finite or infinite. If

there are more than n eigenvectors then they do not form a linearly independent set.

With regard to the finite and infinite eigenvalues we have that when

• A2 is singular the λ-matrix Q(λ) = λ2A2+λA1+A0 has “infinite” eigenvalues, or

that the reversal polynomial λ2Q(λ−1) = λ2A0 +λA1 +A2 has zero eigenvalues.

• A0 is singular the λ-matrix Q(λ) = λ2A2 + λA1 + A0 has zero eigenvalues,

or that the reversal polynomial λ2Q(λ−1) = λ2A0 + λA1 + A2 has “infinite”

eigenvalues.
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Hence we interpret “infinite” eigenvalues of a quadratic Q(λ) as zero eigenvalues

of the reversal polynomial revQ(λ) := λ2Q(λ−1). If either the leading or trailing

coefficient (or both) are singular, then the matrix A1 may contribute infinite or zero

eigenvalues. A major difference between the QEP compared with the SEP and GEP

is that there is no analogous Schur form. Hence for dense problems it is not possible

to work directly with the quadratic in the form Q(λ) = λ2A2 +λA1 +A0 by applying

some extension of the QR and QZ type methods.

Depending on the size of the matrices involved we distinguish between

• factorization methods that work with small to medium size problems, working

with the matrices directly, storing the whole matrix for example. For the GEP,

the QZ algorithm is one such method.

• iterative methods that work with large (usually sparse) problems where it may

not be possible to factorize the matrix, or where the matrix cannot be stored

in whole, for example there may be only a function to apply the matrix A,

to a vector to form Ax. For the SEP, examples are the Arnoldi and Lanczos

algorithms.

In this thesis we work with small to medium size problems where factorization meth-

ods can be employed. We consider quadratic matrix polynomials where the leading

(A2) or trailing coefficient (A0) are singular and thus contribute infinite or zero eigen-

values. We do not solve the QEP by working directly with the quadratic, we work

instead with a linear matrix pencil obtained after a process called linearization, this

consists of transforming Q(λ) into a linear matrix pencil of twice the dimension of

the quadratic.

We look at methods of computing an eigensolution, that utilizes our knowledge

of the presence of infinite and zero eigenvalues. We transform the linear problem

λX + Y to one that has no infinite or zero eigenvalues from the leading or trailing

coefficient. The process of transforming the problem is called deflation, and we say

that the transformed problem results after we have deflated zero and infinite eigen-

values from the original problem. The deflation procedures should reduce the overall
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operation count from computing all eigenvalues of a matrix quadratic. As already

mentioned, matrix polynomials with singular leading and trailing coefficients have

infinite and zero eigenvalues respectively. Our aim is to derive numerically stable

procedures that deflate infinite and zero eigenvalues before computing the rest of the

spectrum (the spectrum is the set of eigenvalues). With the exception of the MAT-

LAB function polyeig, there is currently no black box software for the solution of

quadratic (or polynomial) eigenvalue problems; polyeig does not currently have a

deflation procedure.

Although theoretical results show that the QZ algorithm behaves well in the pres-

ence of infinite eigenvalues [32], numerical experiments performed using the LAPACK

implementation of the QZ algorithm indicate that infinite eigenvalues are not always

computed by the algorithm [25] We now outline the content of this thesis. We focus

on solving the QEP by linearization, we summarize the main details of this method

in Chapter 2. In Chapter 3 we outline how the accuracy of the computed eigenpairs

of the QEP can be computed, and eigenvalue condition numbers for quadratics and

matrix pencils. In Chapter 5 we outline two types of algorithms, the first, based

on the work of Kublanovskaya et al requires a UTV factorization of the leading or

trailing coefficient matrices, the second, based on applying orthogonal transforma-

tions requires a basis for the null space of the leading or trailing coefficient matrices.

We outline UTV style decompositions and rank-revealing factorizations in Chapter

4. We present some applications that yield QEPs with singular leading or trailing

coefficients in Chapter 6. We also consider a method of scaling the quadratic ma-

trix polynomial and the conditioning of eigenvalues of the test problems presented,

finally, we use some of those QEPs as test problems for the algorithms presented,

in addition to quadratics with leading and trailing coefficients of specified rank that

were randomly generated.

In this work, In denotes the n-by-n identity matrix, and we generally adopt the

Householder convention with regard to naming variables, thus

• matrices are denoted by capital letters: A
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• elements of matrices by lower case letters of the respective matrix: aij

• vectors are denoted by lower case Latin letters: a, b, c

• scalars are denoted by Greek lower case letters: α, β, γ.

We adopt the MATLAB matrix notation, thus A(i : j, k : l) represents the intersec-

tion of rows i to j and columns k to l, while A(:, k) denotes the kth column, the

colon means to take all elements in the kth column. For simplicity we present all

algorithms working in real arithmetic, with suitable modifications they extend to

complex arithmetic. “T” denotes transpose, while in complex arithmetic “∗” denotes

conjugate transpose.



Chapter 2

Solving Quadratic Eigenvalue

Problems via Linearization

We now outline a method of solving the QEP; applying the QZ algorithm to a lin-

earization of the original matrix polynomial. In outline, the process of solving the

QEP by linearization involves taking the original quadratic polynomial and convert-

ing it to a linear matrix pencil L(λ) = λX + Y . The resulting GEP is then solved;

we will use the QZ algorithm. Finally eigenvectors of the QEP must be recovered

from those of the GEP.

2.1 Determining a Linearization

We linearize an n-by-n quadratic by determining a matrix pencil of dimension 2n-

by-2n. We then apply the QZ algorithm to a pencil of twice the dimension of the

quadratic. The linearization must have the same eigenvalues as the quadratic, we

give the definition of a linearization below.

Definition 1 (Linearization, see [14]). A 2n-by-2n pencil L(λ) = A − λB is a lin-

earization of an n-by-n quadratic Q(λ) if

E(λ)L(λ)F (λ) =

Q(λ) 0

0 In

 ,

18



CHAPTER 2. SOLVING QEPS VIA LINEARIZATION 19

where E(λ) and F (λ) are matrix polynomials with constant nonzero determinants

(and are said to be unimodular).

In this thesis we will generally take the first companion linearization that for the

general quadratic Q(λ) = λ2A2 + λA1 + A0 has the form

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 . (2.1)

The first companion linearization is a companion type linearization, another compan-

ion linearization, the second companion linearization is given below,

C2(λ) = λ

A2 0

0 In

+

A1 −In

A0 0

 . (2.2)

The companion linearizations have the advantage that they are always linearizations

of Q(λ). However, companion linearizations do not respect structural properties of

the quadratic. When the quadratic exhibits structural properties such as symmetry

it is desirable to take a structure preserving linearization and use a structure pre-

serving numerical method to then determine the eigenvalues and eigenvectors of the

linearization. We note that the QZ algorithm is not a structure preserving method.

Mackey, Mackey, Mehl and Mehrmann [27] have recently shown the existence of

vector spaces of potential linearizations of matrix polynomials (including quadrat-

ics). The eigenvectors of the quadratic can be directly recovered from those of the

linearization, and vector spaces containing structured (symmetric) linearizations are

presented. The two vector spaces of potential linearizations are for general degree

matrix polynomials but we present them for quadratics to be consistent. To define

the vector spaces, we need to use the Kronecker product of two matrices. We denote

the Kronecker product by ⊗ and give a definition below.

Definition 2 (Kronecker Product, see [14]). Given A ∈ Rm×m and B ∈ Rn×n the



CHAPTER 2. SOLVING QEPS VIA LINEARIZATION 20

Kronecker product of A and B is given by

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB

...
...

...

am1B am2B · · · ammB


,

and A⊗B ∈ Rmn×mn.

The vector spaces of pencils that are potential linearizations of a quadratic Q are

denoted by L1(Q), L2(Q) and the intersection of the two, DL(Q), (here Λ = [λ, 1]T ),

L1(Q) = {L(λ) : L(λ)(Λ⊗ In) = v ⊗Q(λ), v ∈ C2} (2.3)

L2(Q) = {L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗Q(λ), w ∈ C2} (2.4)

DL(Q) = L1(Q) ∩ L2(Q). (2.5)

It can be shown that almost all of the pencils in L1(Q) and L2(Q) are linearizations

of Q. The first companion linearization is a pencil contained in the space L1(Q) (with

v = e1) and the second companion linearization is contained in the space L2(Q) (with

w = e1).

For symmetric quadratics, we can choose a symmetry preserving linearization

from the vector space DL(Q). We determine a linearization by choosing a vector

v = [v1, v2] where v1 and v2 are complex scalars. If the coefficient matrices of Q(λ)

are symmetric, the pencils (2.6) to (2.9) are symmetry preserving linearizations from

the vector space DL(Q), each linearization is uniquely characterized by a vector v.
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v =

0

1

 , λ

 0 A2

A2 A1

+

−A2 0

0 A0

 , detA2 6= 0, (2.6)

v =

1

0

 , λ

A2 0

0 −A0

+

A1 A0

A0 0

 , detA0 6= 0, (2.7)

v =

1

1

 , λ

A2 A2

A2 A1 − A0

+

A1 − A2 A0

A0 A0

 , detQ(−1) 6= 0,

(2.8)

v =

v1

v2

 , λ

v1A2 v2A2

v2A2 v2A1 − v1A0

+

v1A1 − v2A2 v1A0

v1A0 v2A0

 , detQ

(
−v2

v1

)
6= 0,

(2.9)

The linearizations (2.6) and (2.7) are only linearizations if the leading and trailing

coefficients respectively are nonsingular. If both leading and trailing coefficients are

singular we can take the linearization (2.8), provided that λ = −1 is not an eigenvalue

of the quadratic. Otherwise we must determine a vector v = [v1, v2]T such that−v2/v1

is not an eigenvalue of the quadratic, we can then take (2.9) as a linearization of the

quadratic.

2.2 Homogeneous Notation

To enable us to deal more easily with both finite and infinite eigenvalues we will often

write the quadratic Q(λ) = λ2A2 + λA1 + A0, in homogeneous form, as

Q(α, β) = α2A2 + αβA1 + β2A0.

The linearization L(λ) = λX + Y can also be written in homogeneous form as

L(α, β) = αX + βY.

The homogeneous form of the quadratic can be derived by substituting λ = α/β into

Q(λ) = λ2A2 + λA1 + A0 yielding

Q(α/β) = (α/β)2A2 + (α/β)A1 + A0. (2.10)
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on multiplying (2.10) by β2 and defining Q(α, β) = β2Q(α/β) we obtain the homo-

geneous form Q(α, β) = α2A2 + αβA1 + β2A0. We associate an eigenvalue λ = α/β

with the pair (α, β). The representation of λ as α/β is not unique, since for ξ 6= 0

we have that (ξα, ξβ) yields λ = (ξα)/(ξβ) = α/β = λ. We can express λ uniquely

using normalized form, by requiring that |α|2 + |β|2 = 1. In normalized form (0, 1)

represents a zero eigenvalue and (1, 0) an infinite eigenvalue.

2.3 Solving the GEP

Supposing we have taken the first companion linearization of a quadratic, we then

have the pencil

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 .
We apply the QZ algorithm to the problem of determining an eigenpair (z;λ) of

C1(λ); an eigenvalue λ with associated right eigenvector z such that C1(λ)z = 0.

In this thesis we will focus on determining only right eigenvectors (and we use the

term eigenvector to mean a right eigenvector), however once we have determined an

eigenvalue we can determine a left eigenvector w such that w∗C1(λ) = 0, we can then

call (w, z;λ) an eigentriple.

Mackey, Mackey, Mehl and Mehrmann [27] show that the eigenvectors of the

quadratic can be easily recovered from those of linearizations in the spaces L1(Q) or

L2(Q). Higham, Li and Tisseur [19] present theorems using homogeneous notation,

we give the corresponding theorem for a linearization in L1(Q) below, where Λα,β =

[α, β]T .

Theorem 1 (Eigenvector recovery from L1 see Theorem 3.1 [19]). If L ∈ L1(Q) is

a linearization of Q, then x is an eigenvector of Q with eigenvalue (α, β) if and only

if Λα,β ⊗ x is an eigenvector of L with associated eigenvalue (α, β).

Using Theorem 1, we can write the form of the right eigenvector of the linearization
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as

Λα,β ⊗ x =

αx
βx

 . (2.11)

When we present algorithms in Chapter 5 we need to know the structure of eigenvec-

tors associated to zero or infinite eigenvalues, (2.11) yields the form of an eigenvector

associated to an infinite eigenvalue (2.12) and associated to a zero eigenvalue (2.13)

Λ1,0 ⊗ x =

x
0

 (λ =∞), (2.12)

Λ0,1 ⊗ x =

0

x

 (λ = 0). (2.13)

For an infinite eigenvalue (1, 0) the vector x in (2.12) is a null vector of the coefficient

matrix A2 (a vector y is a null vector of A if Ay = 0), or an eigenvector associated

to a zero eigenvalue of the reversal polynomial revQ(α) = β2A2 + αβA1 + α2A0.

When the eigenvalue is zero (0, 1), the vector x in (2.13) is a null vector of the

coefficient matrix A0, or an eigenvector associated to a zero eigenvalue of the quadratic

Q(α, β) = α2A2 + αβA1 + β2A0.

2.4 Outline of Existing Software

As mentioned in the introduction, the MATLAB function polyeig is the only black

box software available for quadratic (or polynomial) eigenvalue problems. polyeig

solves the quadratic eigenvalue problem by forming a first companion linearization of

the given quadratic (the reversal of the first companion linearization of the reversed

quadratic). It then applies the QZ algorithm to solve by the process explained in

this chapter. The command [X,e,s] = polyeig(A0, A1, A2) computes eigenval-

ues and right eigenvectors of the quadratic Q(λ) = λ2A2 + λA1 + A0. X is a matrix

of eigenvectors, e a vector of eigenvalues. By specifying the output variable s we

obtain the normwise condition number κQ(α, β) (we explain this later in Chapter 3)

of eigenvalues of the quadratic Q(λ). polyeig uses a special formula to recover left

eigenvectors from right eigenvectors, since the formula only holds when at least one
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of the leading and trailing coefficients is nonsingular, it does not compute condi-

tion numbers when both A0 and A2 are singular. We note that polyeig does not

implement the initial scaling of Fan, Lin and Van Dooren [10].



Chapter 3

Backward Error and Conditioning

In this chapter we present ways of measuring the quality of computed eigenpairs

of pencils and quadratic matrix polynomials, and also the sensitivity of the eigen-

solution. We will focus on backward error and the conditioning of eigenvalues and

eigenvectors respectively.

When we have a problem to solve with initial sampled data, there is the possibility

that the sampled data contains errors. The conditioning of the data measures the

sensitivity of the solution of the problem to perturbations in the data. The extent to

which the problem is well conditioned is an inherent property of the problem.

Given a method or algorithm for computing a solution to a problem we would

like to assess the quality of the computed solution. Backward error is a measure of

how much the problem must be perturbed for the computed solution to be an exact

solution of the perturbed problem.

3.1 Backward Error of Eigenpairs of Quadratics

and Matrix Pencils

We give the definition of backward error of a right and left eigenpair of a quadratic

matrix polynomial (written in homogenous form, see Section 2.2) below. In this

section ∆Ai denotes a perturbation to the Ai coefficient.

25



CHAPTER 3. BACKWARD ERROR AND CONDITIONING 26

Definition 3 (Relative normwise backward error of an approximate right eigenpair).

The relative normwise backward error of an approximate right eigenpair (x;α, β) of

a quadratic Q(α, β) is defined as

ηQ(x;α, β) = min {ε : (Q(α, β) + ∆Q(α, β) )x = 0, ‖∆Ai‖2 ≤ ε ‖Ai‖2 , i = 0 : 2}

(3.1)

where ∆Q(α, β) = α2∆A2 + αβ∆A1 + β2∆A0.

The equivalent definition for an approximate left eigenpair is given below.

Definition 4 (Relative normwise backward error of an approximate left eigenpair).

The relative normwise backward error of an approximate left eigenpair (y∗;α, β) of a

quadratic Q(α, β) is defined as

ηQ(y∗;α, β) = min {ε : y∗(Q(α, β) + ∆Q(α, β)) = 0, ‖∆Ai‖2 ≤ ε ‖Ai‖2 , i = 0 : 2}

(3.2)

with ∆Q(α, β) defined as before.

We now present explicit expressions for relative backward errors of eigenpairs of

quadratic matrix polynomials and linear pencils [31]. The relative normwise backward

error of an approximate right eigenpair (x;α, β) of a quadratic Q(α, β) written in

homogeneous form is given by

ηQ(x;α, β) =
‖Q(α, β)x‖2

(|α|2 ‖A2‖2 + |α||β| ‖A1‖2 + |β|2 ‖A0‖2) ‖x‖2

. (3.3)

For an approximate left eigenpair (y∗;α, β) we have the expression

ηQ(y∗;α, β) =
‖y∗Q(α, β)‖2

(|α|2 ‖A2‖2 + |α||β| ‖A1‖2 + |β|2 ‖A0‖2) ‖y‖2

. (3.4)

Equations (3.3) and (3.4) show that the backward error of a computed eigenpair is

a scaled residual. As the representation (α, β) of an eigenvalue λ is not unique, we

note that both (3.3) and (3.4) are independent of the scaling of (α, β).

ηL(z;α, β) is defined in an analogous way to (3.3) and (3.4). Given an approximate

right eigenpair (z;α, β) of the linearization L(α, β) = αX+βY , the relative normwise

backward error of the linearization is given by

ηL(z;α, β) =
‖L(α, β)z‖2

(|α| ‖X‖2 + |β| ‖Y ‖2) ‖z‖2

, (3.5)
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and for an approximate left eigenpair (w∗;α, β),

ηL(w∗;α, β) =
‖w∗L(α, β)‖2

(|α| ‖X‖2 + |β| ‖Y ‖2) ‖w‖2

. (3.6)

3.2 Eigenvalue Condition Numbers for Quadratics

and Matrix Pencils

We first consider condition numbers of eigenvalues of quadratic matrix polynomi-

als. Higham, Mackey and Tisseur [20] present condition numbers for eigenvalues of

matrix polynomials. A condition number KQ(λ) puts a bound on |∆λ|/|λ|, which

measures the relative change in an eigenvalue. Unfortunately, this condition number

is only defined for simple finite nonzero eigenvalues, (not infinite or zero eigenvalues).

Another condition number κQ(α, β) that is defined for simple eigenvalues, finite or

infinite including zero, provides a bound on the angle between an exact eigenvalue

(α, β) and a perturbed eigenvalue (α̃, β̃). The angle is based on viewing an eigenvalue

as a line that goes through the origin in the complex plane to the point (α, β), the

eigenvalue is in normalized form (such that |α|2 + |β|2 = 1) and lies on the unit circle.

For the quadratic case, this condition number is defined as

κQ(α, β) = max
‖∆A‖≤1

K(α, β) ∆A

‖[α, β]‖2

(3.7)

where ∆A = (∆A2,∆A1,∆A0) . K(α, β) is a differential operator defined by Dedieu

and Tisseur [8], such that K(α, β) : (Cn×n)3 → T(α,β)P1. T(α,β)P1 is a tangent space

at (α, β) to P1, which is a projective space of lines through the origin in C2. The

condition number can be computed using the expression given below.

Theorem 2 (see Theorem 2.3 [20]). The normwise condition number κQ(α, β) of a

simple eigenvalue (α, β) of a quadratic Q(α, β) is given by

κQ(α, β) =

(
|β|4 ‖A0‖2

F + |α|2|β|2 ‖A1‖2
F + |α|4 ‖A2‖2

F

)1/2 ‖x‖2 ‖y‖2

|y∗
(
β̄(2αA2 + βA1)− ᾱ(2βA0 + αA1)

)
x|

where ‖·‖F denotes the Frobenius norm.
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We now focus on condition numbers of eigenvalues of linear matrix pencils. An

expression for the normwise condition number of a simple eigenvalue of a linear matrix

pencil written in homogeneous form as L(α, β) = αX + βY can be derived from

Theorem [20] taking the linear (degree 1 polynomial) case. We obtain the expression

below.

Theorem 3 (see Theorem 2.3 [20]). The normwise condition number κL(α, β) of a

simple eigenvalue (α, β) of a linear matrix pencil L(α, β) is given by

κL(α, β) =

(
|β|2 ‖Y ‖2

F + |α|2 ‖X‖2
F

)1/2 ‖x‖2 ‖y‖2

|y∗
(
β̄X − ᾱY

)
x|

where ‖·‖F denotes the Frobenius norm.

3.3 Numerical Stability of the QZ Algorithm in

Solving the Quadratic Eigenvalue Problem by

Linearization

As previously described, we solve the QEP Q(λ)x = 0 by linearizing to a matrix

pencil and solving the resulting GEP L(λ)z = 0. Eigenvalues and eigenvectors of the

pencil L(λ) are computed using the QZ algorithm. The QZ algorithm is backward

stable for the GEP so we expect eigenpairs to have a small backward error. However,

the QZ algorithm is not backward stable for the QEP, when linearizing and solving

the resulting GEP. This is because the QZ algorithm fails to take into account the

structure of the linearization, and it introduces small perturbations to the lineariza-

tion that do not respect the zero and identity blocks, thus perturbations of L(λ) do

not correspond to perturbations of Q(λ); for more details see [19].



Chapter 4

Rank-Revealing Factorizations and

the Null Space

We now focus on two main problems, firstly determining the numerical rank of a

matrix and secondly computing a basis for the null space. An accurate basis for the

null space is a key ingredient of the algorithms we will present in Chapter 5. We

begin by giving some background material and definitions, needed when considering

the rank-revealing decompositions we will later present.

4.1 Null Space, Rank and the Singular Value De-

composition

We start by considering the null space, giving a definition below.

Definition 5 (Null Space). Given the matrix A ∈ Rn×n, such that rank(A) = r,

the null space is the space spanned by the set of null vectors x1, . . . , xn−r such that

Axi = 0 for i = 1: n− r, equivalently null(A) = {x ∈ Rn : Ax = 0}.

The dimension of the null space, rank, and dimension of a matrix are related by

the expression

rank(A) = n− dim(null(A)),

that is more usually written as n = rank(A) + dim(null(A)).

29
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We now introduce the singular value decomposition, which can be used to motivate

the concept of rank of a matrix. A definition is given below for the case of a square

matrix (we present decompositions for square matrices since we will only require them

for the square case).

Definition 6 (Singular value decomposition). Let A ∈ Rn×n then the singular value

decomposition or SVD of A has the form

A = UΣV T

where U, V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n = diag(σ1, . . . , σn). The σis are

called singular values and are ordered such that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

then the matrix A has rank r.

We comment that since we use finite precision arithmetic, we really compute

numerical subspaces, for example the numerical null space, however we continue to

use the term null space but realize we compute approximations to the actual null

space. The SVD can be used to motivate a definition of the numerical rank of a

matrix in finite precision arithmetic, which we give below.

Definition 7 (Numerical rank). Given a scalar threshold τ , the numerical rank k is

the largest integer such that σk > τ .

The choice of τ is important, since it can lead to over or underestimation of the

rank of a matrix. The MATLAB toolbox UTV tools uses the tolerance

τ =
√
n ‖A‖1 εmachine

where εmachine is the machine precision.

4.2 Rank-Revealing Orthogonal Decompositions

Computing the SVD is one of the most accurate and stable methods of computing the

rank and a basis for the null space (a null space basis is formed by taking the (r+1)th
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to nth columns of V ). We now present alternative methods that are less computa-

tionally expensive to compute than the SVD, designed to give good approximations

to rank and subspace information.

4.2.1 UTV Decomposition

Given a square matrix A ∈ Rn×n a UTV decomposition takes the form

A = UTV T (4.1)

where U, V ∈ Rn×n are orthogonal, T ∈ Rn×n denotes a block triangular matrix, when

T is block upper triangular (4.1) is called a URV decomposition with R denoting the

block upper triangular matrix. Alternatively (4.1) is called a ULV decomposition

when T is block lower triangular. A URV decomposition has the form

A = URV T = [URk UR0]

Rk F

0 G

 [VRk VR0]T , (4.2)

supposing A has a large enough gap in the k and (k+1)th singular values (σk+1 � σk),

the decomposition is said to be rank-revealing if the following two conditions hold

σmin(Rk) = O(σk) (4.3)∥∥[F T , GT ]
∥∥

2
= O(σk+1). (4.4)

A ULV decomposition has the form

A = ULV T = [ULk UL0]

Lk 0

H E

 [VLk VL0]T , (4.5)

again supposing A has a large enough gap in the k and (k + 1)th singular values

(σk+1 � σk), the decomposition is said to be rank-revealing if the following two

conditions hold

σmin(Lk) = O(σk), (4.6)

‖[H, E]‖2 = O(σk+1). (4.7)
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We note that the SVD can be considered as a UTV decomposition, if we allow T to

be a diagonal matrix Σ, then we have

A = UΣV T = [Uk U0]

Σk 0

0 Σ0

 [Vk V0]T , (4.8)

with Σk and Σ0 diagonal matrices. Table 4.1 shows the four fundamental subspaces

defined by the SVD of the matrix A.

Table 4.1: Subspaces defined by the SVD of the matrix A.

range(A) = range(U) range of A

range(AT ) = range(V ) row space of A

null(A) = range(V0) null space of A

null(AT ) = range(U0) null space of AT

We will use only the ULV decomposition to approximate the null space since the

range of its null space enjoys a smaller upper bound with the range of the SVD null

space, as we later describe.

Methods of computing the ULV decomposition that we describe do so by “peeling

off”, or deflating singular values one at a time, we recall that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Algorithms are divided between those that work more efficiently for high rank (rank(A) ≈

n) or low rank (rank(A) � n) matrices. When the matrix is of high rank the sin-

gular values are deflated in order of increasing size starting with the smallest, and

conversely when the matrix is low rank, in order of decreasing size starting with the

largest.

High-Rank ULV

Stewart [29], [28] has developed alternatives to the SVD for high rank matrices. This

uses deflation based on the generalized LINPACK condition estimator. This is to

estimate the smallest singular value and corresponding left or right singular vector.

UTV tools implements this in the routine hulv.
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An alternative high rank ULV decomposition is based on the fact that an accurate

condition estimator produces an off diagonal block in (4.5) of small norm, leading to

a smaller upper bound on the distance between the exact and numerical null space

[11]. The routine hulv a uses deflation based on singular vector estimation via inverse

iteration.

Low-Rank ULV

Stewart’s high-rank algorithm starts with a triangular factorization of the form

A = UL with L lower triangular. The algorithm implemented in UTV tools is

an analogue for the low-rank case, deflating large singular values in decreasing size.

Low-rank algorithms need to estimate the largest singular value. For this it is not

necessary to have the matrix in triangular form. The MATLAB toolbox UTV tools

[17] contains implementations of two low-rank ULV algorithms, one that does an

initial triangular factorization, and an alternative that avoids an initial triangular

factorization. The algorithm that does an initial triangular factorization is termed

“warm-started” and is implemented in lulv a whilst the algorithm not doing an

initial triangular factorization is termed “cold-started”, it is implemented in lulv.

4.2.2 Rank-Revealing QR Factorization

We give the following definition of a rank-revealing QR factorization (RRQR).

Definition 8 (Rank-revealing QR factorization.). Given A ∈ Rn×n a rank-revealing

QR factorization takes the form

AP = QR = Q

R11 R12

0 R22

 ,
where P ∈ Rn×n is a permutation matrix, Q ∈ Rn×n is orthogonal, R ∈ Rn×n and

rank(A) = k.
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Chandrasekaran and Ipsen [7] state the following (possibly equivalent) two con-

straints imposed when determining P ,

σmin(R11) ≈ σk(A) (4.9)

σmax(R22) ≈ σk+1(A). (4.10)

In this thesis we only require a basis for the null space and rank of the matrix, this can

be computed by taking an RRQR factorization of the transposed matrix, AT , in which

case we take the last k columns of Q, that span the exact null space. The MATLAB

command [Q, R, P] = qr(A) computes a column pivoted QR factorization of the

form AP = QR, it implements the LAPACK [1] routine xGEQP3. The MATLAB

toolbox UTV tools presents two RRQR routines lrrqr that implements Chan’s [6]

low rank revealing QR factorization using deflation by singular vectors via the power

method, and hrrqr that implements the Chan-Foster [4, 13] high rank revealing

QR algorithm where deflation steps are based on using the generalized LINPACK

condition estimator.

In many applications other information aside from a basis for the null space is

required, and an RRQR is taken of the matrix A (not the transpose). The null space

is then approximated by the information from the RRQR factorization we do not

then obtain the exact null space. Bounds have been determined for the accuracy of

the null space computed via this approach (see for example [5]).

4.2.3 Eigendecomposition

We can determine a basis for the null space of the matrix A ∈ Rn×n by taking an

eigendecomposition. Computing the real Schur decomposition of A where rank(A) =

k we obtain

AQ = Q

T Ã

0 R

 ,
where T ∈ Rk×k is strictly upper triangular (with zeros on the diagonal), R ∈

R(n−k)×(n−k) is upper quasi-triangular, Q ∈ Rn×n is orthogonal and Ã ∈ Rk×(n−k).
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This yields a basis for the null space, {q1, . . . , qk}, where the vectors are the first k

columns of the matrix Q.

4.3 Rank and Null Space of Structured Matrices

When a matrix is structured it is desirable to take advantage of the structure to

determine the rank and a basis for the null space without employing a rank-revealing

factorization. For example, consider the structured matrix K, where

K =

K̃ 0

0 0

 ,
with K ∈ Rn×n, K̃ ∈ Rk×k and k < n. The matrix K has the same structure as

the stiffness matrix in the mobile manipulator example in Chapter 6. The railtrack

problem stiffness matrix has similar structural properties.

The matrix K̃ has full rank, and a basis for the null space of K can be shown

to be of the form {ek+1, . . . , en}, where ej is the jth column of the n-by-n identity

matrix. A basis for the null space of the stiffness matrix of the railtrack problem has

a similar form.

4.4 Summary of Routines Implemented in MAT-

LAB Code

Our MATLAB codes make available the routines listed in Table 4.2 for computing

a basis for the null space of a matrix, the algorithms used to compute the decom-

positions are also summarized. We note that the routines implemented in the UTV

tools MATLAB toolbox can optionally return an a posteriori upper bound on the

numerical null space angle to measure the accuracy of the null space computed. If

the user has knowledge of either the rank of the matrix whose null space is sought,

or knows a lower limit for the rank, then this can be specified as an input argument

when using a routine from the UTV tools toolbox. The routine will then deflate
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to a given rank, this can be used to ensure the rank is not underestimated. The

default rank tolerance in the UTV tools routines is
√
n ‖A‖1 εmachine where εmachine is

the machine precision.

Table 4.2: Summary of UTV decompositions.
Routine Rank Algorithm

hulv High Stewart’s high rank revealing ULV algorithm
[29]. Deflation based on generalized LIN-
PACK condition estimator.

hulv a High Alternative rank revealing ULV, using defla-
tion based on singular vector estimation via
inverse iteration.

lulv Low Warm started with initial triangular factor-
ization, deflation using power (default) or
Lanczos method.

lulv a Low Cold started with no initial factorization.

lrrqr Low Chan and Hansen [6] low rank RRQR. Defla-
tion by singular value estimation using power
method.

hrrqr High Chan/Foster [4, 13] high rank QR. Deflation
based on generalized LINPACK condition es-
timator.

MATLAB’s qr - Column pivoted QR factorization (LAPACK
xGEQP3).

4.5 Computational Cost

Taking an eigendecomposition via the QR algorithm (see [15]) of the matrix A such

that the real Schur form QTAQ = T and computing T and Q has a cost of 25n3 flops.

We now summarize the costs of taking ULV decompositions and the SVD, when

taking an SVD we require only the matrices Σ and V . We present the cost for

the low-rank ULV decomposition from [12]. In Table 4.3 W (L) and W (A) denote

the average amount of work to compute the largest singular value and vector of an

upper-triangular matrix (L) or a dense matrix not in triangular form (A).

Table 4.4 shows the conditions under which the low-rank ULV (with no initial

triangular factorization) is faster than the other algorithms. p is the number of
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Table 4.3: Cost of low-rank ULV and SVD algorithms.
Algorithm Cost (where

rank(A) = r)
Conditions (if
any)

lulv a 4n3/3 + 12n2r +
(r + 1)W (L)

lulv 8n2r + 6nr +
4n2r + W (r +
1)W (A)

lrrqr -

hrrqr 2n3/3 + 4n2r*

MATLAB qr 4n2r − 4r2n +
4r3/3

R-SVD 2n3 + 11n2 m ≥ 5n/3

Golub-Reinsch SVD 12n3 5n/3 ≥ m ≥ n
* assumes two inverse iteration steps per iteration.

Table 4.4: Conditions for lulv to be faster than comparative algorithms.
lulv a R-SVD Golub-Reinsch

SVD

lulv n/r ≤ 2p+ 4 n/r ≥ 2p+ 4 n/r ≥ (p+ 3)/2

power or Lanczos iterations per deflation step.

4.6 Comparison of Techniques

We give brief comments on some advantages and disadvantages of the methods pre-

sented.

Taking the SVD or an eigendecomposition is one of the most stable methods, and

compared with the RRQR and UTV decompositions they do not have the possibility

of the counter examples that can result in incorrect rank determination (such as the

Kahan matrix), however there exist matrices for which certain implementations of

the QR algorithm (for example in eig fail to converge). The main disadvantage of

these two methods is that they are more expensive, and the computational cost does

not depend on the rank of the matrix.

The UTV decomposition algorithms have the advantage that they can be more

efficient for high or low rank cases, however both their cost and accuracy is dependent
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on the condition estimator or the use of inverse iteration or the power method. If a

large number of steps of inverse iteration or Lanczos are required then the cost will

be larger. However, as seen in Table 4.4, the low rank ULV decomposition can be

faster under certain conditions, although the conditions cannot be checked a priori.



Chapter 5

Deflation Algorithms for Quadratic

Eigenproblems with Singular

Leading or Trailing Coefficients

We now outline algorithms that solve the QEP Q(λ)x = 0, where

Q(λ) = λ2A2 + λA1 + A0, Ai ∈ Rn×n, A2 6= 0

where at least one of A0 or A2 are singular. When A0 is singular we deflate the zero

eigenvalue it contributes, and work with a problem of reduced dimension. Alterna-

tively when A2 is singular we deflate the infinite eigenvalues it contributes, again

working with a problem of smaller dimension. Section 5.1 focusses on an algorithm

developed by Kublanovskaya et al [26] that deflates both zero and infinite eigenval-

ues, when the leading and trailing coefficient are singular. A simplification of their

method, when only one coefficient is singular is contained in Section 5.2. In Sections

5.3.1 and 5.3.2 we present other algorithms that deflate zero or infinite eigenvalues

when either A0 or A2 are singular, using Householder reflectors.

39
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5.1 A Modified Version of Kublanovskaya et al’s

Original Approach

Kublanovskaya, Mikhailov, and Khazanov [26] outline an algorithm to deflate in-

finite or zero eigenvalues from the quadratic where at least one of the leading or

trailing coefficients is singular. In this section we explain how this method works, our

presentation differs in a number of details that we highlight when appropriate.

In the original paper the leading and trailing coefficient matrices are represented

in a “normalized form” [9]. For this we can use one of the two-sided UTV decom-

positions outline in Chapter 4. In our explanation we choose a rank-revealing QR

factorization as our UTV decomposition (since this is closest to the presentation in

the original paper). Taking a rank-revealing QR factorization of ATi , i = 0, 2 we

have ATi = QiRiPi, where Qi, Pi ∈ Rn×n are orthogonal matrices (Pi is a permutation

matrix), Ri is an upper-triangular matrix such that diag(Ri) = [ξ1, . . . , ξri , 0, . . . , 0]

where rank(Ri) = ri. We give a brief outline of the method. We start by making

a substitution for λ depending on whether A0 or A2 is singular (if both are singular

we can use either of the two choices of substitution). We then obtain a quadratic in

µ; Q(µ). We determine a parameter α, so we can apply the inverse of the leading

coefficient of Q(µ) and then obtain a standard eigenvalue problem. Using the struc-

ture of the SEP we deflate infinite and zero eigenvalues as a result of the leading and

trailing coefficients. After determining an eigenpair of the deflated matrix we then

recover an eigenpair of the quadratic.

When A0 is singular we make the substitution

λ = (α−1 + µ−1)−1, α 6= 0. (5.1)

We then have that

Q((α−1 + µ−1)−1) = (α−1 + µ−1)−2A2 + (α−1 + µ−1)−1A1 + A0. (5.2)
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Multiplying Q((α−1 + µ−1)−1) in (5.2) by (α−1 + µ−1)2 we have that

(α−1 + µ−1)2Q((α−1 + µ−1)−1) = A2 + (α−1 + µ−1)A1 + (α−1 + µ−1)2A0.

= A2 + (α−1 + µ−1)A1 + (α−2 + 2(αµ)−1 + µ−2)A0.

We define Q0(µ) = (αµ)2(α−1 + µ−1)2Q(λ), and rearrange to yield

Q0(µ) = µ2(α2A2 + αA1 + A0) + µ(α2A1 + 2αA0) + α2A0.

We now consider the case that A0 and A2 are singular (this substitution also

applies if only A2 is singular) and make the substitution

λ = α + µ−1, α 6= 0. (5.3)

We note that when both the leading and trailing coefficients are singular either sub-

stitution (5.1) or (5.3) can be made. We then have that

Q(α + µ−1) = (α + µ−1)2A2 + (α + µ−1)A1 + A0.

= (α2 + 2αµ−1 + µ−2)A2 + (α + µ−1)A1 + A0. (5.4)

Multiplying (5.4) by µ2, we define Q2(µ) = µ2Q(λ), and rearrange to obtain

Q2(µ) = µ2(α2A2 + αA1 + A0) + µ(A1 + 2αA2) + A2. (5.5)

We define Q(α) = α2A2 +αA1 +A0. It is now necessary to apply the inverse of Q(α)

to a matrix, after we choose a value for α so that Q(α) is well-conditioned. After

determining a value for α we apply Q(α)−1 to Q2(µ), (for the substitution (5.1) we

apply Q(α)−1 to Q0(µ)). We then have one of

Q̃2(µ) = Q(α)−1Q2(µ) = µ2In + µQ(α)−1(A1 + 2αA2) +Q(α)−1A2 (5.6)

Q̃0(µ) = Q(α)−1Q0(µ). (5.7)

A key step is to make the substitution A1 + 2αA2 = α−1Q(α)−1 + αA2 − α−1A0,

since favorable cancelation results. Making this substitution and linearizing Q2(µ) to

a matrix pencil by forming the first companion linearization we have,

C1(µ) = µ

In 0

0 In

+

Q(α)−1(1/αQ(α) + αA2 − 1/αA0) Q(α)−1A2

−In 0

 =: µI2n +C.
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A similarity transformation of C with the matrices

V −1 =

αQT
2 QT

2

αQT
0 0

 , and V =

 0 α−1Q0

Q2 −Q0

 (5.8)

gives

C̃ = V −1CV =

αQT
2Q(α)−1A2Q2 −α−1QT

2Q(α)−1A0Q0

αQT
0Q(α)−1A2Q2 −α−1QT

0Q(α)−1A0Q0 + α−1In

 .
Using the structure of A2Q2 and A0Q0,

AiQi =
[
P T
i R̃

T
i 0

]
, i = 0, 2,

we can simplify C̃ to

C̃ =


r2 k2 r0 k0

αQT
2Q(α)−1P T

2 R̃
T
2 0 −1/αQT

2Q(α)−1P T
0 R̃

T
0 0

αQT
0Q(α)−1P T

2 R̃
T
2 0 −1/αQT

0Q(α)−1P T
0 R̃

T
0 + 1/αIn,r0 1/αIn,n−r0

,
(5.9)

where k2 = n− r2 and k0 = n− r0 are the number of infinite and zero eigenvalues to

be deflated. From the structure of this matrix we conclude that C̃ has (n− r2) zero

eigenvalues with associated right eigenvectors {er2+1, . . . , en}, and (n−r0) eigenvalues

equal to α−1 with corresponding eigenvectors {en−r0+1, . . . , e2n}.

We carry out a similarity transformation on C̃ with the matrix P where

P =


0 0 Ir2 0

In−r2 0 0 0

0 0 0 Ir0

0 In−r0 0 0


, (5.10)

where Ik denotes the k-by-k identity matrix. We then have that

F = P T C̃P =

G H

0 R

 (5.11)

where G ∈ R(2n−r0−r2)×(2n−r0−r2), H ∈ R(2n−r0−r2)×(r0+r2), and R ∈ R(r0+r2)×(r0+r2).

Further we have that G = diag(0, . . . , 0, α−1, . . . , α−1), where there are (n− r0) zeros
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and (n − r2) (α−1)s on the diagonal. So we can deflate the problem, working with

the submatrix R; computing the eigenpairs of F via those of R. Since R is of smaller

dimension than F , once we compute an eigenpair (µ; y2) of G, we need to recover a

subvector y1 so we can form the corresponding eigenvector y = [y1, y2]T of F .

The eigenpair (y2;µ) of R satisfies Ry2 = µy2, we obtain an eigenpair (y =

[y1, y2]T ;µ) of F such that Fy = µy by solving the linear systemG H

0 R

y1

y2

 = µ

y1

y2

 . (5.12)

Of the two resulting equations

Gy1 +Hy2 = µy1 (5.13)

Ry2 = µy2, (5.14)

(5.14) is satisfied automatically, (5.13) rearranges to the form Ax = b where A =

(G − µIr0+r2), x = y1 and b = −Hy2. Provided µ 6= 0, the matrix A is nonsingular

and the y1 component can be determined. The matrix A is in fact diagonal, hence

only linear scalar equations must be solved, rather than a full system.

Given the eigenpair (y;µ) that satisfies Fy = µy, we apply the matrix P , to obtain

the eigenpair (Py;µ) that is an eigenpair of C̃ satisfying C̃Py = µPy. Finally, we

obtain an eigenpair (z;µ) of C such that Cz = µz by applying the matrix V to Py.

To obtain an eigenpair (x;λ) of the quadraticQ(λ) = λ2A2+λA1+A0 we first make

the transformation λ = α + µ−1 (or λ = (α−1 + µ−1)−1), then from the eigenvector

of the linearization z ∈ R2n we select as an eigenvector of the quadratic, one of

ξ1 = z(1 : n), or ξ2 = z(n+ 1: 2n), that yields the smallest backward error.

We now justify the deflation procedure, first we note the following argument.

Given that we want to solve the standard eigenvalue problem Ax = λx, suppose x is

equivalent to the row permuted eigenvector x̃, then making the substitution x = Px̃,

where P is a permutation matrix we have that,

APx̃ = λP x̃
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if we then premultiply by P T we have that

P TAPx̃ = λP TPx̃

= λx̃ (5.15)

Thus from Equation (5.15) the eigenvalues of P TAP are the same as that of A but

the eigenvectors x of the original matrix are equivalent to row permuted eigenvectors

x̃ of P TAP .

Thus using this method we are able to deflate infinite and zero eigenvalues con-

tributed by the leading and trailing coefficient matrices. However the method does

have significant drawbacks. Firstly, we need to determine a value for the parameter

α such that Q(α) is well conditioned. Secondly we must apply the inverse, Q(α)−1 to

the leading and trailing coefficient matrices. These two steps both increase the cost

and could affect the accuracy and stability of the method.

5.2 Simplification of Kublanovskaya’s Method

The original method of Kublanovskaya, Mikhailov, and Khazanov [26] can be sim-

plified when only one of the leading or trailing coefficient matrices is singular. We

outline the deflation of zero eigenvalues; we can deflate infinite eigenvalues when

A2 is singular using the same approach on the reversal polynomial. Let Q(λ) be a

quadratic where A2 is nonsingular and A0 singular, with rank(A0) = r0 < n. As

in the previous section, we can take any of the two-sided UTV decompositions of

Section 4. We again use a rank-revealing QR factorization of AT0 such that

AT0 P
T
0 = Q0R0, (5.16)

where Q0, P0 ∈ Rn×n are orthogonal, R0 ∈ Rn×n is upper triangular, and P0 is a

permutation matrix. Forming the first companion linearization of Q(λ) we have

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 (5.17)
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Forming C̃1(λ) := KT C1(λ) K, where K =

In 0

0 Q0

 we have

C̃1(λ) = λ

A2 0

0 In

+

 A1 A0Q0

−QT
0 0

 . (5.18)

Since

A0Q0 = P T
0 R

T
0 = P T

0 [R̃T
0 0],

(5.18) has the form

C̃1(λ) = λ

A2 0

0 In

+

 A1 P T
0 R̃

T
0 0

−QT
0 0 0

 .
On removing the last n−r0 rows and columns of C̃1(λ), we deflate the zero eigenvalues

of the pencil.

Once we have determined an eigenpair of the (smaller) deflated problem, we must

recover the eigenvector of C̃1(λ), we can then reapply the transformationK to yield an

eigenvector of the first companion linearization, finally, via a backward error argument

we obtain an eigenvector of the quadratic. We first partition (5.18) as

C̃1(λ) = λ


A2 0 0

0 Ir0 0

0 0 In−r0

+


A1 P T

0 R̃
T
0 0

−Q̂T
0 0 0

−Q̃T
0 0 0

 (5.19)

then −Q̃0

T
∈ R(n−r0)×n is the last n− r0 rows of −QT

0 and −Q̂0

T
∈ Rr0×n is the first

r0 rows of −QT
0 . We define X̃ and Ỹ to have the structure

X̃ =

A2 0

0 Ir0

 , Ỹ =

 A1 P T
0 R̃

T
0

−Q̂0

T
0

 , (5.20)

where X̃, Ỹ ∈ R(n+r0)×(n+r0). We then determine eigenpairs of the pencil

L(λ) = λX̃ + Ỹ , (5.21)

and we now explain how eigenvectors of (5.19) can be recovered from those of the
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pencil (5.21). Writing (5.19) in homogeneous form we have

L(α, β) = α


A2 0 0

0 Ir0 0

0 0 In−r0

+ β


A1 P T

0 R̃
T
0 0

−Q̂T
0 0 0

−Q̃T
0 0 0

 . (5.22)

If (α, β; z̃) is an eigenpair of L(α, β) then the eigenvector is of the form z̃ = [z1, z2, z3]T

and satisfies

L(α, β)z̃ =

α

A2 0 0

0 Ir0 0

0 0 In−r0

+ β


A1 P T

0 R̃
T
0 0

−Q̂T
0 0 0

−Q̃T
0 0 0




z1

z2

z3

 =


0

0

0

 (5.23)

(5.23) yields the three equations,

αA2z1 + βA1z1 + βP T
0 R̃

T
0 z2 = 0 (5.24)

αIr0z2 − βQ̂T
0 z1 = 0 (5.25)

αIn−r0z3 − βQ̃T
0 z1 = 0 (5.26)

Since we solved the GEP in Equation (5.21), Equations (5.24) and (5.25) are auto-

matically satisfied. The vector z3 can be determined by Equation (5.26), or if α = 0

we can set z3 arbitrarily, and if β = 0 we set z3 = 0.

On obtaining an eigenpair (λ, z̃) of L(λ) we recover an eigenvector of the first

companion linearization by a matrix-vector product. If (λ, z̃) solves L(λ)z̃ = 0 and

L(λ) = KTC1(λ)K, where C1(λ) is the first companion linearization then (λ, z = Kz̃)

solves C1(λ)z = 0. An eigenpair of the QEP is then recovered by a backward error

argument applied to z.

5.3 Householder Deflation

In this section we present algorithms that deflate zero or infinite eigenvalues from

quadratics with singular leading or trailing coefficients, using Householder reflectors.

The technique presented can be used to deflate a quadratic given the knowledge of

any eigenpair but we focus on the deflation of infinite and zero eigenvalues. First
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we focus on deflating either zero or infinite eigenvalues, then we show how the two

methods can be coupled to deflate zero and infinite eigenvalues from a quadratic.

We first give a definition of a Householder reflector (also known as a Householder

transformation).

Definition 9 (Householder reflector [15]). A Householder reflector H ∈ Rn×n is a

symmetric and orthogonal matrix of the form

H = I − 2
vvT

vTv
,

where v ∈ Rn is called the Householder vector.

Householder reflectors can be used to zero components of a vector, for more details

see [15]. The deflation process presented has similarities with that of a constructive

proof of the generalized Schur decomposition, which we give below.

Theorem 4 (The Generalized Schur Decomposition). If A and B are in Cn×n then

there exist unitary Q and Z such that Q∗AZ = T and Q∗BZ = S are upper triangular.

If for some k, tkk and skk are both zero, then λ(A,B) = C (where λ(A,B) denotes

the set of all eigenvalues of the pencil A− λB). Otherwise

λ(A,B) = {tii/sii : sii 6= 0} .

Proof. The proof is by construction, let v1 be an eigenvector of the pencil A − λB

and let V be a Householder reflector such that V e1 = v1, and let V = [v1 Ṽ ]. Since

the pencil A − λB is regular we have that at least one of the vectors Ax and Bx

must be nonzero. We suppose Ax is nonzero and note that if Bx 6= 0 then it must be

proportional to Ax. Let u1 = Ax/ ‖Ax‖2 and let U be a Householder reflector such

that Ue1 = u1, and let U = [u1 Ũ ]. We then have that

U∗AV =
[
u1 Ũ

]∗
A

v1

Ṽ

 =

u∗1Av1 u∗1AṼ

Ũ∗Av1 Ũ∗AṼ


=

α11 s∗12

0 Ã


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and

U∗BV =
[
u1 Ũ

]∗
B

v1

Ṽ

 =

u∗1Bv1 u∗1BṼ

Ũ∗Bv1 Ũ∗BṼ


=

β11 t∗12

0 B̃

 .
That Ũ∗Av1 = 0 follows since Av1 is orthogonal to the column space of Ũ by con-

struction. The proof is completed by an inductive reduction of the pencil Ã− λB̃ to

triangular form.

5.3.1 Deflation of Zero Eigenvalues

When the trailing coefficient A0 is singular, with rank(A0) = r0 < n, it contributes

zero eigenvalues to the quadratic. We show how these can be deflated from Q(λ) by

applying Householder reflectors to the first companion linearization of the quadratic.

To perform the deflation we require an orthonormal basis for the null space of A0;

we denote this by N0 = {v1, . . . vn−r0}, where the vectors vi span the null space of

A0. The null space basis can be computed using any of the techniques of Chapter 4.

Forming the first companion linearization of the quadratic, we have

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 =: λX1 + Y1,

where X1, Y1 ∈ R2n×2n. The eigenvectors zi of C1(λ) associated to the zero eigenvalue

(cf. equation (2.13)) have the form

zi =

0

vi

 ∈ R2n.

We first deflate the eigenpair (z1; 0) from C1(λ). Let H1 be a Householder reflector

such that H1e1 = z1, (where e1 denotes the first column of the 2n-by-2n identity

matrix). Let H1 = [z1 U1] ∈ R2n×2n. SinceA2 0

0 In

 z1 =

A2 0

0 In

 0

v1

 = z1, (5.27)
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and we have that X1z1 = z1. We now form C̃1(λ) = HT
1 C1(λ)H1. (5.28) follows from

X1z1 = z1 and zT1 z1 = 1, on forming (5.29) we note that Y1z1 = 0.

HT
1 X1H1 =

zT1
UT

1

X1

[
z1 U1

]
=

1 zT1 X1U1

0 UT
1 X1U1

 . (5.28)

HT
1 Y1H1 =

zT1
UT

1

Y1

[
z1 U1

]
=

0 zT1 Y1U1

0 UT
1 Y1U1

 . (5.29)

Hence

C̃1(λ) = λ

1 zT1 X1U1

0 UT
1 X1U1

+

0 zT1 Y1U1

0 UT
1 Y1U1

 =: λX2 + Y2,

where X2, Y2 ∈ R2n×2n. At this point we have deflated the eigenpair (z1; 0) and we

now work with the pencil

λUT
1 X1U1 + UT

1 Y1U1 =: λX̃2 + Ỹ2, where X̃2, Ỹ2 ∈ R(2n−1)×(2n−1).

We will now outline the next deflation to be performed, in particular the form of the

next eigenvector (of λX2 + Y2) associated with a zero eigenvalue. We show that

HT
1 z2 =

 0

z̃2

 ,
and then show that z̃2 is an eigenvector of the pencil λX̃2 + Ỹ2. Since zT1 z2 = 0 and

H1e1 = z1 we have zT1 z2 = (eT1H
T
1 )z2 = 0 viewing this as eT1 (HT

1 z2) = 0, we conclude

that the first entry of HT
1 z2 is zero.

We will deflate the eigenpair (0, z̃2), where z̃2 = [HT
1 z2](2 : 2n) ∈ R2n−1. Let H2 be

a Householder reflector such that H2e1 = z̃2, and let H2 = [z̃2 U2] ∈ R(2n−1)×(2n−1).

We have that

X1zi = zi ⇐⇒ HT
1 X1H1(HT

1 zi) = HT
1 zi.

We then form

X2(HT
1 z2) =

1 zT1 X1U1

0 UT
1 X1U1

 0

z̃2

 =

 (zT1 X1U1)z̃2

(UT
1 X1U1)z̃2

 ≡
 0

z̃2

 . (5.30)
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Since (UT
1 X1U1)z̃2 = 0 we haveX2z̃2 = 0. Considering Y1(HT

1 z2) then (HT
1 Y1H1)HT

1 zi =

0

Y2(HT
1 z2) =

0 zT1 Y1U1

0 UT
1 Y1U1

 0

z̃2

 =

 (zT1 Y1U1)z̃2

(UT
1 Y1U1)z̃2

 ≡
0

0

 (5.31)

and we conclude that Y2z̃2 = 0, thus in conclusion (λX2 + Y2)z̃2 = 0 and z̃2 is an

eigenvector of the pencil λX2 +Y2. Proceeding as before we then deflate the eigenpair

(0, z̃2).

Supposing we deflate all (n−r0) zero eigenvalues as a result of A0, then we obtain

a matrix pencil of the form

L(λ) = λXn−r0 + Yn−r0 = λ

R11 R12

0 X̃n−r0

+

T11 T12

0 Ỹn−r0

 , (5.32)

where R11, T11 ∈ R(n−r0)×(n−r0), R12, T12 ∈ R(n−r0)×(n+r0). R11 and T11 are upper trian-

gular matrices with diag(T11) = (1, . . . , 1) and diag(R11) = (0, . . . , 0). X̃n−r0 , Ỹn−r0 ∈

R(n+r0)×(n+r0) define a pencil L̃(λ) = λX̃n−r0 + Ỹn−r0 that has no zero eigenvalues as a

result of A0. After determining an eigenpair of L̃(λ) we now show how to recover an

eigenpair of (5.32). Eigenvectors associated to nonzero finite eigenvalues of the form

(α, β), α, β 6= 0 can be recovered through solving a upper triangular linear system,

we present the method now for the case of zero eigenvalues having been deflated (the

method for infinite eigenvalues having been deflated is similar).

The deflated pencil of smaller dimension we write in homogeneous form as L̃(α, β) =

αX̃n−r0 + βỸn−r0 . We now show how given an eigenpair (z̃;α, β) of L̃(α, β) such that

(αX̃n−r0 +βỸn−r0)z̃ = 0, an eigenvector z of L(α, β) satisfying (αXn−r0 +βYn−r0)z = 0

can be recovered. We desire a solution to the systemα
R11 R12

0 X̃n−r0

+ β

T11 T12

0 Ỹn−r0

zu
z̃

 =

0

0

 . (5.33)

Of the two equations in (5.33), the first

α(R11zu +R12z̃) + β(T11zu + T12z̃) = 0 (5.34)

rearranges to the form Nx = b, where N = (αR11 + βT11), b = −(αR12 + βT12)z̃ and

x = zu. The second equation, (αX̃n−r0 +βỸn−r0)z̃ = 0 is automatically satisfied since
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(z̃;α, β) is an eigenpair of L̃(α, β). That (5.34) has a solution follows by verifying

that det(αR11 + βT11) 6= 0. Since β 6= 0, diag(αR11 + βT11) = diag(βT11) 6= 0 we

have det(βT11) 6= 0.

5.3.2 Deflation of Infinite Eigenvalues

To deflate infinite eigenvalues from a quadratic whose leading coefficient is singular we

can form the reversal polynomial, take the first companion linearization and deflate

zero eigenvalues using the Householder approach of the previous section. We will later

present a method that deflates zero and infinite eigenvalues from a quadratic whose

leading and trailing coefficients are both singular, in this method we will need to

deflate infinite eigenvalues without forming the reversal polynomial. We now outline

how to deflate an infinite eigenvalue from a quadratic without forming the reversal

and deflating a corresponding zero eigenvalue.

Suppose the leading coefficient A2 is singular, with rank(A2) = r2 < n. On

forming the first companion linearization of Q(λ) we have

C1(λ) = λ

A2 0

0 In

+

 A1 A0

−In 0

 =: λX1 + Y1,

with X1, Y1 ∈ R2n×2n. Let N2 = {v1, . . . , vn−r2} be an orthonormal basis for the null

space of A2. We choose Householder reflectors H1 = [x1, U1] and K1 = [z1, V1] such

that

x1 =
Y1z1

‖Y1z1‖2

, and z1 =

v1

0

 ,

where H1, K1 ∈ R2n×2n and x1, z1 ∈ R2n. We note that since z1 is a null vector of X1

X1z1 =

A2 0

0 In

v1

0

 = 0,

and UT
1 Y1z1 = 0 since the column space of U1 is orthogonal to Y1z1. We carry out the

transformation HT
1 (λX1 + Y1)K1, where

HT
1 X1K1 =

xT1
UT

1

X1

[
z1 U1

]
=

0 xT1X1V1

0 UT
1 X1V1

 (5.35)
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and

HT
1 Y1K1 =

xT1
UT

1

Y1

[
z1 U1

]
=

ξ1 xT1 Y1V1

0 UT
1 Y1V1

 (5.36)

In (5.36), ξ1 = ‖Y1z1‖2 6= 0. The pencil λUT
1 X1V1 + UT

1 Y1V1 =: λX̃2 + Ỹ2 now has

one infinite eigenvalue deflated from it (contributed by the A2 coefficient matrix). If

another infinite eigenvalue is to be deflated we work with the pencil λX̃2 + Ỹ2. We

choose Householder reflectors H2 = [x2, U2] and K2 = [z2, V2]. In particular z2 is

chosen to be a null vector of the matrix X̃2 that takes the form z2 = ω(2 : 2n)T where

ω = KT
1 φ, φ =

v2

0

 ∈ R2n,

and v2 is a null vector of A2. In fact the first entry of ω is zero since

KT
1 φ =

 zT1 φ

V T
1 φ

 =

 0

V T
1 φ

 .

We then carry out a transformation as before. Once we have deflated all the infinite

eigenvalues as a result of A2, we compute an eigenpair of the deflated pencil

λXn−r2 + Yn−r2 (5.37)

We then recover eigenvectors of Q(λ) via those of (5.37) using a similar process to

that used in the deflation of zero eigenvalues via Householder reflectors.

5.3.3 Deflation of Zero and Infinite Eigenvalues

We now outline an approach based on using Householder reflectors to deflate both

zero and infinite eigenvalues from a quadratic matrix polynomial with singular leading

and trailing coefficients. Let the quadratic Q(λ) have singular leading and trailing

matrix coefficients such that rank(A2) = r2, and rank(A0) = r0, let k2 = n− r2 and

k0 = n − r0 be the number of infinite and zero eigenvalues to be deflated from the

first companion linearization that we denote by C1(λ).

First Householder zero deflation is applied, after accumulating the Householder

reflectors into the matrix Hz where z subscript denotes zero eigenvalue deflation, we
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obtain the pencil L1(λ) = HT
z C1(λ)Hz, where

L1(λ) = λX1 + Y1 = λ

F11 F12

0 X̃1

+

G11 G12

0 Ỹ1

 (5.38)

where F11, G11 ∈ Rk0×k0 are both upper triangular, with diag(F11) = 1 and diag(G11) =

0, the pair X̃1, Ỹ1 ∈ R(2n−k0)×(2n−k0) form a pencil λX̃1 + Ỹ1 that has no zero eigenval-

ues contributed from A0. Let N2 = {q1, . . . , qn−r2} be an orthonormal basis for the

null space of the coefficient matrix A2 (computed by one of the methods of Chapter

4), then let Ṽ ∈ Rn×k2 be a matrix whose columns are the vectors of N2. Embed Ṽ

into a matrix of zeros to form V ∈ R2n×k2 such that

V =

Ṽ
0

 . (5.39)

We note that the columns of Ṽ are the eigenvectors of the quadratic Q(λ) correspond-

ing to infinite eigenvalues. After applying the matrix Hz to V to form V ← HzV , we

then apply Householder infinite eigenvalue deflation but rather than using a basis for

the null space of A2 embedded in a zero matrix to form Householder reflectors, we

use the modified basis V . We now define the following notation, let Hz ∈ R2n×2n and

Hi, Ki ∈ R2n×2n denote the accumulated Householder reflectors for deflation of zero

and infinite eigenvalues, that are embedded into an identity matrix. In addition, let

H̃z ∈ Rk0×k0 and H̃i, K̃i ∈ Rk2×k2 , be the accumulated Householder reflectors that are

embedded in an identity matrix to form Hz, Hi, Ki. Accumulating the Householder

reflectors into matrices Hi and Ki , we obtain the pencil L2(λ) = HT
i L1(λ)Ki where

L2(λ) = λX2 + Y2 = λ


R11 R12 R13

0 R22 R23

0 0 X̃2

+


T11 T12 T13

0 T22 T23

0 0 Ỹ2

 . (5.40)

R11, T11 ∈ Rk0×k0 with diag(R11) = 1 and diag(T11) = 0,

R22, T22 ∈ Rk2×k2 with diag(R22) = 0 and diag(T22) 6= 0,

R12, T12 ∈ Rk0×k2 , R13, T13 ∈ Rk0×(r0+r2), R23, T23 ∈ Rk2×(r0+r2),

The matrices X̃2, Ỹ2 ∈ R(r0+r2)×(r0+r2) form the pencil λX̃2 + Ỹ2 from which all infinite
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and zero eigenvalues as a result of the A2 and A0 coefficient matrices have been

deflated.

After determining an eigenpair (z̃;λ) of λX̃2+Ỹ2, we need to recover an eigenvector

of the first companion linearization, we now give details. Overall we must do the

following

1. Determine an eigenvector of L2(λ) = λX2 + Y2, by solving linear systems.

2. Apply the accumulated Householder reflectors from infinite eigenvalue deflation

to part of the eigenvector.

3. Apply the accumulated Householder reflectors from zero eigenvalue deflation to

part of the eigenvector.

We assume that λ is a finite non-zero eigenvalue such that λ = α/β and in

homogeneous form (α, β). Let z be an eigenvector of L2(α, β) = αX2 + βY2 that we

write as

z = [z1, z2, z̃]T ,

with z1 ∈ Rk0 , z2 ∈ Rk2 , and z̃ ∈ Rr0+r2 . To determine z we must solve the linear

system α

R11 R12 R13

0 R22 R23

0 0 X̃2

+ β


T11 T12 T13

0 T22 T23

0 0 Ỹ2




z1

z2

z̃

 =


0

0

0

 . (5.41)

Rearranging (5.41) we obtain three linear systems,

(αR11 + βT11)z1 = −((αR13 + βT13)z̃ + (αR12 + βT12)z2) (5.42)

(αR22 + βT22)z2 = −(αR23 + βT23)z̃ (5.43)

(αX̃ + βỸ )z̃ = 0. (5.44)

After solving the GEP, we determine an eigenpair (z̃;λ) of (5.44). To recover an

eigenvector of the full pencil we need to determine z1 and z2, to do this we first solve

(5.43) for z2, then on substituting z2 into (5.42) we obtain z1, we can then form the

vector z and have an eigenpair of L2(α, β).
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We now give a brief note about reapplying the accumulated Householder reflec-

tors back to an eigenvector of L2(λ) to obtain an eigenvector of the first companion

linearization. We work with eigenpairs (z;λ) of the pencil

L2(λ) = HT
i H

T
z C1(λ)HzKi,

therefore if (z;λ) satisfies L2(λ)z = 0 then (HzKiz;λ) satisfies C1(λ)HzKiz = 0.

When forming HzKiz we first apply K̃i to elements (k0 + k2) onwards of z, then we

apply H̃z to elements k0 onwards of K̃iz. We then obtain our eigenpair (HzKiz;λ)

of the first companion linearization.

5.3.4 Householder Deflation Methods and Structured Lin-

earizations

We note that when we extend the Householder methods to the structured (sym-

metric) linearizations outlined in Chapter 2 they do not preserve the symmetry of

the linearization, so there is no advantage in such an approach compared with the

methods using Householder reflectors we have described.

5.4 Computational Cost of Methods

We now present the cost of our algorithms in solving the QEP with a quadratic

with singular leading or trailing coefficients, for simplification we assume that all the

eigenvalues are real and that only right eigenvectors are computed, W(UTV) denotes

the amount of work in computing a UTV factorization (as described in Section 4,

while W(α) denotes the cost of determining a value of α such that Q(α) is well-

conditioned. Tables 5.2, 5.1, 5.4, and 5.3 summarize the costs of our algorithms

for various steps, we make the following observations in comparing the costs of the

algorithms

• After a UTV factorization has been computed, the work for the simplified

Kublanovskaya method does not depend on the rank of the matrix, whereas
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for the approach based on deflating zero (or infinite) eigenvalues by the use of

Householder reflectors, a lower rank increases the cost of the algorithm.

• When deflating zero (or infinite) eigenvalues with Householder reflectors, if a

basis for the null space is known it can be supplied to the algorithm, in which

case a UTV factorization is not required and we save on cost. However, for the

simplified Kublanovskaya approach it is not possible to save on cost if a basis

for the null space is known, a UTV factorization is always required.

• When we compare the costs of the two algorithms for quadratics with one sin-

gular leading or trailing coefficient and ignore the cost of the processes common

to both, we find that the Householder approach requires 6n3 more operations

that the simplified Kublanovskaya approach.

• The amount of work required to implement the modified original method of

Kublanovskaya et al is influenced by the need to apply the inverse of a matrix

after a suitable value for α has been determined, the best method for determin-

ing a value for α is an open problem.

Table 5.1: Cost of stages of simplified Kublanovskaya approach.
Process Cost (flops)
UTV factorization of A0 coefficient matrix W(UTV)

Apply transformation K to the first companion
linearization (form product A0Q0)

n3

QZ algorithm applied to deflated pencil 50(n+ r0)3

Recover all 2n eigenvectors by back substitution (2n)3

Reapply Q transformation from QZ algorithm to
eigenvectors

2(2n)3

Reapply transformation K to eigenvectors to re-
cover eigenvectors of the first companion lineariza-
tion

4n3

Total = W (UTV ) + 80n3 + 150r0n
2 + 150r2

0n+ r3
0
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Table 5.2: Cost of stages of modified original Kublanovskaya approach.
Process Cost (flops)
UTV factorization of leading and trailing coeffi-
cient matrices

2 ×W (UTV )

Determine α such that Q(α) is well conditioned W(α)

Determine Q(α)−1 (GEPP) 2n3

Apply the inverse of Q(α) to leading and trailing
coefficients

2n3

Carry out similarity transformation 6n3

Apply permutation matrix (2n)3

Apply QR method to deflated problem SEP 35(r0 + r2)3

Recover eigenvectors by back substitution (r0+r2)(2n−r0−
r2)2 + (r0 + r2)3)

Reapply Q from QR to eigenvectors (r0 + r2)3

Reapply permutation matrix to eigenvectors (2n)3

Reapply transformation matrix V to eigenvectors 6n3

Total = 2×W (UTV )+30n3+4(r0+r2)n2+4(r0+r2)2n+38(r0+r2)3



CHAPTER 5. QUADRATIC EIGENPROBLEM ALGORITHMS 58

Table 5.3: Cost of stages of Householder approach for zero eigenvalues (for deflating
infinite eigenvalues only, use the reversal polynomial and deflate the corresponding
zero eigenvalues).

Process Cost (flops)
UTV factorization of leading or trailing
coefficient matrices for null space basis

W(UTV)

Determine Householder reflectors 3(2n(n− r0)− (n− r0)2/2)

Update null space basis (apply House-
holder reflectors)

(4n2(n− r0)− 2n(n− r0)2 +
(n− r0)3/3)

Apply Householder reflectors to first
companion linearization

16(4n2(n−r0)−2n(n−r0)2+
(n− r0)3/3)

QZ algorithm applied to deflated pencil 46(n+ r0)3

Recover eigenvectors by back substitu-
tion

(2n)3

Apply Q from QZ to eigenvectors 2n(n+ r0)2

Reapply Householder reflectors to
eigenvectors

8(2n2(n−r0)−n(n−r0)2/2)

Total = W (UTV )+(316/3)n3 +n2(9/2+118r0)+n(120r2
0−3r0)+

(122r3
0/3− 3r2

0/2)
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Table 5.4: Cost of stages of Householder approach for zero and infinite eigenvalues.

Process Cost (flops)
UTV factorization of leading and trail-
ing coefficient matrices for null space
basis

2×W (UTV )

Determine Householder reflectors for
infinite and zero deflation

2(3n(n − r0)2 − (2n − r0 −
r2)3) + 3(2n(n − r0) − (n −
r0)2/2)

Matrix vector product (x = Ỹ z) before
computing Householder reflector

(n + r0)2(n − r2) − (n −
r2)2(n+ r0) + (n− r2)3/3

Apply Householder reflectors to null
space basis of A0

4(4n2(n−r0)−2n(n−r0)2 +
(n− r0)3/3)

Apply Householder reflectors to null
space basis of A2

n3/3 + n2(−16r2 − 15r0) +
nr2

0 + (−r0 − r2)3 + r3
0/3

Apply Householder reflectors (for infi-
nite and zero eigenvalue deflation) to
first companion linearization

8n3/3 + 16(−r0 − r2)n2 +
(−r0 − r2)3

QZ algorithm applied to deflated pencil 46(r0 + r2)2

Recover eigenvectors by back substitu-
tion

(2n)3

Reapply Q from QZ to eigenvectors (r0 + r2)(2n)2

Reapply Householder reflectors to
eigenvectors

8(4n2(2n−r0−r2)−n(2n−
r0 − r2)2)

Total = W (UTV ) + (128/3)n3 + n2(−69r0− 65r2− 15/2) + n(r2−
22(−r0− r2)2) + (−3r2

0/2− r3
0 − r2

2/3− r0r2(r0 + r2) + 46(r0 + r2)3)



Chapter 6

Applications and Test Problems

In many of the test problems we will present, a QEP results in part of the dynamic

analysis of structures discretized by the finite element method. The equations of

motion are of the form

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (6.1)

where M , C, and K are n-by-n matrices, q(t) and f(t) are n-dimensional vectors.

M is called the mass matrix, C the damping matrix and K the stiffness matrix, f(t)

is a forcing term. The first step of a vibrational or dynamic analysis is the solution

of the homogeneous equation, setting f(t) = 0 in (6.1). To do this it is necessary to

obtain eigenvalues λ and eigenvectors x of the QEP

(λ2M + λC +K)x = 0,

more details and examples can be found in [31].

We now present a number of test problems that result in a quadratic with infinite

or zero eigenvalues. Table 6.1 lists the problems, their dimension and the rank of the

leading and trailing coefficients.

6.1 Test Quadratics

We now describe applications that yield a QEP whose quadratic has singular leading

or trailing coefficients, we make use of the MATALB spy function when we describe

60
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Table 6.1: Properties of test problems.

Test problem n rank(A0) rank(A2)

Speaker box 107 106 full

Mobile manipulator 5 full 3

Railtrack problem 1005 67 67

Shaft on bearing support 400 full 199

Spring dashpot 10 full 2

Table 6.2: Effect of scaling on norms of test problem coefficients.

Test problem ‖A0‖2 ‖A1‖2 ‖A2‖2

Speaker box (unscaled) 9.95e+6 5.74e-2 1.00

Speaker box (scaled) 2.00 3.64e-5 2.00

Spring dashpot (unscaled) 3.75 1.13 1.04e+4

Spring dashpot (scaled) 1.99 1.13e-2 1.99

Mobile manipulator (unscaled) 1.30e+2 8.43 5.94e+1

Mobile manipulator (scaled) 1.82 1.75e-1 1.82

Shaft (unscaled) 1.81e+9 8.00e-3 2.71e-3

Shaft (scaled) 2.00 7.23e-6 2.00

Railtrack (unscaled) 2.67e+10 1.29e+11 2.67e+10

Railtrack (scaled) 3.44e-1 1.66 3.44e-1
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the sparsity pattern of matrix coefficients, it puts a dot where the entry of a matrix

is nonzero.

6.1.1 Speaker Box

The quadratic Q(λ) = λ2M + λC + K, with M,C,K ∈ R107×107, is from the finite

element package MSC/Nastran. The matrices come from a finite element model of a

speaker box that includes both structural finite elements representing the box, and

finite elements representing the air contained in the box. The mass matrix M has

rank 106 and contributes a zero eigenvalue and the matrix coefficients are highly

structured and sparse, see Figure 6.1. Figure 6.2 on the next page shows the finite

element representation of the speaker box. Further discussion of this model can be

found in [18].

Figure 6.1: Spyplot of matrix coefficients of quadratic for speaker box example.

6.1.2 Linear Spring and Dashpot

Gotts [16] describes a QEP arising from a finite element model of a linear spring

in parallel with Maxwell elements (a Maxwell element is a spring in series with a

dashpot), for a diagram see Figure 6.3. The QEP is of the form Q(λ)x = 0 with

Q(λ) = λ2M + λD +K, M,D,K ∈ R10×10
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Figure 6.2: Finite element representation of a speaker box.
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where the mass matrix M is rank deficient and symmetric, D the damping matrix

is rank deficient and block diagonal, and K the stiffness matrix is symmetric and

exhibits “arrowhead” structure. Gotts suggests that there are normally at least 4

Maxwell elements, we generated an example that reflects only the structural prop-

erties such as symmetry, 2-by-2 element mass and stiffness matrices are randomly

generated to be symmetric positive definite. We give the form of the matrix for 4

Maxwell elements below

M =

[
ρM̃11 0

0 0

]
(6.2)

D =


0 0 · · · 0

0 η1K̃11
. . .

...

...
. . . . . . 0

0 · · · 0 η4K̃55

 (6.3)

K =


αρK̃11 B

e1K̃22 0 0

BT 0
. . . 0

0 0 e4K̃55

 (6.4)

where

B =
[
−ξ1K̃12, . . . , −ξ4K̃15

]
.

M̃ij and K̃ij are the ijth element mass and stiffness matrices, and

αρ =
4∑

k=0

ξk.

ηi, i = 1: 5, ξj j = 0: 5, ek, k = 1: 4 and ρ (the material density) are scalar

parameters.

6.1.3 Mobile Manipulator Problem

This QEP results from the modeling of a time-invariant descriptor control system of

a two-dimensional three link mobile manipulator [3], [2]. Figure 6.4 shows the mobile

manipulator. The quadratic is of the form

Q(λ) = λ2M + λD +K, M,D,K ∈ R5×5,
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Figure 6.3: Spring/dashpot with Maxwell elements.

where,

M =

M0 0

0 0

 , D =

D0 0

0 0

 , K =

K0 −F0

F0 0

 .
M and D are rank deficient, and in particular M contributes two infinite eigenvalues.

M0, D0, and K0 ∈ R3×3 with M0 nonsingular, and F0 ∈ R2×3. The quadratic in this

case is close to being nonregular [3, 22].

6.1.4 Shaft on Bearing Support

The QEP Q(λ) = λ2M + λC + K, with M,C,K ∈ R400×400, (also from the package

MSC/Nastran) comes from a finite element model of a shaft on bearing supports

with a damper. The rank of M is 199 and contributes a large number of infinite

eigenvalues, the quadratic matrix coefficients are very sparse in this example, see

Figure 6.5. Figure 6.6 on page 67 shows a schematic of a shaft on bearing support.
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Figure 6.4: Three link mobile manipulator.

Figure 6.5: Spyplot of matrix coefficients of quadratic for shaft example.
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Figure 6.6: Schematic of a shaft on bearing support.
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6.1.5 Railtrack Problem

Hilliges, Mehl and Mehrmann [24] consider the eigenproblem

1

κ
(AT1 + κA0 + κ2A1)y = 0

where A0, A1 ∈ C1005×1005 and A0 = AT0 (A0 is complex symmetric). This is a

palindromic eigenvalue problem since starting with the original quadratic that we

denote as P (κ) = κ2A1 + κA0 + AT1 and transposing we have

P (κ)T = κ2AT1 + κA0 + A1,

finally taking the reversal polynomial of P (κ)T we have

rev(P (κ)T ) = κ2A1 + κA0 + AT1

which is the same as the original quadratic. The polynomial is more accurately called

T-palindromic (T for transpose), since we took the transpose. This eigenproblem

results from a vibrational analysis of rail tracks under periodic excitation using finite

element analysis. The quadratic has the property that there are many infinite and

zero eigenvalues contributed by the leading and trailing coefficient, since A1 has rank

67 and is therefore highly rank-deficient. To preserve the spectral properties of the

eigenproblem it is desirable to preserve the palindromic nature of the original QEP

when choosing a linearization. Therefore structure preserving linearizations are used

(see Section 2.1 on page 20 for some details of structure preserving linearizations).

Figure 6.7: Model of the rail.
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Figure 6.8: FEM representation of the rail in one sleeper bay.

6.1.6 Randomly Generated Quadratics with Singular Lead-

ing and Trailing Coefficient Matrices

In order to test the algorithms that deflate both zero and infinite eigenvalues when the

leading and trailing coefficient matrices are singular, we generate our own quadratics

with specified rank. The railtrack example has leading and trailing coefficients which

are singular but the coefficient matrices have dimension 1007-by-1007 which is too

large to use for our algorithms in a reasonable amount of time.

We use the three methods below to generate random test problems:

• Embed a randn(r,r) matrix into an n-by-n zero matrix.

• Generate a random matrix Ã, compute its SVD, Ã = UΣV T , and let Σ̃ to be

the matrix Σ with the last n−r diagonal entries of Σ set to zero. Then compute

A by forming A = UΣ̃V T .

• Use a block outer product, then A = randn(n,r) ∗ randn(n,r)T .
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To generate quadratics with leading and trailing coefficients that are singular with

specified rank we use the following method and call the quadratics qrankdef1. To

mirror the structure of the matrices in the applications we have described, to generate

a coefficient of rank r for a quadratic whose matrix coefficients are n-by-n we embed

into an n-by-n zero matrix an r-by-r matrix with elements drawn from a normal

distribution with mean zero and standard deviation one, we optionally apply column

and row permutation so that the matrices are less structured.

6.2 Initial Scaling of the Quadratic Matrix Poly-

nomial

When we obtain a quadratic from practical application, it is possible that the coef-

ficient matrices are ‘badly scaled’. Fan, Lin and Van Dooren [10], present a method

of scaling the matrix polynomial Q(λ) = λ2A2 + λA1 + A0, to bring the norms of

the coefficients close to one. The result is the scaled matrix polynomial Q̃(µ) =

µ2(A2 ξ
2δ) + µ(A1 ξδ) + (A0 δ), where if

γ2 = ‖A2‖2 , γ1 = ‖A1‖2 , γ0 = ‖A0‖2 ,

then the choices of

ξ =
√
γ0/γ2, and δ =

2

γ0 + γ1

√
γ0/γ2

,

result in the scaled matrix quadratic Q̃(µ) having norm close to one. The work [21]

illustrates the benefit of the above scaling for a model QEP describing the motion

of a beam simplify supported at both ends, with damping at the midpoint. We now

summarize some results from [20], regarding the effect of the scaling presented above

on the conditioning of the quadratic and linearization.

Theorem 5 (see Theorem 5.1 [20]). Let λ be a simple eigenvalue of Q(λ) = λ2A2 +

λA1 +A0, or of the scaled quadratic Q̃(µ) = µ2Ã2 + µÃ1 + Ã0 (scaled by the method

of Fan, Lin and Van Dooren above). Assume that either
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• ‖A1‖2 . max(‖A0‖2 , ‖A2‖2) and ‖A2‖2 ≈ ‖A0‖2 then solve the unscaled QEP

via linearization, taking a linearization contained in the vector space DL(Q)

• ‖A1‖2 .
√
‖A0‖2 ‖A2‖2 and then scale the QEP using the Fan, Lin and Van

Dooren scaling. Choose a linearization of the scaled QEP, that is contained in

the vector space DL(Q̃).

Then if A2 is nonsingular and |λ| ≥ 1, or A0 is nonsingular and |λ| ≤ 1, then it is

possible to choose a linearization of the QEP so that the conditioning is near-optimal.

In applications, Theorem 5 is valid for QEPs resulting from mechanical systems

with damping, that are not too heavily damped. In this thesis we focus on the

first companion linearization, for the companion linearizations Section 7 of [20] gives

results guaranteeing optimal conditioning, however a priori the only easily checkable

condition presented is that ‖Ai‖2 ≈ 1, i = 0 : 2.

6.3 Conditioning of Eigenvalues of Quadratic Test

Problems

We have computed the condition numbers of eigenvalues of the quadratic and first

companion linearization, with and without the scaling of Fan, Lin and Van Dooren

[10]. Bounds based on the maximum and minimum values of eigenvalues condition

numbers for the quadratic and linearization are summarized in Table 6.3. We note the

following points with regard to the effect of the scaling on the eigenvalues condition

numbers, in particular we note whether the infinite and zero eigenvalues we are

deflating are well or ill-conditioned:

• Speaker box: Scaling the quadratic is important in this example, if we do

not scale then a zero eigenvalue contributed by the A1 coefficient is not exactly

zero (10−8), however when scaling is applied the zero eigenvalue is correctly

returned.
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Table 6.3: Effect of scaling on eigenvalue condition number for quadratic and com-
panion linearization, for test problem quadratics.

λ = {0,∞} λ Finite nonzero

Speaker box Unscaled 1018≤κQ(α, β)≤1021 103 ≤κQ(α, β)≤1021

Scaled 1011≤κQ(α, β)≤1011 106 ≤κQ(α, β)≤1011

Unscaled 1011≤κL(α, β)≤1016 106 ≤κL(α, β)≤1016

Scaled 101 ≤κL(α, β)≤101 101 ≤κL(α, β)≤109

Spring dashpot Unscaled 104 ≤κQ(α, β)≤106 10−1≤κQ(α, β)≤105

Scaled 102 ≤κQ(α, β)≤105 101 ≤κQ(α, β)≤103

Unscaled 104 ≤κL(α, β)≤106 102 ≤κL(α, β)≤105

Scaled 103 ≤κL(α, β)≤105 101 ≤κL(α, β)≤104

Mobile manipulator Unscaled 1062≤κQ(α, β)≤∞ 104 ≤κQ(α, β)≤104

Scaled 1061≤κQ(α, β)≤∞ 104 ≤κQ(α, β)≤104

Unscaled 1031≤κL(α, β)≤1032 104 ≤κL(α, β)≤104

Scaled 1031≤κL(α, β)≤1032 104 ≤κL(α, β)≤104

Shaft Unscaled 1054≤κQ(α, β)≤∞ 10−6≤κQ(α, β)≤108

Scaled 1069≤κQ(α, β)≤∞ 100 ≤κQ(α, β)≤106

Unscaled 108 ≤κL(α, β)≤1033 103 ≤κL(α, β)≤1010

Scaled 1017≤κL(α, β)≤1033 101 ≤κL(α, β)≤106
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Figure 6.9: Effect of scaling on eigenvalue condition number of the quadratic for
eigenvalues of the shaft problem.

Figure 6.10: Effect of scaling on eigenvalue condition number of the first companion
linearization for eigenvalues of the shaft problem.
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• Spring dashpot: Both the infinite and finite eigenvalues are reasonably well

conditioned in this case, scaling tends to reduce the condition number of eigen-

values in this example.

• Mobile manipulator problem: The infinite eigenvalues are particularly ill-

conditioned, indicating that the infinite eigenvalues are, or are close to being

defective. The finite nonzero eigenvalues (in this case one complex conjugate

pair) are relatively well conditioned being of the order 104.

• Shaft: Scaling slightly increases the condition number of finite eigenvalues for

the quadratic, but decreases the condition number of finite eigenvalues for the

linearization, as seen in Figure 6.9 for the quadratic, and 6.10 for the lineariza-

tion, however some of the eigenvalue condition numbers are still quite large,

they range from 101 to 106 when scaling is applied, compared to 103 to 1010,

so scaling is clearly desirable in this case. The infinite eigenvalues are all rel-

atively ill-conditioned, the condition numbers are all greater that 108, and for

those infinite eigenvalues between 600-800 their respective condition number is

increased by scaling, but the eigenvalue condition number of infinite eigenvalues

between 400-600 is very large regardless of scaling the quadratic.

6.4 Testing the Algorithms

We now present results of testing the algorithms on the some of the test problems

previously described (we omit the railtrack example due to its large size), we also

use quadratics whose coefficients have been generated to have a specified rank. We

measure the backward error of eigenpairs of the quadratic and of eigenpairs of the

deflated pencil. By deflated pencil we mean the pencil after a deflation procedure

has been carried out. When solving the QEPs, we implement the scaling of Fan, Lin

and Van Dooren [10] as described in this chapter. In our figures, the x-axis is the

eigenvalue index and the eigenvalues are sorted in order of increasing magnitude (via

the MATLAB sort function). For those quadratics with highly structured matrix
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coefficients, it is possible that the backward error of eigenpairs for the quadratic is

exactly zero, since we use a log axis with MATLAB’s semilogy command such zero

values are not plotted, this explains any gaps in the plots.

6.4.1 Householder Deflation of Zero or Infinite Eigenvalues

When testing the Householder deflation approach we fix the choice of null space ap-

proximation, using the SVD to give a basis for the null space, since it is the most

stable method. The routine gives good (small) backward errors for eigenpairs of the

quadratic on the test problems (speaker box, mobile manipulator, spring dashpot and

shaft). We note that backward errors of eigenpairs with finite nonzero eigenvalues (or

those zero or infinite eigenvalues that were contributed by A1 and not deflated) are

usually of a similar order as those of the linearization. However, for those eigenpairs

of the quadratic with zero or infinite eigenvalues that were deflated, we can see much

smaller (possibly zero) backward errors for the quadratic than we might expect. Fig-

ure 6.11 illustrates the case of the speaker box where a single eigenvalue contributed

by the A0 matrix coefficient is deflated. We can explain this by the fact that we are

able to determine a basis for the null space of the singular matrix coefficient very

accurately (such a basis is often spanned by unit vectors), hence we can accurately

deflate infinite and zero eigenvalues.

6.4.2 Deflation of Zero or Infinite Eigenvalues using Simpli-

fied Kublanovskaya Method

We test the MATLAB implementation of the simplified Kublanovskaya method on

the test problems with singular leading or trailing coefficients and note that back-

ward errors for all eigenpairs with nondefective zero or infinite eigenvalues are small,

somewhere in the region of the machine precision, the shaft problem for example, in

Figure 6.13. However, when the quadratic has defective zero or infinite eigenvalues

(the speaker box and mobile manipulator examples), the backward error can be large,

as seen in Figure 6.12. It is known that the quadratic in the mobile manipulator is
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Figure 6.11: Backward error for quadratic and companion linearization for the speaker
box problem where Ai ∈ R107×107 with rank(A0) = 106 (1 zero eigenvalue contributed
by A0 coefficient deflated via Householder reflectors)
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close to being nonregular, which may explain our results, however the speaker box

quadratic is regular, hence, further work is required to determine whether it is the

method or the implementation that yields this instability.

Figure 6.12: Backward error for quadratic and companion linearization for the mobile
manipulator problem where Ai ∈ R5×5 with rank(A2) = 3 (2 infinite eigenvalues
contributed by A2 coefficient deflated via simplified Kublanovskaya method

6.4.3 Householder Deflation of Zero and Infinite Eigenvalues

For the random quadratics we have generated, the backward error of quadratic eigen-

pairs are small, at most of the order 10−14, when both leading and trailing coefficients

are singular. The backward errors are relatively near to the machine precision in this

case, for example Figure 6.14, using the block outer-product method to generate

singular coefficients.
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Figure 6.13: Backward error for quadratic and companion linearization for the shaft
problem where Ai ∈ R400×400 with rank(A2) = 199 (201 infinite eigenvalues con-
tributed by A2 coefficient deflated), deflation by simplified Kublanovskaya method
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6.4.4 Deflation of Zero and Infinite Eigenvalues using Mod-

ified original Kublanovskaya Method

The backward errors for quadratic eigenpairs using the simplified Kublanovskaya

method are at most of the order 10−13, thus, slightly larger than using Householder

reflectors, this can be attributed to the need to apply the inverse of the matrix Q(α).

Figure 6.15 shows the results for a quadratic with singular coefficients generated by

forming a block outer-product.
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Figure 6.14: Backward error for quadratic and companion linearization for ran-
dom quadratic with singular coefficients generated by block outer-product,n = 100,
rank(A0) = rank(A2) = 50, 50 zero and infinite eigenvalues deflated by Householder
reflectors.

Figure 6.15: Backward error for quadratic and companion linearization for ran-
dom quadratic with singular coefficients generated by block outer-product,n = 100,
rank(A0) = rank(A2) = 50, 50 zero and infinite eigenvalues deflated using modified
original Kublanovskaya method



Chapter 7

Conclusion

We have presented two main types of algorithms; those based on the ideas of Kublan-

voskaya et al, and those on applying Householder reflectors to the first companion

linearization. For both these methods we require a UTV decomposition, which we

have outlined, either to form the transformation matrices (Kublanovskaya method)

or to provide a basis for the null space of singular leading and trailing coefficient

(Householder reflector algorithms). We note that the algorithms differ in that the

Kublanovskaya type methods try to deflate all zero and/or infinite eigenvalues at once

in a global manner, whilst the Householder reflectors methods deflate one eigenvalue

at a time in a local sense. From testing the MATLAB implementations on the test

problems, deflating either zero or/and infinite eigenvalues using Householder reflec-

tors is stable for the test problems, including examples such as the speaker box, with

a defective zero eigenvalue. When Householder reflectors are used to deflate zero or

infinite eigenvalues we saw that eigenpairs of the quadratic can be returned to high

accuracy with a smaller than expected backward error. The modified original ap-

proach of Kublanovskaya et al can give slightly larger backward errors for eigenpairs

of the quadratic, this is likely to arise from the need to apply the inverse of Q(α) to

the leading and trailing coefficients. The simplified Kublanovskaya method appears

stable, with the exception of defective infinite or zero eigenvalues, however, rigorous

error analysis is necessary to determine the stability of the methods.

81
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MATLAB Programs

We list the MATLAB programs in Table A.1.

Table A.1: Summary of MATLAB programs; Q(λ) = λ2A2 + λA1 + A0 is a general
quadratic and L(λ) = λX + Y a matrix pencil.

General functions Page
qepnormscale.m Scale Q(λ) by method of Fan, Lin and

Van Dooren
83

linberrright.m Backward error of right eigenpair for
L(λ)

84

qepberrright.m Backward error of right eigenpair for
Q(λ)

85

rec quad evec.m Recover eigenvectors of Q(λ) from
those of L(λ) using a backward error
argument

86

nullspace.m Compute basis for null space of matrix 88

Deflation procedures
deflate1.m Deflation of zero or infinite eigenvalues

(A0 or A2 singular but not both), us-
ing simplified Kublanovskaya method
or Householder reflector approach

91

deflate2.m Deflation of zero and infinite eigen-
values (A0 and A2 both singular),
using modified version of original
Kublanovskaya approach or House-
holder reflectors

96

smpl kubl.m Simplification of original method of
Kublanovskaya et al

102

house{zero, inf}.m Deflation of {zero, infinite} eigenvalues
using Householder reflectors

{104, 107}

82
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function [S0, S1, S2, gamma, delta] = qepnormscale(A0, A1, A2)

%QEPNORMSCALE Scale quadratic matrix polynomial.

% [S0, S1, S2, GAMMA, DELTA] = QEPNORMSCALE(A0, A1, A2)

% scales the quadratic:

% lambda^2*A2 + lamda*A1 + A0.

%

% The input is A0, A1, A2 which are n-by-n matrices.

% The output is the corresponding scaled matrices, S0, S1, S2,

% also n-by-n matrices, GAMMA and DELTA are the scale factors.

%

% QEPNORMSCALE implements the method of Fan, Lin, and Van Dooren.

% The aim is to make the norms of the coefficients A0, A1, and A2

% close to one after scaling.

%

% Reference: H.-Y. Fan, W.-W. Lin and P. Van Dooren, Normwise scaling

% of second order polynomial matrices.

% SIAM J. Matrix Anal. Appl., 26(2004), pp. 252-256.

%

% 25-Jan-2008 14:55:54

gamma = sqrt(norm(A0)/norm(A2));

delta = 2 / (norm(A0) + norm(A1)*gamma );

S0 = delta * A0;

S1 = delta * gamma * A1;

S2 = delta * gamma * gamma * A2;
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function berr = linberrright(Z, alpha, beta, X, Y)

%LINBERRRIGHT Backward error of right eigenpair of linearization.

% BERR = LINBERRRIGHT(Z, ALPHA, BETA, X, Y)

% returns BERR the backward errors, where Z is

% a matrix of right eigenvectors of the pencil

% ALPHA * X + BETA * Y

% with associated eigenvalue (ALPHA, BETA) in homogeneous form.

%

% 09-Sep-2007 13:25:51

nX = norm(X);

nY = norm(Y);

n = size(X)/2;

for i =1:length(alpha)

berr(i) = norm((alpha(i)*X + beta(i)*Y)*Z(:,i))/ ...

((abs(alpha(i))*nX + abs(beta(i))*nY)*norm(Z(:,i)));

end
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function berr = qepberrright(X, alpha, beta, A0, A1, A2, flag)

%QEPBERRRIGHT Backward error of QEP - right eigenpairs.

% BERR = QEPBERRRIGHT(X, ALPHA, BETA, A0, A1, A2, FLAG)

% returns backward error BERR, where X is a matrix of right

% eigenvectors with corresponding eigenvalues (ALPHA, BETA)

% in homogeneous form for the quadratic

%

% ALPHA^2*A2 + ALPHA*BETA*A1 + BETA^2 * A0

%

% FLAG is a string taking values upper or lower to select

% (upper) X(1:n,k) or (lower) X(n+1:2*n,k)

% as the k-th eigenvector of the QEP.

%

numevs = length(alpha);

n = size(A0,2);

switch lower(flag)

case ’lower’

for i =1:numevs

num = norm((alpha(i)^2 * A2 + alpha(i) * beta(i) *A1 + ...

beta(i)^2*A0)*X(n+1:2*n,i));

denom = ((abs(alpha(i))^2*norm(A2) + ...

abs(alpha(i))*abs(beta(i))*norm(A1) + ...

abs(beta(i))^2 * norm(A0))*norm(X(n+1:2*n,i)));

berr(i) = num/denom;

end

case ’upper’

for i =1:numevs

num = norm((alpha(i)^2 * A2 + alpha(i) * beta(i) *A1 + ...

beta(i)^2*A0)*X(1:n,i));

denom = ((abs(alpha(i))^2*norm(A2) + ...

abs(alpha(i))*abs(beta(i))*norm(A1) + ...

abs(beta(i))^2 * norm(A0))*norm(X(1:n,i)));

berr(i) = num/denom;

end

end



APPENDIX A. MATLAB PROGRAMS 86

function [X, berrqep] = rec_quad_evec(alpha, beta, V, A0, A1, A2)

%REC_QUAD_EVEC Recover eigenvector of quadratic from that of linearization.

% [X, BERRQEP] = REC_QUAD_EVEC(ALPHA, BETA, A0, A1, A2, V), where ALPHA,

% and BETA represent the eigenvalues in homogeneous form of the quadratic

% Q(lambda), with corresponding eigenvectors that are columns of V.

% The quadratic Q(lambda) is defined by the coefficient matrices

% A0, A1, and A2 and Q(lambda) = lambda^2*A2 +lambda*A1 + A0.

%

% 25-Jan-2008 14:55:54

n = size(A0,1);

warning(’off’,’MATLAB:divideByZero’);

for i = 1:length(alpha)

if and(isfinite(abs(alpha(i)) ./ abs(beta(i))), ...

isfinite(abs(beta(i)) ./ abs(alpha(i))))

%Finite nonzero eigenvalue.

%Select component of eigenvector of linearization that yields

%the smallest backward error.

berr_u = qepberrright(V(:,i), alpha(i), beta(i), A0, A1, A2, ’upper’);

berr_l = qepberrright(V(:,i), alpha(i), beta(i), A0, A1, A2, ’lower’);

if (abs(berr_u) < abs(berr_l))

%Select upper component.

Zr(1:size(A0,1),i) = V(1:size(A0,1),i);

berrqep(i) = berr_u;

else

%Select lower component.

Zr(1:size(A0,1),i) = V(size(A0,1)+1:2*size(A0,1),i);

berrqep(i) = berr_l;

end

if norm(Zr(1:size(A0,1),i))==0

Zr(1:size(A0,1),i) = V(1:n,i);

berrqep(i) = qepberrright(V(:,i), alpha(i), beta(i), A0, A1, A2, ’upper’);

end

elseif isinf(abs(alpha(i)) ./ abs(beta(i)))
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%Infinite eigenvalue.

Zr(1:size(A0,1),i) = V(1:size(A0,1),i); %Select first n components.

berrqep(i) = qepberrright(V(:,i), alpha(i), beta(i), A0, A1, A2, ’upper’);

elseif isinf(abs(beta(i)) ./ abs(alpha(i)) )

%Zero eigenvalue.

Zr(1:size(A0,1),i) = V(n+1:2*size(A0,1),i); %Select last n components.

berrqep(i) = qepberrright(V(:,i), alpha(i), beta(i), A0, A1, A2, ’lower’);

end

end

X = Zr;

warning(’on’,’MATLAB:divideByZero’);
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function [V, nr, Q, R, P] = nullspace(A, flag)

%NULLSPACE Basis for null space of a matrix.

%

% [V, NR, Q, R, P] = NULLSPACE(A, FLAG) computes a basis for the numerical null space

% of the matrix A, where FLAG is a string specifying the method used to

% compute a basis for the null space, it takes a value

% ’svd’ for the singular value decomposition

% ’eig’ for an eigendecomposition

% or for ULV decompositions

% ’rrqr’ for a rank-revealing QR factorization.

% ’hulv’ for high rank ULV decomposition

% (Stewert’s high rank algorithm)

% ’hulv_a’ for high rank ULV decomposition (using inverse iteration)

% ’lulv’ for low rank ULV decomposition

% (with initial triangular factorization)

% ’lulv_a’ for low rank ULV decomposition

% (without initial triangular factorization)

% ’lrrqr’ for Chan and Hansen low rank RRQR

% ’hrrqr’ for Chan/Foster high rank RRQR

% The null space basis is returned in the matrix V, and the numerical

% rank as NR. If FLAG is specified as ’rrqr’ and Q, R, and P are specified

% as output arguments then Q, R, and P are the matrices that come from a

% rank-revealing QR factorization of A’.

%

% 25-Jan-2008 14:55:54

switch(lower(flag))

case ’svd’

%Singular value decomposition.

[U, S, Vtilde] = svd(A);

S = diag(S);

tol = max(size(A))*eps(max(S));

nr = sum(S > tol);

V = Vtilde(:,nr+1:end);

case ’eig’

%Eigendecomposition.
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V = zeros(length(A),0);

dimnull = 0;

n = length(A);

tol = max(size(A))*eps(normest(A));

[EV, LAMBDA] = eig(A);

for i = 1:n

if abs(LAMBDA(i,i))< tol

dimnull = dimnull + 1;

V(:, dimnull) = EV(:,i);

end

end

nr = n - dimnull;

case ’hulv’

%Stewart’s high rank-revealing ULV algorithm.

[nr, L, Vtilde, U, vec] = hulv(A);

L = diag(L);

n = length(A);

V = Vtilde(:,nr+1:n);

case ’rrqr’

%Rank-revealing QR factorization.

V = zeros(length(A),0);

[Q, R, P] = qr(A’);

dimnull = 0;

R = diag(R);

n = length(A);

tol = max(size(A))*eps;

for i = 1:n

if abs(R(i))< tol

dimnull = dimnull + 1;

V(:, dimnull) = Q(:,i);

end

end

nr = n - dimnull;

case ’hulv_a’

%Alternative high rank ULV decomposition, deflation based on

%singular vector estimation by inverse iteration.



APPENDIX A. MATLAB PROGRAMS 90

[nr, L, Vtilde, U, vec] = hulv_a(A);

L = diag(L);

n = length(A);

V = Vtilde(:,nr+1:n);

case ’lulv’

%Low rank ULV with initial triangular factorization and deflation

%using the power method.

[nr, L, Vtilde, U, vec] = lulv(A);

L = diag(L);

n = length(A);

V = Vtilde(:,nr+1:n);

case ’lrrqr’

%Chan and Hansen low rank RRQR.

[nr, R, Pi, Q, W, vec] = lrrqr(A’);

n = length(A);

V = Q(:,nr+1:n);

case ’hrrqr’

%Chan/Foster high rank RRQR.

[nr, R, Pi, Q, W, vec] = hrrqr(A’);

n = length(A);

V = Q(:,nr+1:n);

case ’lulv_a’

%Alternative low rank ULV with no initial triangular factorization

%and deflation using Householder reflectors.

[nr, L, Vtilde, U, vec] = lulv_a(A);

L = diag(L);

n = length(A);

V = Vtilde(:,nr+1:n);

end
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function [X, e, etaQ, etaL] = deflate1(P0, P1, P2, algo, ns_method)

%DEFLATE1 Quadratic eigenvalue problem, with singular leading or trailing

% coefficients.

% [E, X, ETAQ, ETAL] = DEFLATE1(P0, P1, P2, ALGO)

% solves the quadratic eigenvalue problem

% (P0 + LAMBDA*P1 + LAMDBA^2*P2)*x = 0.

% P0, P1, and P2 are square matrices with A0 or A2 (but not both) singular/

% A singular P0 yields zero eigenvalues, while a singular A2 yields

% infinite eigenvalues.

% ALGO is a string that specifies the method of deflating the

% zero and infinite eigenvalues it takes one of the values

% ’householder’ for deflation by use of Householder reflectors,

% or

% ’kublanovskaya’ for deflation by using a simplified version of the

% algorithm of Kublanovskaya.

%

% NS_METHOD is a string specifying the method used to approximate the null

% space of P0 or P2, it takes a value

% ’svd’ for the singular value decomposition

% ’eig’ for an eigendecomposition

% or for ULV decompositions

% ’rrqr’ for a rank-revealing QR factorization.

% ’hulv’ for high rank ULV decomposition

% (Stewert’s high rank algorithm)

% ’hulv_a’ for high rank ULV decomposition (using inverse iteration)

% ’lulv’ for low rank ULV decomposition

% (with initial triangular factorization)

% ’lulv_a’ for low rank ULV decomposition

% (without initial triangular factorization)

% ’lrrqr’ for Chan and Hansen low rank RRQR

% ’hrrqr’ for Chan/Foster high rank RRQR

%

% On output LAMBDA is a vector of eigenvalues with associated eigenvectors

% that are columns of X.

% ETAQ and ETAL are vectors with the backward error of

% eigenpairs for the quadratic and linearization respectively. No
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% backward errors are returned for deflated eigenpairs for the

% linearization.

% By default the original quadratic with coefficient matrix P0,P1,P2 is

% scaled by the method of Fan, Lin and Van Dooren.

%

% Reference: V. N. Kublanovskaya, V. B. Mikhailov, and V. B. Khazanov,

% Eigenvalue problem for an irregular \lambda-matrix,

% Journal of Mathematical Sciences, 13(1980), pp. 251260.

n = length(P0);

k = 0;

%Check singularity of A0 and A2 using condest.

A0condest = condest(P0); A2condest = condest(P2);

if(A0condest > n*1/eps)

fprintf(’Coefficient matrix P0 singular\n’)

def_evs = ’zero’; A0singular = true;

else

fprintf(’Coefficient matrix P0 nonsingular\n’)

A0singular = false;

end

if(A2condest > n*1/eps)

fprintf(’Coefficient matrix P2 singular\n’)

def_evs = ’inf’; A2singular = true;

else

fprintf(’Coefficient matrix P2 nonsingular\n’)

A2singular = false;

end

if or(and(strcmp(algo,’kublanovskaya’), A0singular == true), ...

or( and(strcmp(algo,’householder’), A0singular == true), ...

and(strcmp(algo,’householder’), A2singular == true) ))

%Deflate zero eigenvalues using first companion linearization.
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%Apply Fan, Lin and Van Dooren scaling.

[A0, A1, A2, gamma, delta] = qepnormscale(P0, P1, P2);

elseif and(strcmp(algo,’kublanovskaya’), A2singular == true)

%Deflate infinite eigenvalues via taking linearization of reversal

%polynomial, using simplified Kublanvoskaya method.

def_evs = ’zero’;

[A0, A1, A2, gamma, delta] = qepnormscale(P2, P1, P0);

end

%Form first companion linearization.

X = [A2 zeros(n,n); zeros(n,n) eye(n,n)];

Y = [A1 A0 ; -eye(n,n) zeros(n,n)];

if and(strcmp(algo,’householder’), strcmp(def_evs,’zero’))

[defX, defY, r, H, betaH, N] = housedefzero(X, Y, A0, ns_method);

k = n - r; %Number of zero eigenvalues deflated.

elseif and(strcmp(algo,’householder’), strcmp(def_evs,’inf’))

[defX, defY, r, H, betaH, N] = housedefinf(X, Y, A2, ns_method);

k = n - r; %Number of infinite eigenvalues deflated.

elseif strcmp(algo,’kublanovskaya’)

[defX, defY, k, H, N] = smpl_kubl(X, Y, A0);

%k is number of deflated zero eigenvalues.

r = n - k;

end

%Compute eigenvectors of smaller linearization of deflated pencil.

if strcmp(algo,’householder’)

%Householder methods, deflated eigenvalues appear along

%north-west diagonal of pencil.

if A0singular == true

keyboard

%Zero eigenvalues deflated.

for i = 1:k

defX(i+1:end,i) = 0;

defY(i:end,i) = 0;

end
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elseif A2singular == true

for i = 1:k

defX(i+1:end,i) = 0;

defY(i+1:end,i) = 0;

end

end

elseif strcmp(algo,’kublanovskaya’)

%Zero elements that are theoretically zero.

defX(n+1:end,n+1:end) = eye(n);

defY(:,2*n-k:end)=0;

end

[Z, LAMBDA] = eig(-defY, defX);

%Put eigenvalues in homogeneous form.

alpha = diag(LAMBDA);

beta = ones(size(alpha));

i = isinf(alpha); alpha(i) = 1; beta(i) = 0;

etaL = linberrright(Z, alpha, beta, defX, defY);

warning(’off’,’MATLAB:divideByZero’);

%Reapply accumulated Householder reflectors.

if strcmp(algo, ’householder’)

for j = k:-1:1

%Recover right eigenvectors.

temp = Z(j:end,:)’ - ...

(Z(j:end,:)’* H(1:2*n-j+1,j))*betaH(j)*H(1:2*n-j+1,j)’ ;

Z(j:end,:)=temp’;

Z(:,j) = Z(:,j)/norm(Z(:,j));

end

elseif strcmp(algo, ’kublanovskaya’)

Z(1:n,:) = Z(1:n,:);

Z(n+1:2*n,:) = H’*Z(n+1:2*n,:);

end
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%Compute backward error of eigenpairs of quadratic.

clear(’X’)

[X, etaQ] = rec_quad_evec(alpha, beta, Z, A0, A1, A2);

%Sort eigenvalues into order of increasing magnitude.

[e, sorteigind] = sort(alpha./beta);

alpha = alpha(sorteigind); beta = beta(sorteigind); X = X(:,sorteigind);

etaQ = etaQ(sorteigind); etaL = etaL(sorteigind);

if or(and(strcmp(algo,’kublanovskaya’), A0singular == true), ...

or(and(strcmp(algo,’householder’), A0singular == true), ...

and(strcmp(algo,’householder’), A2singular == true) ))

j = find(isfinite(e));

e(j) = (alpha(j)./beta(j))*gamma; %Rescale eigenvalues.

elseif and(strcmp(algo,’kublanovskaya’), A2singular == true)

e = gamma./e; %Take reciprocal if using reversal polyn.

end

warning(’on’,’MATLAB:divideByZero’);
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function [X, e, etaQ, etaL] = deflate2(P0, P1, P2, algo, ns_method)

%DEFLATE2 Quadratic eigenvalue problem, with singular leading and trailing

%coefficients.

%[X, E, ETAQ, ETAL] = DEFLATE2(P0, P1, P2, ALGO, NS_METHOD)

% solves the quadratic eigenvalue problem

% (P0 + LAMBDA*P1 + LAMDBA^2*P2)*x = 0.

% P0, P1, and P2 are square matrices with both P0 and P2 singular. A

% singular P0 yields zero eigenvalues and a singular P2 yields infinite

% eigenvalues.

% ALGO is a string that specifies the method of deflating the

% zero and infinite eigenvalues, it takes one of the values

% ’householder’ for deflation by use of Householder reflectors,

% or

% ’kublanovskaya’ for deflation by using a modified version of the

% algorithm of Kublanovskaya

%

% NS_METHOD is a string specifying the method used to approximate the null

% space of P0 or P2, it takes a value

% ’svd’ for the singular value decomposition

% ’eig’ for an eigendecomposition

% or for ULV decompositions

% ’rrqr’ for a rank-revealing QR factorization.

% ’hulv’ for high rank ULV decomposition

% (Stewert’s high rank algorithm)

% ’hulv_a’ for high rank ULV decomposition (using inverse iteration)

% ’lulv’ for low rank ULV decomposition

% (with initial triangular factorization)

% ’lulv_a’ for low rank ULV decomposition

% (without initial triangular factorization)

% ’lrrqr’ for Chan and Hansen low rank RRQR

% ’hrrqr’ for Chan/Foster high rank RRQR

%

% By default the original quadratic with coefficient matrix P0,P1,P2 is

% scaled by the method of Fan, Lin and Van Dooren.

%

% On output E is a vector of eigenvalues with associated eigenvectors that
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% are columns of X. ETAQ and ETAL are vectors with the backward error of

% eigenpairs for the quadratic and linearization respectively. No

% backward errors are returned for deflated eigenpairs for the

% linearization.

%

% Reference: V. N. Kublanovskaya, V. B. Mikhailov, and V. B. Khazanov,

% Eigenvalue problem for an irregular \lambda-matrix,

% Journal of Mathematical Sciences, 13(1980), pp. 251260.

[A0, A1, A2, gamma, delta] = qepnormscale(P0, P1, P2);

n = length(P0);

Z = zeros(2*n,2*n);

switch lower(algo)

case(’householder’)

%Form first companion linearization.

X = [A2 zeros(n,n); zeros(n,n) eye(n,n)];

Y = [A1 A0 ; -eye(n,n) zeros(n,n)];

[defX, defY, r0, Hz, betaHz, Nzero] = ...

housedefzero(X, Y, A0, ns_method);

k0 = n - r0; %Number of deflated zero eigenvalues.

for i = 1:k0

defX(1+i:2*n, i) = 0;

defY(i:2*n, i) = 0;

end

[defX(k0+1:2*n,k0+1:2*n),...

defY(k0+1:2*n,k0+1:2*n), r2, Hi1, betaHi1,...

Ntwo, Hi2, betaHi2] = ...

housedefinf(defX(k0+1:2*n,k0+1:2*n), ...

defY(k0+1:2*n,k0+1:2*n), A2, ns_method,k0, n, Hz, betaHz);

k2 = n - r2; %Number of deflated infinite eigenvalues.

for i = k0+1:k0+k2
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defY(i+1:2*n, i) = 0;

defX(i+1:2*n, i) = 0;

end

[Z, LAMBDA] = eig(-defY, defX);

%Put in homogeneous form - not including deflated e’vals.

alpha = diag(LAMBDA);

beta = ones(size(alpha));

k = isinf(abs(alpha)); alpha(k) = 1; beta(k) = 0;

etaL = linberrright(Z(:,:), alpha(:), beta(:), defX, defY);

for i = k2:-1:1

%Apply Infinite deflation Householder

%reflectors to matrix of eigenvectors.

Z(k0+i:end, :) = Z(k0+i:end, :) - ...

Hi1(1:2*n-i+1-k0,i)*(betaHi1(i)*Hi1(1:2*n-i+1-k0,i)’...

* Z(k0+i:end, :));

end

for i = k0:-1:1

%Reapply zero deflation Householder

%reflectors to matrix of eigenvectors.

Z(i:end, :) = Z( i:end, :) - ...

Hz(1:2*n-i+1,i) * (betaHz(i)...

* Hz(1:2*n-i+1,i)’*Z(i:end, :));

end

case(’kublanovskaya’)

if strcmp(ns_method,’rrqr’)

[Nzero, r0, Q0, R0, P0] = nullspace(A0, ns_method);

[Ntwo, r2, Q2, R2, P2] = nullspace(A2, ns_method);

%Number of zero and infinite eigenvalues to deflate.

k0 = n - r0; k2 = n- r2;

end

alpha = fminsearch(@(z)condest( z*z*A2 + z*A1 + A0),rand*n)
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kalpha = alpha;

Qalpha = alpha^2 * A2 + alpha * A1 + A0;

C = condest(Qalpha);

fprintf(’Estimate of condition number of matrix

Q(alpha) is %6.2e \n’,C)

%Store product of inv(Qalpha) applied to

%leading and trailing coefficients.

invQalphaA2 = inv(Qalpha);

invQalphaA0 = invQalphaA2*A0;

invQalphaA2 = invQalphaA2*A2;

F11 = alpha * Q2’ * invQalphaA2 * Q2;

F12 = -1/alpha * Q2’ * invQalphaA0 * Q0;

F21 = alpha * Q0’ * invQalphaA2 * Q2;

F22 = -1/alpha * Q0’ * invQalphaA0 * Q0 + 1/alpha *eye(n);

P = [zeros(r2,2*n-r2-r0) eye(r2,r2) zeros(r2,r0)

eye(n-r2,n-r2) zeros(n-r2, n+r2)

zeros(r0, 2*n-r0) eye(r0,r0)

zeros(n-r0,n-r2) eye(n-r0,n-r0) zeros(n-r0,r0+r2)];

F = [F11 F12; F21 F22];

%Apply permutation matrix to F.

Ftilde = P’*F*P;

G = Ftilde(1:2*n-r0-r2,1:2*n-r0-r2);

H = Ftilde(1:2*n-r0-r2, 2*n-r0-r2+1:2*n);

R = Ftilde(2*n-r0-r2+1:2*n, 2*n-r0-r2+1:2*n);

%Compute eigenvalues and vector of submatrix.

[XR LAMBDA] = eig(R);

LAMBDA = diag(LAMBDA);

for i = 1:size(XR, 2)
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Xvec(1:2*n-r0-r2,i) = (G-LAMBDA(i)*eye(size(G))) ...

\ (-H*XR(:,i));

Xvec(2*n-r0-r2+1:2*n,i) = XR(:,i);

Xvec(:,i) = Xvec(:,i)/norm(Xvec(:,i));

end

%Compute backward error of eigenpairs of deflated pencil.

%Exclude deflated eigenvalues.

etaL = linberrright(Xvec, LAMBDA, ones(size(LAMBDA)), ...

eye(size(Ftilde)), -Ftilde);

nuevs = size(LAMBDA,1);

Z(:,1:nuevs) = P*Xvec;

%Apply V to eigenvectors using structure of V.

Z = [1/kalpha*Q0*Z(n+1:2*n,:); Q2*Z(1:n,:)-Q0*Z(n+1:2*n,:)];

LAMBDA = diag(alpha - 1./diag(LAMBDA));

k = n - r0 + n - r2; %Number of deflated eigenvalues.

alpha = LAMBDA;

beta = ones(size(alpha));

i = isinf(alpha); alpha(i) = 1; beta(i) = 0;

end

e = alpha./beta*gamma; %rescale eigenvalues.

if strcmp(algo,’kublanovskaya’)

etaL = [etaL NaN*ones(1,n-r0+n-r2)];

%The eigenvectors associated to infinite and zero eigenvalues must

%be formed explcitly, and eigenvalues must be added back.

alpha = [alpha; zeros(k0,1); ones(k2,1)];

beta = [beta; ones(k0,1); zeros(k2,1) ];

%Add eigenvectors associated to deflated eigenvalues.

K = kron([0,1]’, Nzero);

Z(:,nuevs+1:nuevs+k0) = K;

K = kron([1,0]’, Ntwo);

Z(:,nuevs+k0+1:2*n) = K;
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end

%Compute backward error of eigenpairs of quadratic.

[qepevecs, etaQ] = rec_quad_evec(alpha, beta, Z, A0, A1, A2);

clear(’X’)

X = qepevecs;

[e, sorteigind] = sort(alpha./beta);

alpha = alpha(sorteigind); beta = beta(sorteigind); X = X(:,sorteigind);

etaQ = etaQ(sorteigind); etaL = etaL(sorteigind);



APPENDIX A. MATLAB PROGRAMS 102

function [defX, defY, k, Q, N] = smpl_kubl(X, Y, A0)

%SMPL_KUBL Simplified Kublanovskaya deflation algorithm.

% [defX, defY, k, Q, Nzero] = smpl_kubl(X, Y, A0)

%

% X and Y define the pencil

%

% L(lambda) = lambda * X + Y

%

% with X = [A2 zeros(n,n); zeros(n,n) eye(n,n)]

% Y = [A1 A0 ; -eye(n,n) zeros(n,n)];

%

% that is the first companion linearization of the QEP

%

% Q(lambda) = A0 + lambda * A1 + lambda^2 A2,

%

% with A0, A1, and A2 n-by-n matrices.

% The coefficient A0 is assumed rank-deficient thus contributing zero

% eigenvalues.

% defX and defY are 2n-by-2n matrices that define the pencil

% Ltilde(lamdba) = lambda * defX + defY,

% that has k zero eigenvalues deflated (in the south-east corner).

% Q is an orthogonal matrix that results from a rank-revealing QR

% factorization from A0’, where rank(A0) = k.

% N is a matrix whose columns are a basis for the null space of A0.

%

% 25-Jan-2008 14:55:54

n = size(A0,1);

%Take RRQR factorization of A0’.

[Q0, R0, P] = qr(A0’);

dimnull = 0;

R0 = diag(R0);

n = length(A0);

tol = max(size(A0))*eps(normest(A0));

for i = 1:n
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if abs(R0(i))< tol

dimnull = dimnull + 1;

end

end

r0 = dimnull;

k = dimnull;

r0 = n - r0;

K = [eye(n,n) zeros(n,n); zeros(n,n) Q0’];

defX = X;

defY = [Y(1:n,1:n), Y(1:n,n+1:2*n)*Q0; ...

Q0’*Y(n+1:2*n,1:n) Q0’*Y(n+1:2*n, n+1:2*n)*Q0];

Q = Q0’;

N = Q0(:,find(abs(R0)<tol));
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function [defX, defY, r0, H, beta, Vzero] = housedefzero(X, Y, A0, flag)

%HOUSEDEFZERO Householder deflation of zero eigenvalues in QEP from A0.

% Deflates zeros eigenvalues of the linearization

%

% L(lambda) = lambda*X+Y

%

% that is the first companion linearization of a QEP whose trailing

% coefficient (A0) is singular.

%

% [DEFX, DEFY, R2, K, BETAK, VZERO] = HOUSEDEFZERO(X, Y, A0, FLAG)

% where X and Y are 2n-by-2n matrices defining the linearization above,

% FLAG is a string that specifies which method is used to compute a

% basis for the null space of A0. It takes one of the values

%

% ’svd’ for the singular value decomposition

% ’eig’ for an eigendecomposition

% or for ULV decompositions

% ’rrqr’ for a rank-revealing QR factorization.

% ’hulv’ for high rank ULV decomposition

% (Stewert’s high rank algorithm)

% ’hulv_a’ for high rank ULV decomposition (using inverse iteration)

% ’lulv’ for low rank ULV decomposition

% (with initial triangular factorization)

% ’lulv_a’ for low rank ULV decomposition

% (without initial triangular factorization)

% ’lrrqr’ for Chan and Hansen low rank RRQR

% ’hrrqr’ for Chan/Foster high rank RRQR

%

% DEFX and DEFY are matrices forming the pencil

%

% Ltilde(lambda) = lambda * DEFX + DEFY

%

% with zero eigenvalues contributed by A2 deflated. R0 is the rank

% of the matrix A0. K and BETAK define the Householder transformation

% that is applied to recover the right eigenvector of the original

% pencil. VZERO is a basis for the null space of A0.
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%

% 25-Jan-2008 14:55:54

n = length(A0);

defX = X;

defY = Y;

[Vzero, r0] = nullspace(A0, flag);

beta = zeros(n-r0,1); %To store Householder betas.

H = zeros(2*n,n-r0); %To store Householder vectors h.

V = [zeros(n,n-r0); Vzero];

for k = 1:n-r0

%Compute the Householder vector.

[H(1:2*n-k+1,k), beta(k), s] = gallery(’house’, V(k:end,k));

%Carry out similarity transformation on the pencil lambda*defX + defY.

if (k>1)

defX(1:k-1, k:end) = defX(1:k-1, k:end) - ...

(beta(k) * defX(1:k-1, k:end) * H(1:2*n-k+1,k)) * H(1:2*n-k+1,k)’;

defY(1:k-1, k:end) = defY(1:k-1, k:end) - ...

(beta(k) * defY(1:k-1, k:end) * H(1:2*n-k+1,k)) * H(1:2*n-k+1,k)’;

end

defX(k:end, k:end) = defX( k:end, k:end) - ...

H(1:2*n-k+1,k) * (beta(k) * H(1:2*n-k+1,k)’*defX(k:end, k:end));

defY(k:end, k:end) = defY(k:end, k:end) - ...

H(1:2*n-k+1,k)*(beta(k)*H(1:2*n-k+1,k)’ * defY(k:end, k:end));

defX(k:end, k:end) = defX(k:end, k:end) - ...

(beta(k) * defX(k:end, k:end) * H(1:2*n-k+1,k)) * H(1:2*n-k+1,k)’;
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defY(k:end, k:end) = defY(k:end, k:end) - ...

(beta(k) * defY(k:end, k:end) * H(1:2*n-k+1,k)) * H(1:2*n-k+1,k)’;

%Apply Householder transformations to null space basis.

V(k:end, k:end) = V( k:end, k:end) - ...

H(1:2*n-k+1,k) * (beta(k) * H(1:2*n-k+1,k)’*V(k:end, k:end));

end
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function [defX, defY, r2, K, betaK, Vtwo, H, betaH] = ...

housedefinf(X, Y, A2, flag, k, n, Hz, betaHz)

%HOUSEDEFINF Householder deflation of block companion linearizations

%of quadratic polynomials with singular leading coefficient.

%

% Deflates infinite eigenvalues of the linearization

%

% L(lambda) = lambda*X+Y

%

% that is the first companion linearization of a QEP whose leading

% coefficient (A2) is singular.

%

% [DEFX, DEFY, R2, K, BETAK, VTWO, H, BETAH] = HOUSEDEFINFMARG(X, Y, A2,

% FLAG, K, N, HZ, BETAHZ)

% where X and Y are 2n-by-2n matrices defining the linearization above,

% flag is a string that specifies which method is used to compute a

% basis for the null space of A2. It takes one of the values

%

% ’svd’ for the singular value decomposition

% ’rrqr’ for a rank-revealing QR factorization

% ’eig’ for an eigendecomposition

% ’ulv’ for an ULV decomposition.

%

% HZ and BETAHZ define the Householder reflectors for deflating zero

% eigenvalues, (needed if zero eigenvalues have already been deflated,

% K is then the number of deflated zero eigenvalues).

% N is the dimension of the matrix coefficients that are N-by-N

% dimension.

%

% If eight input arguments are specified then HOUSEDEFINFMARG will

% deflate infinite eigenvalues from a pencil that has already had K zero

% eigenvalues deflated. If less that eight arguments (four) are specified

% then HOUSEDEFINFMARG deflates infinite eigenvalues from a pencil that

% is the first companion linearization of a quadratic matrix polynomial.

%

% DEFX and DEFY are matrices forming the pencil
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%

% Ltilde(lambda) = lambda * DEFX + DEFY

%

% with infinite eigenvalues contributed by A2 deflated. R2 is the rank

% of the matrix A2. K and BETAK define the Householder transformation

% that is applied to recover the right eigenvector of the original

% pencil. Vtemp is a basis for the null space of A2.

%

% 25-Jan-2008 14:55:54

if nargin ~= 8

n = length(A2);

end

defX = X;

defY = Y;

[Vtwo, r2] = nullspace(A2, flag);

if nargin == 8

V = [Vtwo; zeros(n,n-r2)];

for j = k:-1:1

%Apply Householder reflectors from zero deflation to null space

%basis.

V(j:end, :) = V(j:end, :) - ...

Hz(1:2*n-j+1,j)*(betaHz(j)*Hz(1:2*n-j+1,j)’ * V(j:end, :));

end

end

if nargin ~= 8

V = [Vtwo; zeros(n,n-r2)];

k = 0;

end

K = zeros(2*n-k,n-r2); %Preallocate storage.
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H = zeros(2*n-k,n-r2);

betaK = zeros(n-r2,1);

betaH = zeros(n-r2,1);

for i = 1:n-r2

z = V(k+i:end,i);

x = defY(i:end, i:end)*z;

x = x/norm(x); %Normalize.

%Form right Householder reflector.

[K(1:2*n-i+1-k,i), betaK(i), s] = gallery(’house’,z);

%Form left Householder reflector.

[H(1:2*n-i+1-k,i), betaH(i), s] = gallery(’house’,x);

%Carry out the transformation H’ * (lambda defX + defY) * K.

if (i>1)

defX(1:i-1, i:end) = defX(1:i-1, i:end) - ...

(betaK(i) * defX(1:i-1, i:end) * K(1:2*n-i+1-k,i)) * K(1:2*n-i+1-k,i)’;

defY(1:i-1, i:end) = defY(1:i-1, i:end) - ...

(betaK(i) * defY(1:i-1, i:end) * K(1:2*n-i+1-k,i)) * K(1:2*n-i+1-k,i)’;

end

defY(i:end, i:end) = defY(i:end, i:end) - ...

H(1:2*n-i+1-k,i)*(betaH(i)*H(1:2*n-i+1-k,i)’ * defY(i:end, i:end));

defX(i:end, i:end) = defX(i:end, i:end) - ...

H(1:2*n-i+1-k,i)*(betaH(i)*H(1:2*n-i+1-k,i)’ * defX(i:end, i:end));

defX(i:end, i:end) = defX(i:end, i:end) - ...

(betaK(i) * defX(i:end, i:end) * K(1:2*n-i+1-k,i)) * K(1:2*n-i+1-k,i)’;

defY(i:end, i:end) = defY(i:end, i:end) - ...

(betaK(i) * defY(i:end, i:end) * K(1:2*n-i+1-k,i)) * K(1:2*n-i+1-k,i)’;

%Apply Householder transformations to nullspace basis.

V(k+i:end, i:end) = V(k+i:end, i:end) - ...

K(1:2*n-i+1-k,i)*(betaK(i)*K(1:2*n-i+1-k,i)’ * V(k+i:end, i:end));
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end
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