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Abstract. We ask: how many bits of information (in the Shannon sense) do we
get from a set of EIT measurements? Here, the term information in measurements
(IM) is defined as: the decrease in uncertainty about the contents of a medium, due
to a set of measurements. This decrease in uncertainly is quantified by the change
from the the inter-class model, q, defined by the prior information, to the intra-class
model, p, given by the measured data (corrupted by noise). IM is measured by the
expected relative entropy (Kullback-Leibler divergence) between distributions q and
p, and corresponds to the channel capacity in an analogous communications system.
Based on a Gaussian model of the measurement noise, Σn, and a prior model of the
image element covariances Σx, we calculate IM= 1

2

∑
log2([SNR]i + 1), where [SNR]i

is the signal to noise ratio for each independent measurement calculated from the
prior and noise models. For an example, we consider saline tank measurements from
a 16 electrode EIT system, with a 2 cm radius non-conductive target, and calculate
IM= 179 bits. Temporal sequences of frames are considered, and formulae for IM
as a function of temporal image element correlations are derived. We suggest that
this measure may allow novel insights into questions such as distinguishability limits,
optimal measurement schemes and data fusion.

Keywords: Measurement Information, Kullback Leibler Divergence, Electrical

Impedance Tomography

1. Introduction

Electrical Impedance Tomography (EIT) calculates internal conductivity from surface

measurements; image reconstruction is most commonly formulated as an inverse problem

using regularization techniques. Regularization adds “prior information” to address the

solution ill-conditioning. In this paper we ask: 1) how much information (in the Shannon

sense) is there in a set of measurements? and 2) how much information do we gain when

we “add” prior information via regularization? To address these questions, we pose the

regularized inverse problem in using an information-theoretic formulation. First, we

define a term information in measurements (IM) to represent the information content

of data, as follows:

Information in Measurements: the decrease in uncertainty about
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the contents of a medium, due to a set of measurements.

This definition refers to two times: 1) before the measurement, where the prior

information is known, which describes the medium as part of a general class, q; and 2)

after the measurement; where specific information on this medium, p, is known (although

corrupted by noise). The claim that “regularization adds prior information” may be

understood as a narrowing of the distribution of the inter-class distribution, q. In the

most general case, conductivities are known to be positive; however, if the medium is

known to be a body, then the conductivities will be in a physiological range and have

spatial correlations.

In the following sections, we formulate an approach to measure IM in three cases:

1) for a single measurement, 2) for a set of measurements (frame) of a static medium,

and 3) for a temporal series of frames on a changing medium. Results are shown for an

EIT system, and we discuss the implications of this measure. This work represents an

extension of our conference paper (Adler and Lionheart, 2007).

2. Methods

2.1. Information Theory

In Bayesian statistics the Kullback-Leibler divergence (KLD) can be used as a measure

of the information gain in moving from a prior distribution, q(y), to a posterior

distribution, p(y). It can also be understood to be the “extra bits” of information

needed to represent p(y) with respect to q(y). The KLD is defined as (Cover and

Thomas, 1991):

D(p‖q) =

∫

y

p(y)log2
p(y)

q(y)
dy (1)

where the integral is over all measurement channels. A comment on notation: we

use p to refer to both a specific realization of an EIT image, and the distribution of

measurements from that image (including measurement noise), while q represents the

prior distribution and the distribution of its features.

One important general difficulty with direct information-theoretic measures is that

of data availability. Distributions are difficult to estimate accurately, especially at the

tails; and yet log2 (p(y)/q(y)) will give large absolute values for small p(y) or q(y).

Instead, it is typical to fit data to a model with a small number of parameters. The

Gaussian distribution is the most common model; it is often a good reflection of the real

world distributions, and is analytically solvable in entropy integrals. Another important

property of the Gaussian is that it gives the maximum entropy for a given standard

deviation, allowing such models to be used to give an upper bound to entropy values.

Thus, we model the distributions p and q as Gaussian with vector means µp,µq and

covariances Σp,Σq. For Gaussian distributions the KLD is calculated:

D(p‖q) = E
p

[
(y − µp)

tΣp
−1(y − µp)
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+ (y − µq)
tΣq

−1(y − µq) + log2

√
|2πΣq|
|2πΣp|

]

=
1

2
log2|ΣqΣ

−1
p |+ tr

(
ΣpΣ

−1
q − I

)
+ tTΣqt (2)

where t = µp −µq. As t becomes large, the KLD increases dramatically as the current

realization, p, moves to the tails of the prior, q.

Equation (2) represents the information for a specific p. Instead, we are interested

in the average information from measurements, weighted over the prior probability of

each measurement configuration. Thus, we define the information in measurements

(IM) to be

IM = E
q

[D(p‖q)] = 1
2
log2|ΣqΣ

−1
p |+ tr

(
ΣpΣ

−1
q − I

)
+ E

q

[
tTΣqt

]

= 1
2
log2|ΣqΣ

−1
p |+ tr

(
ΣpΣ

−1
q

)
(3)

An analogy may be made between an EIT measurement system and a traditional

communication system, in which IM corresponds to the channel information capacity

(Cover and Thomas, 1991). The signal source transmits a symbol from an alphabet; this

corresponds to one image configuration, p, from the set of possible images, q. The symbol

is encoded into measurements (via the forward problem) and sent across a channel and

is subject to channel noise. The communications system receiver detects the signal and

must decide which symbol was sent (reconstruct the image). In this context, D(p‖q), is

the differential information of a single symbol. The expected D(p‖q) over all symbols,

q, is the channel capacity (which we call IM, eqn 3).

Normally, the variability due to noise is much less than the prior class model, and

|Σp| ¿ |Σq|, giving

IM = 1
2
log2(|Σq|/|Σp|) (4)

The tr (trace) term will only have an effect in the very unusual case that the

measurement distribution, p, is larger than that of the prior, q.

2.2. Information in a single channel

To clarify the measure IM and the selection of parameters, we initially consider an

instrument which measures a single data channel: an impedance plethymography

system, which measures a single impedance change measurement, y (in voltage units),

across the thorax, which varies with breathing, posture and heart activity.

In order to estimate the prior distribution, data acquisitions would be performed on

a number of patients. From these data the inter-class mean (µq) and variance (Σq = σ2
q )

would be calculated. Since we are calculating difference measurements, µq would be zero.

For illustration purposes, consider that σq = 800 mV .

When using the measurement system on a specific patient at a given time, the

measurements, y, will be due to the current physiological condition and the noise.

Consider measurement noise σn = 10 mV , and at a specific time, the difference
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measurement is 1 V . The information via the KL divergence is

log2
σq

σp

+

(
µq − µp

σq

)2

+

(
σp

σq

)2

− 1 (5)

which is 6.9 bits. In order to calculate the information in measurements, we must

average over measurements on the specific patient, giving

IM = log2
σq

σp

+

(
σp

σq

)2

≈ log2
σq

σp

(6)

which is 6.3 bits.

2.3. Information in a data frame

Next, we consider a system which acquires a number of simultaneous measurements (a

data frame) from a static medium. A näıve approximation would set IM to the sum of

the information in each measurement channel considered separately. This is incorrect

because of the correlation between measurements. For example, since height and weight

are correlated, a measurement of height already gives some information about the likely

weight. It is also possible for IM to be greater than the sum if channel measurements

are negatively correlated, although this is rare for large data frames.

We consider a difference EIT system with nE electrodes applied to a body. Using

these electrodes, nE current stimulation patterns are sequentially applied and nV

differential measurements are made for each stimulation. For an adjacent drive EIT

system, voltages are typically not measured at driven electrodes, and nV = nE−3. Each

data frame measures a vector, v ∈ RnM , of nM = nEnV data points (some of which are

redundant if the medium is not changing). Difference EIT calculates difference data

y = v2 − v1. To improve its precision, v1 is typically averaged over many data frames,

at a time when the conductivity distribution may be assumed to be stable; we thus

assume that v1 is noise free.

The body under investigation is modelled using a finite element model (FEM)

which discretizes the conductivity onto nN piecewise smooth elements, represented by

a vector σ ∈ RnN . (In this paragraph, σ represents conductivity; elsewhere in this

paper, σ is the standard deviation). Difference EIT calculates a vector of conductivity

change, x = σ2−σ1, between the present conductivity distribution, σ2, and that at the

reference measurement, σ1. For small variations around the reference conductivity σ1,

the relationship between x and y can be linearized (giving the difference EIT forward

model):

y = Jx + n (7)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the measurement

noise which is assumed to be uncorrelated (white) Gaussian. J is calculated from the

FEM as Jij =
∂yi

∂xj

∣∣∣
σ1

, and depends on the FEM, current injection patterns, the reference

conductivity, and the electrode models. In many cases, nN > nM , making the system
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ill-posed. The class statistics are calculated from the forward model (eqn. 7), as:

µy = E [y] = E [Jx + n] = Jµx + E[n]

Σy = E
[
(y − µy)(y − µy)T

]

= JE
[
(x− µx)(x− µx)T

]
JT + E

[
nnT

]
(8)

For the prior distribution q, µx = µy = 0, since for difference EIT, positive and negative

changes are equally likely. For the posterior distribution p, x is the realization of the

image in the medium, and µy = Jx. Assuming a Gaussian model, the distribution

covariances may be calculated:

Σq = JΣxJ
T + Σn

Σp = Σn (9)

giving the information in measurements

IM = 1
2
log2|ΣqΣ

−1
p | = 1

2
log2

∣∣JΣxJ
TΣ−1

n + I
∣∣ (10)

In many cases, the measurement noise is independent and equal on all channels.

However, for generality, we calculate a new set of independent measurements, y′, with

equal variance, σ2
n

y′ = D
− 1

2
n Uny (11)

using the singular value decomposition (SVD), σ2
nUnDnU

T
n = Σn, where σn is the

average measurement noise and is chosen so that 1
σ2

n
tr Σn = tr Dn = nM . Based on

measurements, y′, the forward model (7) becomes y′ = J′x, where J′ = D
− 1

2
n UnJ, and

IM =
1

2
log2

∣∣∣∣
1

σ2
n

J′ΣxJ
′T + I

∣∣∣∣ (12)

In a similar way, a prior model can be constructed based on Σx = σ2
xR

−1, where R

is the generalized Tikhonov regularization matrix. In this case, the linear regularized

reconstructed image, x̂, will minimize the norm

‖y − Jx̂‖2

Σ−1

n

+ ‖x̂‖2

Σ−1

x

= ‖y′ − J′x̂‖2 + λ2‖x̂‖2

R (13)

where the regularization hyperparameter is λ = σn

σx
. In order that λ−2 = (σx

σn
)2 represent

the measurement signal to noise ratio (SNR), R should be normalized so that

tr(J′R−1J′T ) = nM (14)

Using these values (10) becomes

IM =
1

2
log2

∣∣∣∣
σ2

x

σ2
n

J′R−1J′T + I

∣∣∣∣

= nN log2
σx

σn

+
1

2
log2

∣∣J′R−1J′T + λ2I
∣∣ (15)

Equations for information content, such as (15) often diverge because measurements

are not independent and the covariance matrices are singular. To solve this problem,
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we extract an independent set of measurements, using the SVD, UDUT = J′R−1J′T .

Using this decomposition,

| 1

λ2
J′R−1J′T + I| = |U|| 1

λ2
D + I||UT | =

nM∏
i=1

[D]i,i
λ2

+ 1 (16)

Equation (15) is thus

IMdata frame =
1

2

nM∑
i=1

log2 ([SNR]i + 1) (17)

where [SNR]i = σ2
x

σ2
n
[D]i,i is the SNR of the ith independent measurement in the SVD.

For very small independent measurements, [SNR]i < 1. Given the regularization (which

contributes +1 in eqn 17) these small measurements have no effect on IM, without

regularization, the contribution would be negative.

2.4. Information in a temporal sequence of data frames

In EIT, the number of independent measurements, and hence the spatial resolution

is low. However, the temporal resolution can be very high. For example, Wilkinson

et al (2005) developed a system with frame rates up to 1000/s. It is interesting to

be able to measure the information gathered by a temporal sequence of data frames.

Similar to the previous section, a näıve assumption would be to use the sum of the IM

in each frame. However, this value would overestimate the information content due to

measurement correlations. For example, multiple frames measuring a medium known

to be unchanging would only be useful to improve the measurement SNR by frame

averaging.

Using the temporal solver model of Adler et al (2007), we consider nD = 2d + 1

measurement frames from t− d to t + d around the current frame, t. Given a vertically

concatenated sequence of measurements frames ỹt and the corresponding concatenated

images x̃t,

ỹt = [yT
t−d . . . yT

t . . . yT
t+d]

T (18)

x̃t = [xT
t−d . . . xT

t . . . xT
t+d]

T

the direct temporal forward model (7) is rewritten as

ỹt = J̃x̃t + ñ (19)

where ñ = [nT
t−d . . . nT

t . . . nT
d ]T . We consider that the model structure is constant, and

thus J′ does not vary with time, giving J̃ = I⊗J′, where the identity matrix I ∈ RnD×nD

and ⊗ is the Kronecker product.

The relationship between corresponding image elements between adjacent frames

can be represented by an inter-frame correlation which has a value between 0

(independent) and 1 (fully dependent). The correlation could possibly be negative

if subsequent frames have inverse correlation, although this scenario is physiologically

unrealistic. As frames become separated in time, the inter-frame correlation decreases;
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for a frame separation of δ, the inter-frame correlation is exp(−|δ|/γ), where γ is the

temporal exponential decay factor in units of frames. Frames with large time difference,

|δ| > nD, are considered independent. The value of γ may be estimated from the data

using the approach of Dai et al (2007) by choosing γ to minimize
∥∥∥Σỹ −Σñ − J̃Σx̃J̃

T
∥∥∥

2

F
(20)

In order to calculate the covariance of the temporal model parameters, we assume

that noise is independent between frames, and Σñ = E[ññT ] = I ⊗ Σn. On the

other hand, the image elements are not independent, but are related by γ, so that

Σx̃ = E[x̃x̃T ] = Γ⊗Σx, where Γ ∈ RnD×nD and

[Γ]i,j = e−
|i−j|

γ (21)

Based on this temporal formulation and (12),

IM = 1
2
log2

∣∣∣∣
1

σ2
n

J̃
′
Σx̃J̃

′T
+ I

∣∣∣∣ = 1
2
log2

∣∣∣∣
1

σ2
n

Γ⊗ σ2
xJ

′R−1J′T + I

∣∣∣∣

= 1
2
log2

∣∣∣∣Γ⊗U
1

λ2
DUT + I

∣∣∣∣ = 1
2
log2

∣∣∣∣Γ⊗ (
1

λ2
D + I) + (I− Γ)⊗ I

∣∣∣∣
≈ 1

2
log2|Γ⊗ ( 1

λ2D + I)| = 1
2
log2|Γ|nM | 1

λ2D + I|nD

= 1
2
log2(η

nD−1)nM | 1
λ2D− I|nD = (1 + (nD − 1)ηnM )1

2
log2| 1

λ2
D− I|

= (1 + (nD − 1)ηnM )IMdata frame (22)

Since the factors in the Kronecker product are positive definite, we may take the product

of determinants, and |Γ| = ηnD−1, where η = 1− (e−
1
γ )2.

This expression may be interpreted as follows. When measuring multiple data

frames in a temporal sequence, the first frame yields IMdata frame bits, and each

subsequent frame adds ηnM times this value. In this approximation, we have ignored a

term (I−Γ)⊗ I, which reflects the fact that the noise is not correlated between frames.

This term is important if the medium is static, and γ = ∞. In this case measurements

only differ by the noise, and frame data averaging may be used to increase the SNR.

3. Results

In order to illustrate these calculations, we present a simple example from EIT phantom

measurements. Test data were measured from a 30 cm diameter and 30 cm tall plastic

cylindrical phantom filled with 0.9% saline solution. Sixteen stainless steel electrodes

were placed, equally spaced, around the circumference, and EIT data were acquired

using the Goë-MF II EIT system (Viasys Healthcare, Höchberg, Germany) using an

adjacent stimulation and measurement pattern. In order to measure the noise level, a

sequence of 750 frames were measured from a homogeneous tank. To measure the signal

level, a small non-conductive spherical object of 2 cm radius was introduced in the plane

of the electrodes and moved into various positions on the horizontal plane. Note that

this is a fairly small contrast; physiological changes are significantly larger.
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To measure σn, the signal noise was calculated for each measurement channel by

taking the standard deviation for the entire frame sequence. The noise (σn) was assumed

to be constant for all channels; it was reasonably consistent across measurement channels

(std/mean = 0.71). We did not use the approach of (12) because we did not have

enough data to accurately estimate the covariances. To measure σx, the average signal

(difference from homogeneous) from different placements of the spherical object was

calculated in the same way as the average noise. The regularization prior R was set to

the identity matrix, I, scaled by the scheme of (14). The Jacobian, J was calculated

for a 2D 576 element mesh using the EIDORS software (Adler and Lionheart, 2006).

Figure 1 shows the IM, calculated using (17), as a function of the number of independent

measurements. It increases rapidly initially and reaches a plateau at approximately 50

measurements. The plateau value yields the calculation of IM= 179 bits.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Number of independent measurements

IM
 (

bi
ts

)

Figure 1. Information in measurements (IM) (eqn 17) vs number of independent
measurements (nM ) for EIT measurements of a cylindrical phantom with a small
(2 cm radius) non-conductive contrast

4. Discussion

This paper has developed a method to measure the information content of a set of

measurements. Three cases are considered: 1) for a single measurement channel, 2)

for a data frame of multiple measurements, and 3) for a temporal sequence of data

frames. A definition of IM, the information of measurements is introduced, and formulae

to calculate its value based on the prior and posterior distributions are given. We

acknowledge that the ideas we propose here are a relatively straightforward application

of Bayesian regularization and information theory. We have therefore searched for

previous examples of this analysis in the inverse problems literature, but have been

unable to find any. Some authors have recognized the value of combining regularization

and information theory (Idier et al , 1996, Godfrey, 1978) but have not pursued the

analysis in the way presented here.
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Our analysis is based on Gaussian models for the measurement noise and prior

covariance. While such models have the advantage of permitting closed form solutions

for entropy integrals, many feasible distributions, especially of the image prior, are not

Gaussian. One useful approach may be to transform the image parameters – such as

using the log conductivity – to enforce non-negativity. Another important consideration

is that the prior information increases with each stimulation, if the prior distribution

is calculated from the information gathered before a subsequent measurement. An

example of the use of this strategy would be for optimal current patterns. In this paper,

we consider the information content from the point of view of the measurements, y.

However, it would be conceptually interesting to develop this formulation considering

the information about the image, x. Distribution q would have mean, µ and covariance

Σx, with distribution p based on the image reconstructed using Bayesian distribution,

p(x‖y).

The developed formulae were implemented for a 16 electrode EIT system and a

value of IM=179.0 bits calculated. Interestingly, a näıve guess for the IM for this EIT

system would be the number of independent measurements 1
2
nvne times 1

2
log2(SNR).

This calculation yields 104 × 3.88 = 406.3 bits. The actual IM is less because EIT

measurements from the medium are highly correlated, and such correlated measures are

less informative. Note that this test scenario uses a very small contrasting target. Most

practical applications of EIT will give larger IM values.

The formula developed, (17), is intuitively appealing. The information in the

measurements is proportional to the number of measurements and the log SNR, plus

a term related to the Jacobian and the regularization matrix. This suggests that

improvements to an EIT system design can thus be implemented by 1) improving the

SNR, 2) adding measurement channels, and 3) designing better measurement schemes.

That last function is the goal of the optimal current patterns, such as those of Demidenko

et al (2005), Isaacson et al (1986), and Lionheart et al (2001).

We would like to suggest that this measure may allow novel insights into a number

of questions regarding the performance of an EIT system, such as:

• Novel approaches to select the regularization hyperparameter. For example, the

threshold for the truncated SVD may be selected at the knee of the IM vs

independent measurements curve (figure 1).

• Inherent limits to the compressibility of measurement data. Measured data cannot

be stored in less space than the calculated IM value.

• Distinguishability limits may be defined in terms of the IM content from small

contrasts (Cheney and Isaacson, 1992).

• Fusion of EIT with other modalities. Measurements which are not independent will

only add a small increment to the IM.

• Optimal current patterns may be defined in terms of maximizing IM
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