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Abstract. A powerful method for solving planar eigenvalue problems is the method of par-
ticular solutions (MPS), which is also well known under the name “point matching method.” The
implementation of this method usually depends on the solution of one of three types of linear algebra
problems: singular value decomposition, generalized eigenvalue decomposition, or generalized singu-
lar value decomposition. We compare and give geometric interpretations of these different variants
of the MPS. It turns out that the most stable and accurate of them is based on the generalized
singular value decomposition. We present results to this effect and demonstrate the behavior of the
generalized singular value decomposition in the presence of a highly ill-conditioned basis of particular
solutions.

Key words. eigenvalues, method of particular solutions, point matching, subspace angles,
generalized singular value decomposition

AMS subject classifications. 65F15, 65F22, 65N25

DOI. 10.1137/060651057

1. Introduction. The idea of the method of particular solutions (MPS) is to
approximate eigenvalues and eigenfunctions of

−Δu = λu in Ω,(1.1a)

u = 0 on ∂Ω,(1.1b)

from a space of particular solutions that satisfy (1.1a) but not necessarily (1.1b). In
this article we assume that Ω is a planar region.

A famous article on this method was published in 1967 by Fox, Henrici, and Moler
[17] who used the MPS to compute the smallest eigenvalues of the L-shaped region to
up to 8 digits of accuracy. Very similar ideas were also contained in the earlier papers
by Conway and Farnham [10] and Conway and Leissa [11]. The MPS is also known
under the name “point matching method” in the literature (see, for example, [10]).
Closely related is also the method of fundamental solutions [9, 23]. The results of this
paper apply equally well to the application of these methods to elliptic eigenvalue
problems.

The MPS is especially effective for very accurate computations. Although mesh-
based methods like FEM can be tuned to deliver exponential convergence on certain
regions (e.g., hp-FEM methods), the implementation can be a difficult task, while the
MPS can often be implemented in a few lines of Matlab code (see, for example, the
Matlab code given in [8]). Also the computation of eigenvalues with very large wave
numbers seems to be very suitable for the MPS. While the matrix sizes in FEM-based
methods grow rapidly for high eigenvalues, the computational effort of the MPS still
stays reasonable, especially if accelerated variants like the “scaling method” are used
[1].
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THE GSVD AND THE METHOD OF PARTICULAR SOLUTIONS 1279

Unfortunately, the MPS suffers from problems for complicated regions coming
from ill-conditioning of the basis functions. These problems were observed in the paper
of Fox, Henrici, and Moler [17] and also noted by later authors (see, for example, [13]).
In [8] we returned to the original idea of the MPS and showed that the reformulation
of the MPS as a problem of computing the angle between certain subspaces makes
it applicable to a variety of polygonal and other planar regions. Numerical examples
show that, even for complicated regions, eigenvalues can be computed to 10 digits or
more with this subspace angle approach.

While writing [8] we were not aware that independently of the numerical analysis
community, physicists had developed very similar methods in connection with semi-
classical mechanics and quantum chaos. This fact was brought to our attention in
2004 by Barnett. The physicists are particularly interested in eigenmodes related to
high wave numbers. One of the leaders of this effort has been Heller, who together
with his colleagues has developed methods closely related to the MPS [19, 20], though
using different terminology. Another key contribution in this area was the “scaling
method” of Vergini and Saraceno. These ideas were recently brought together and
improved in Barnett’s thesis [1].

In this paper we review the various methods of particular solutions and show
that a suitable tool to describe them is the generalized singular value decomposition.
From the various linear algebra tools which are used in the different methods, i.e.,
the singular value decomposition (SVD), the generalized eigenvalue decomposition
(GEVD), and the generalized singular value decomposition (GSVD), it turns out that
the GSVD leads to the most robust and widely applicable approach. Furthermore, it
turns out that the subspace angle method proposed in [8] is just a GSVD in disguise.
Hence, the stability results which we discuss in this paper are also valid for the
subspace angle method and lead to a further understanding of this method.

The paper is organized as follows. In section 2 we present the MPS and its
implementations using the SVD, GEVD, and GSVD.

While singular values are perfectly conditioned this is not true for generalized
singular values. Therefore, in section 3 we investigate the numerical stability of the
GSVD approach. In section 4 we analyze a regularization strategy for the GSVD,
which was proposed by Barnett for the GEVD approach to the MPS.

In section 5 we discuss the limits of the GSVD if the basis of particular solutions
admits only ill-conditioned representations of approximate eigenfunctions. The paper
finishes in section 6 with a short summary and conclusions.

All notation is standard. We will frequently use εmach for the machine precision
(εmach ≈ 2.2 × 10−16 in IEEE arithmetic).

2. The method of particular solutions. The MPS approximates eigenpairs
(λk, uk) of (1.1) from a space of functions that satisfy (1.1a) but not necessarily (1.1b).
Let

(2.1) A(λ) := span{Φ1(λ; z), . . . ,Φp(λ; z)} ⊂ C2(Ω) ∩ C(Ω)

be such a space. Therefore,

−ΔΦk(λ; z) = λΦk(λ; z), k = 1, . . . , p,

for z ∈ Ω. Fox, Henrici, and Moler used Fourier–Bessel functions of the form
Φk(λ; z) = Jαk(

√
λr) sin(αkθ) that are the exact solutions of (1.1) in a wedge with

interior angle π/α. In physics frequently real plane waves and evanescent plane waves
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1280 TIMO BETCKE

are used as particular solutions [5]. Other possible sets of basis functions are funda-
mental solutions which solve the eigenvalue equation (1.1a) in Ω but have singularities
located outside of Ω [15].

To make the notation easier we will from now on always write Φk(z) instead of
Φk(λ; z), since the dependence of the particular solutions on λ will be clear from the
context.

2.1. An SVD-based formulation of the MPS. Let z1, . . . , zn ∈ ∂Ω be
boundary collocation points. We are looking for a value λ for which there exists
a linear combination

Φ =

p∑
k=1

ckΦk

of basis functions which is small at these points. Then we hope that this is a good
approximation to an eigenfunction of (1.1). Let AB(λ) be the matrix of basis functions
evaluated at the zk, i.e., (AB(λ))jk = Φk(zj), j = 1, . . . , n, k = 1, . . . , p. The method
is then formulated as the following minimization problem:

(2.2) min
λ

min
c∈Rp\{0}

‖AB(λ)c‖2

‖c‖2
= min

λ
ξp(λ),

where ξp(λ) is the smallest singular value of the matrix AB(λ).
The formulation (2.2) is due to Moler [24]. In earlier approaches the number of

collocation points n was chosen identically to the number of basis functions p. In that
case AB(λ) is square and λ was determined by solving

det(AB(λ)) = 0

(see, for example, [17]).
The SVD approach can fail if AB(λ) is ill-conditioned for some λ > 0 far from

an eigenvalue. Assume that λ is not close to an eigenvalue and that AB(λ) is ill-
conditioned. Then there exists a vector c ∈ R

p with ‖c‖2 = 1 such that ‖AB(λ)c‖2 �
1. But the unique solution of (1.1) if λ is not an eigenvalue is the zero function. Hence,
the function defined by the coefficient vector c will approximate this zero function. In
[8] these functions are called “spurious solutions” of (1.1).

In Figure 2.1 we demonstrate this failure for the example of the L-shaped region
from Figure 2.2. The upper left plot shows the curve ξp(λ) for p = 10 Fourier–Bessel

basis functions of the form Φk(r, θ) = J 2k
3

(
√
λr) sin 2k

3 θ. The origin of the polar

coordinates is at the re-entrant corner with the line θ = 0 directed as in Figure 2.2.
The minima of ξp(λ) in the upper left plot of Figure 2.1 point to the first three
eigenvalues of (1.1) on this region. In the lower left plot we have chosen p = 60. Now
the minima at the eigenvalues are not visible any more on this plotting scale since
ξp(λ) is small also away from the eigenvalues.

The cure is to choose basis functions that are approximately orthogonal in Ω. Such
bases were analytically constructed for some regions by Moler in [24]. An automatic
way to obtain bases that are approximately orthogonal in the interior of the region is
delivered by the GSVD.

2.2. A GSVD formulation. We want to cure the problem of ill-conditioned
bases in the SVD approach by orthogonalizing the basis functions in the interior of
Ω. Let z̄1, . . . , z̄m ∈ Ω be a set of interior points, and let AI(λ) be the matrix of basis
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Fig. 2.1. Comparison of the SVD and GSVD approach on the L-shaped region for p = 10 and
p = 60 basis functions.

θ = 3π
2

θ = 0

Fig. 2.2. The L-shaped region.

functions evaluated at these interior points, i.e., (AI(λ))jk = Φk(z̄j), j = 1, . . . ,m,
k = 1, . . . , p. For the moment assume that m ≥ p and that AI(λ) has full column
rank. Let

AI(λ) = Q(λ)R(λ)

be the QR decomposition of AI(λ). Instead of the discrete basis set given by the

columns of
[AB(λ)
AI(λ)

]
we use

[
AB(λ)

AI(λ)

]
R(λ)−1 =

[
AB(λ)R(λ)−1

Q(λ)

]

in the SVD approach. This is equivalent to orthogonalizing the particular solutions
in a discrete inner product over the interior discretization points. We obtain

σ1(λ) := min
y∈Rp\{0}

‖AB(λ)R(λ)−1y‖2

‖y‖2
.

This approach guarantees that every coefficient vector y with ‖y‖2 = 1 leads to
a trial function that is of unit discrete norm over the interior points z̄1, . . . , z̄m. We
therefore avoid spurious solutions that are nearly zero in the interior of the region.
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1282 TIMO BETCKE

For y = R(λ)x it follows that

σ1(λ) = min
y∈Rp\{0}

‖AB(λ)R(λ)−1y‖2

‖y‖2
= min

x∈Rp\{0}

‖AB(λ)x‖2

‖AI(λ)x‖2
.

We can reformulate the last equation as the generalized eigenvalue problem

AB(λ)TAB(λ)x(λ) = σ1(λ)2AI(λ)TAI(λ)x(λ),

where the value σ1(λ)2 is the smallest eigenvalue of the pencil {AB(λ)TAB(λ), AI(λ)T

AI(λ)}. However, by using the GSVD we can compute the value σ1(λ) directly
without using the squared matrices AB(λ)TAB(λ) and AI(λ)TAI(λ). The definition
of the GSVD in the following theorem is a simplified version of the definition given
by Paige and Saunders in [25].

Theorem 2.1 (GSVD). Let A ∈ R
n×p and B ∈ R

m×p be given with n ≥ p.
Define Y =

[
A
B

]
and assume that rank(Y ) = p. There exist orthogonal matrices

U ∈ R
n×n and W ∈ R

m×m and a nonsingular matrix X ∈ R
p×p such that

A = USX−1, B = WCX−1,

where S ∈ R
n×p and C ∈ R

m×p are diagonal matrices defined as S = diag(s1, . . . , sp)
and C = diag(c1, . . . , cmin{m,p}) with 0 ≤ s1 ≤ · · · ≤ sp ≤ 1 and 1 ≥ c1 ≥ · · · ≥
cmin{m,p} ≥ 0. Furthermore, it holds that s2

j + c2j = 1 for j = 1, . . . ,min{m, p} and
sj = 1 for j = m + 1, . . . , p.

If m < p, we define

(2.3) cm+1 = · · · = cp = 0.

Then s2
j + c2j = 1 for all j = 1, . . . , p. The values σj = sj/cj are called the generalized

singular values of the pencil {A,B}. If cj = 0, then σj = ∞. The jth column xj of
X is the right generalized singular vector associated with σj .

From Theorem 2.1 it follows that

c2jA
TAxj = s2

jB
TBxj .

Hence, the finite generalized singular values are the square roots of the finite general-
ized eigenvalues of the pencil {ATA,BTB}. But, as in the case of the standard SVD,
they can be computed without using this squared formulation. In Matlab this is
implemented by the gsvd function.

Similarly to singular values the finite generalized singular values of a pencil {A,B}
have a minimax characterization as

(2.4) σj = min
H⊂R

p

dim(H)=j

max
x∈H
Bx �=0

‖Ax‖2

‖Bx‖2
.

This minimax characterization is an immediate consequence of the minimax character-
ization of singular values. A short proof is, for example, contained in [6, Thm. 3.4.2].

It follows that the value σ1(λ) is the smallest generalized singular value of the
pencil {AB(λ), AI(λ)}. Approximations to the eigenvalues of (1.1) are then given by
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the minima of σ1(λ) in dependence on λ. Note that the GSVD does not require m ≥ p
for AI(λ).

In the two right-hand plots of Figure 2.1 we show the smallest generalized singular
value σ1(λ) for different values of λ on the L-shaped region. While for p = 10 basis
functions it is similar to the curve computed by the SVD approach, we see a large
difference for p = 60 basis functions. As explained earlier, the SVD fails here but the
GSVD still lets us easily spot the three minima that point to the eigenvalues.

The application of the GSVD to the MPS was also considered in unpublished
work by Eisenstat.1 His motivation was the minimization of error bounds for the
MPS. In the physics community a related approach was introduced by Heller under
the name plane wave decomposition method (PWDM) [19, 20]. He used only one
point in the interior of the region to normalize the approximate eigenfunctions. A
discussion of this method is contained in [1]. In the engineering literature the GSVD
has been used in a related context to regularize boundary element formulations for
the Laplace eigenvalue problem [21].

The GSVD has an interesting interpretation in terms of angles between subspaces.
The smallest principal angle θ1 between two spaces S1 ⊂ R

n and S2 ⊂ Rn is defined
by

cos θ1 = max
x∈S1, ‖x‖2=1
y∈S2, ‖y‖2=1

〈x, y〉.

Theorem 2.2. Define D0 ⊂ Rn+m as the space of vectors whose first n entries

are zero. Denote by A(λ) the span of the columns of A(λ) :=
[AB(λ)
AI(λ)

]
. Let θ1(λ) be

the smallest principal angle between D0 and A(λ). Then tan θ1(λ) = σ1(λ), where
σ1(λ) is the smallest generalized singular value of the pencil {AB(λ), AI(λ)}.

Proof. Let D0 :=
[

0
I

]
∈ R

(n+m)×m. Then

cos θ1(λ) = max
x∈R

m,
y∈R

p

〈D0x,A(λ)y〉
‖D0x‖2‖A(λ)y‖2

= max
x∈R

m,
y∈R

p

xTAI(λ)y

‖x‖2‖A(λ)y‖2

= max
y∈Rp

‖AI(λ)y‖2√
‖AB(λ)y‖2

2 + ‖AI(λ)y‖2
2

,

from which it follows that

tan θ1(λ) = min
y∈Rp

‖AB(λ)y‖2

‖AI(λ)y‖2
= σ1(λ).

We can therefore interpret the GSVD approach in a different way. We want to
minimize the angle θ1(λ) between the space of functions that are zero on the boundary
collocation points and the space of particular solutions evaluated on boundary and
interior points. Based on this idea the subspace angle method was introduced in [8].
Theorem 2.2 shows that this idea is completely equivalent to the GSVD approach.
Indeed, let (c1(λ), s1(λ)) be the generalized singular value pair associated with σ1(λ),
that is, σ1(λ) = s1(λ)/c1(λ) and s1(λ)2+c1(λ)2 = 1. Then the subspace angle method
from [8] computes the value s1(λ).

1He used it to compute the first eigenvalues of the C-shaped region on the occasion of Cleve
Moler’s 60th birthday in 1999.
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2.3. Comparison to generalized eigenvalue formulations. Based on the
minimization of error bounds for the MPS, Kuttler and Sigillito [22] published in
1978 a formulation of the MPS which uses the GEVD. (Eisenstat remarked that this
idea even goes back to Bergman in 1936 [4].) This was independently rediscovered by
Heller’s student Barnett [1].

Let the minimal error on the boundary within the space A(λ) be defined as

(2.5) tm(λ) = min
Φ∈A(λ)\{0}

‖Φ‖∂Ω

‖Φ‖Ω
,

where

‖Φ‖∂Ω :=

(∫
∂Ω

Φ(s)2ds

) 1
2

= 〈Φ,Φ〉
1
2

∂Ω,

‖Φ‖Ω :=

(∫
Ω

Φ(x, y)2dxdy

) 1
2

= 〈Φ,Φ〉
1
2

Ω(2.6)

are the L2-norms of u on the boundary ∂Ω and in the interior of Ω and 〈·, ·〉∂Ω and
〈·, ·〉Ω are the associated inner products. If tm(λ) = 0, then λ is an eigenvalue. Usually
we will not be able to exactly represent an eigenfunction as a linear combination of
functions in A(λ). Therefore, we are looking for the minima of tm(λ). These are
then approximations to the eigenvalues of (1.1). This strategy was also proposed by
Eisenstat in [14].

tm(λ) can be expressed as

tm(λ)2 = min
Φ∈A(λ)\{0}

‖Φ‖2
∂Ω

‖Φ‖2
Ω

= min
x∈Rp\{0}

xTF (λ)x

xTG(λ)x
,

where (F (λ))jk := 〈Φj ,Φk〉∂Ω and (G(λ))jk := 〈Φj ,Φk〉Ω. Hence, the value tm(λ)2 is
just the smallest eigenvalue μ1(λ) of the generalized eigenvalue problem

(2.7) F (λ)x(λ) = μ(λ)G(λ)x(λ).

Barnett used this formulation to compute eigenvalues on the stadium billiard to several
digits of accuracy [1].

In praxis the integrals appearing in this method are usually evaluated by quadra-
ture rules of the form∫

∂Ω

Φ(s)2ds ≈
n∑

j=1

wB
j Φ2(zj) and

∫
Ω

Φ(s)2ds ≈
m∑
j=1

wI
jΦ

2(z̄j)

with positive weights wB
j and wI

j . Let

(2.8) WB = diag(wB
1 , . . . , wB

n ) and WI = diag(wI
1 , . . . , w

I
n).

Then

(2.9) F̄ (λ) = AB(λ)TWBAB(λ), Ḡ(λ) = AI(λ)TWIAI(λ)

are the matrices obtained by the quadrature rules. For the smallest eigenvalue μ̄1(λ)
of the pencil {F̄ , Ḡ} we have tm(λ) ≈ μ̄1(λ)1/2. However, the structure of the pen-
cil {F̄ , Ḡ} allows the application of the GSVD to directly compute an approxima-
tion of tm(λ); namely, for the smallest generalized singular value σ̄1(λ) of the pencil
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Fig. 2.3. Left: The computed value μ1(λ) − μ1(λ1) close to λ1 on the L-shaped region. Right:
The value σ1(λ) − σ1(λ1) on the same region.

{W
1
2

BAB(λ),W
1
2

I AI(λ)} we have σ̄1(λ) = μ̄1(λ)1/2 ≈ tm(λ). The only differences from

the formulation in section 2.2 are the matrices W
1/2
B and W

1/2
I from the quadrature

rules. But it is not important to choose a very accurate quadrature rule. Numerical
experiments suggest that we just need a sufficient number of boundary points to sam-
ple the trial functions on ∂Ω and sufficiently many random interior points to ensure
that we do not get spurious solutions that are almost zero in the interior of Ω [8].

While we directly compute with the GSVD an approximation for tm(λ), we com-
pute with the GEVD an approximation for tm(λ)2, which can limit the attainable
accuracy in computing the minima of tm(λ), as we demonstrate now. In [2] Bar-
nett showed that around an eigenvalue λk the function μ1(λ) behaves quadratically.
We can therefore model it there as μ1(λ) ≈ μ1(λk) + C(λ − λk)

2 for some C > 0.
Computing the eigenvalues of {F̄ (λ), Ḡ(λ)} by a standard solver like Matlab’s eig

can produce absolute errors at least in the order of machine precision. In an interval
around λk with width 2

√
εmach/C these are of the same magnitude or larger than

|μ1(λ)− μ1(λk)| due to the quadratic behavior of μ1(λ) there. Hence, in this interval
of size Θ(

√
εmach) we may not be able to detect the minimum of tm(λ).

If we directly compute the smallest generalized singular value σ1(λ) of the pencil
{AB(λ), AI(λ)} by a standard GSVD solver like gsvd in Matlab, we can expect
errors in the computed value σ̃1(λ) on the order of machine precision if the problem is
well conditioned. Since σ1(λ) is almost linear close to λk the floating point errors are
of the same magnitude or larger than |σ1(λ) − σ1(λk)| only in an interval around λk

with width Θ(εmach). Hence, we expect to find the minima of σ1(λ) to an accuracy
of almost machine precision.

In Figure 2.3 we demonstrate this for the example of the L-shaped region from
Figure 2.2. From now on we plot only the computed points rather than connected
lines to better emphasize numerical errors in the plotted curves. We approximate
μ1(λ) by the smallest eigenvalue of the pencil {AB(λ)TAB(λ), AI(λ)TAI(λ)}, where
the boundary points are equally spaced and the interior points are randomly chosen.
Since the reason for the

√
εmach accuracy problem is the quadratic nature of σ1(λ)

close to an eigenvalue λk and not the accuracy of the quadrature rule, this simple
approximation is justified. The smallest generalized singular value σ1(λ) is computed
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by the GSVD of {AB(λ), AI(λ)}. In the left-hand plot of Figure 2.3 the function
μ1(λ) has a plateau of width on the order of

√
εmach close to λ1 in which the values

are essentially determined by numerical errors, making it hard to detect the minimum
to more than the square root of machine precision. In contrast, in the right-hand plot
of Figure 2.3 we show the computed value σ1(λ) on a finer scale. The function behaves
almost linearly, and the minimum can easily be determined to 12 digits and more (in
[8] we give 14 digits).

Another attempt to solve this problem is to compute the zeros of the derivative
μ′

1(λ) of μ1(λ) instead of the minima of μ(λ). Such an approach was used by Driscoll
with great success in a related method [13]. But this approach makes it necessary to
accurately compute derivatives of F (λ) and G(λ), which might not always be possible.

3. The effect of ill-conditioning. The SVD approach of the MPS fails if the
matrix AB(λ) is highly ill-conditioned for some λ far away from an eigenvalue, since
the MPS then approximates functions which are zero everywhere in the region. This
cannot happen with the GSVD approach since we scale the approximate eigenfunc-
tions to have unit norm in the interior of the region. But while the singular values
of a matrix A are perfectly conditioned, the generalized singular values of a pencil
{A,B} might be ill-conditioned, introducing large errors in the computed generalized
singular values. In this section we investigate these errors and their influence on the
ability to detect eigenvalues with the GSVD approach.

In Figure 3.1 we show the famous GWW-1 isospectral drum [13, 18]. Eigenfunc-
tions on this region can have singularities at the four corners which are marked by
black dots. To obtain accurate eigenvalue and eigenfunction approximations we need
to represent these singularities in the approximation basis. With 60 basis functions
around each singularity we obtain the approximation λ1 ≈ 2.53794399979 for the first
eigenvalue on this region (for details see [8]). We believe all digits to be correct. Let
us have a look at the corresponding plot of tan θ(λ) in Figure 3.2, which is computed
with Matlab’s GSVD function as the smallest generalized singular value of the pencil
{AB(λ), AI(λ)}. On the boundary we used 120 Chebyshev distributed points on each
line segment, and in the interior we spread 200 randomly distributed points in the

−3 −2 −1 0 1 2 3
−3
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−1

0

1

2

3

Fig. 3.1. The famous GWW-1 isospectral drum. Eigenfunctions can have singularities only at
the dotted corners.
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Fig. 3.2. Plot of tan θ1(λ) for the GWW-1 isospectral drum. Before coming close to the first
eigenvalue we can observe large variation.

smallest rectangle that contains the isospectral drum and then used those 88 points
that were inside the drum. The values for different λ show a large variation before
coming close to the first eigenvalue where the variation seems to disappear on this
plotting scale. The matrix A(λ) = [AB(λ)TAI(λ)T ]T is numerically almost singular
for all values λ > 0.2 However, still we are able to detect the minimum of the subspace
angle curve. In the following section we investigate this behavior in more detail.

3.1. The error of the GSVD. Let A ∈ R
n×p and B ∈ R

m×p, let Y =
[
A
B

]
, and

assume that rank(Y ) = p. We define a perturbed pencil {Ã, B̃} as Ã = A + ΔA and
B̃ = B+ΔB. If (s, c) is a generalized singular value pair of {A,B}, the corresponding
perturbed generalized singular value pair of {Ã, B̃} is denoted by (s̃, c̃). Furthermore,
let σ = s

c and σ̃ = s̃
c̃ be the corresponding generalized singular values. The right

generalized singular vector associated with σ is denoted by x, and the right generalized
singular vector associated with σ̃ is denoted by x̃. From Theorem 2.1 it follows that
‖Ax‖2 = s and ‖Bx‖2 = c with corresponding identities for the perturbed quantities.

The difference of σ̃ and σ can be estimated by considering condition numbers of
generalized singular values. Define

cond(σ) = lim
δ→0

sup
max(‖E‖2,‖F‖2)≤δ

|σ̃ − σ|
δ

.

In [26] Sun showed that for a simple finite generalized singular value σ the condition
number cond(σ) is

(3.1) cond(σ) =
‖x‖2(‖Ax‖2 + ‖Bx‖2)

‖Bx‖2
2

=
‖x‖2

‖Bx‖2
(1 + σ) =

‖x‖2

c
(1 + σ).

The forward error of the GSVD is given as [26, eq. (2.3)]

(3.2) |σ̃ − σ| ≤ cond(σ) max(‖ΔA‖2, ‖ΔB‖2) + O
(
max(‖ΔA‖2, ‖ΔB‖2)

2
)
.

2We always scale the columns of A(λ) to the unit norm in order to avoid artificial ill-conditioning
which is just due to the bad scaling of the Fourier–Bessel functions.
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Let us now return to the GSVD-based MPS. In order for the GSVD approach to
be successful we need to ensure that the perturbed value σ̃1(λ) is small only if λ is
close to an eigenvalue λk. In [14] it is shown that

(3.3)
|λ− λk|

λk
≤ C min

Φ∈A(λ)\{0}

‖Φ‖∂Ω

‖Φ‖Ω

for a constant C > 0 that depends only on the region. If we choose a sufficient number
of well-distributed boundary and interior points for the method, then we can assume
that

‖Φ‖∂Ω

‖Φ‖Ω
≈ C̃

‖AB(λ)x‖∂Ω

‖AI(λ)x‖Ω

for the vector x of coefficients of u in the basis particular solutions and a constant
C̃ > 0. A precise relationship between these quantities can be established by the use
of quadrature rules and estimating their error. We obtain

(3.4)
|λ− λk|

λk
� Ĉ min

x∈Rp\{0}

‖AB(λ)x‖∂Ω

‖AI(λ)x‖Ω
= Ĉσ1(λ)

for a constant Ĉ. Numerical experiments in [6] suggest that this is indeed a good
estimate. Hence, the unperturbed generalized singular value σ1(λ) cannot be small if
λ is not close to λk and if we choose a sufficient number of discretization points.

In practice we are working with the perturbed generalized singular value σ̃1(λ)
of the pencil {AB(λ) + ΔAB(λ), AI(λ) + ΔAI(λ)}. For a backward stable GSVD
method we can assume that max{‖ΔAB(λ)‖2, ‖ΔAI(λ)‖2} ≤ Kεmach, where K is a
moderate constant that depends only on the dimension of the problem. Hence, from
(3.2) it follows to first order that

(3.5) |σ̃1(λ) − σ1(λ)| ≤ K
‖x1(λ)‖2

c1(λ)
(1 + σ1(λ))εmach.

Therefore, if ‖x1(λ)‖2 is of moderate size, then we can expect that the errors in
σ̃1(λ) are small. The following lemma gives an estimate on x1(λ) depending on λ.

Lemma 3.1. Let σ = s/c be a generalized singular value of the pencil {A,B},
and let x be its corresponding right generalized singular vector. Then

(3.6) ‖x‖2 ≤ s

ξp
,

where ξp is the smallest singular value of A.
Proof. From Theorem 2.1 we have ‖Ax‖2 = s. Since ‖Ax‖2 ≥ ξp‖x‖2, the result

follows.
Combining this lemma with (3.5) leads to first order in εmach to

(3.7) |σ̃1(λ) − σ1(λ)| ≤ K
σ1(λ)

ξp(λ)
(1 + σ1(λ))εmach,

where ξp(λ) is the smallest singular value of AB(λ). Assume that

(3.8) ξ̃p(λ) ≥ (1 + σ̃1(λ))εmach
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for the smallest singular value ξ̃p(λ) of AB(λ) + ΔAB(λ). Then if we treat {AB(λ),
AI(λ)} as a perturbation of {AB(λ) + ΔAB(λ), AI(λ) + ΔAI(λ)}, we obtain from
(3.7) to first order the bound

|σ̃1(λ) − σ1(λ)| ≤ Kσ̃1(λ).

Combining this with (3.4), it follows that

(3.9)
|λ− λk|

λk
� Ĉ(1 + K)σ̃1(λ).

Hence, even if we perturb AB(λ) and AI(λ), under the assumption that (3.8) holds
we have a bound on the relative distance to the next eigenvalue, which also implies
that σ̃1(λ) can become small only close to an eigenvalue. However, (3.8) is likely to
hold for ‖ΔAB(λ)‖2 ≈ εmach, since then ξp(λ) is perturbed by a quantity in the order
of εmach.

4. Regularizing the GSVD. In practice it is often useful to remove the oscil-
lations in the computed values for tan θ1(λ). Hence, we want to regularize the GSVD
approach. In this section we will discuss a regularization strategy that is based on an
idea by Barnett to regularize the generalized eigenvalue formulation.

Let us plot the smallest generalized eigenvalue μ1(λ) of

AB(λ)TAB(λ)x(λ) = μ(λ)AI(λ)TAI(λ)x(λ),

which is obtained by setting all weights to 1 in the quadrature rule used for the GEVD
approach (see (2.8)). The resulting curve in Figure 4.1 shows large variation. Several
of the computed values are negative, and Matlab even returned some complex values
for μ1(λ). The problem is the large common numerical nullspace of AB(λ) and AI(λ).
In [1] Barnett projected out this nullspace. Using our notation, this can be done in
the following way. Let

AI(λ) = U(λ)Σ(λ)V (λ)T

be the SVD of AI(λ). Now define a threshold ε̂, and let η1(λ) ≥ · · · ≥ ηk(λ) > ε̂ be the
singular values of AI(λ) that are larger than ε̂. Partition V (λ) as V (λ) = [V1(λ) V2(λ)],
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Fig. 4.1. μ1(λ) in the case of the GWW-1 isospectral drum.
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where V1(λ) contains the first k columns and V2(λ) contains the last p − k columns
of V (λ). Then the regularized generalized eigenvalue problem is defined as

V1(λ)TAB(λ)TAB(λ)V1(λ)x̂(λ) = μ̂(λ)V1(λ)TAI(λ)TAI(λ)V1(λ)x̂(λ).

A similar strategy was proposed and analyzed by Fix and Heiberger in [16]. The right-
hand-side matrix now has the singular values η1(λ)2 ≥ · · · ≥ ηk(λ)2 > ε̂2. Therefore,
to remove all numerically zero singular values of AI(λ)TAI(λ) we need to choose
ε̂ >

√
εmach. In [1] Barnett uses a threshold of ε̂ = 10−7.

We can apply the same strategy to the GSVD formulation. Then instead of
finding the smallest generalized singular value σ1(λ) of the pencil {AB(λ), AI(λ)} we
find the smallest generalized singular value σ̂1(λ) of {AB(λ)V1(λ), AI(λ)V1(λ)}.

But for the GSVD the following strategy for obtaining a regularization matrix
V1(λ) is more suitable. Let [

AB(λ)

AI(λ)

]
=

[
QB(λ)

QI(λ)

]
R(λ)

be the QR decomposition of A(λ). Compute the SVD of R(λ) as

(4.1) R(λ) = UR(λ)ΣR(λ)VR(λ)T .

Note that the singular values of R(λ) are identical to those of
[
AB(λ)T AI(λ)T

]T
.

The regularization matrix V1(λ) is defined as the first k columns of VR(λ) associ-
ated with those singular values of R(λ) which are above the threshold ε̂. The gen-
eralized singular values of {AB(λ)V1(λ), AI(λ)V1(λ)} are now identical to those of
{QB(λ)U1(λ), QI(λ)U1(λ)}, where U1(λ) contains the first k columns of UR(λ). The
smallest generalized singular value of {AB(λ), AI(λ)} is only modestly changed with
this strategy if it is not too ill-conditioned. This is shown in the following theorem.

Theorem 4.1. Let σ1 = s1/c1 be the smallest generalized singular value and x1

its corresponding right generalized singular vector of the pencil {A,B} with A ∈ R
n×p

and B ∈ R
m×p. Let the regularization matrix V1 ∈ R

p×k be obtained by the strategy
described above, and denote by σ̂j, j = 1, . . . , k, the generalized singular values of the
pencil {AV1, BV1}. Then the following hold:

(a) For all generalized singular values σ̂j of the pencil {AV1, BV1},

σj ≤ σ̂j .

(b) If ε̂‖x1‖2 < c1, then

σ1 ≤ σ̂1 ≤ s1 + ε̂‖x1‖2

c1 − ε̂‖x1‖2
.

Proof. Let V2 be the orthogonal complement of V1; i.e., V = [V1 V2] is an orthog-
onal matrix. Then ‖AV2y‖2 ≤ ε̂‖y‖2 and ‖BV2y‖2 ≤ ε̂‖y‖2 for all y ∈ R

p−k since∥∥[ AV2

BV2

]∥∥
2
≤ ε̂. Let x1 = V1y1 + V2y2. We have

‖AV1y1‖2 = ‖Ax1 −AV2y2‖2 ≤ ‖Ax1‖2 + ‖AV2y2‖2 ≤ s1 + ε̂‖y2‖2

and

‖BV1y1‖2 = ‖Bx1 −BV2y2‖2 ≥ ‖Bx1‖2 − ‖BV2y2‖2 ≥ c1 − ε̂‖y2‖2.
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Fig. 4.2. The regularized curve of tan θ1(λ) for the GWW-1 isospectral drum. The variation
has disappeared on this plotting scale (compare with Figure 3.2).

With ‖y2‖2 ≤ ‖x1‖2 and the minimax characterization in (2.4) it follows that

σ̂1 ≤ ‖AV1y1‖2

‖BV1y1‖2
≤ s1 + ε̂‖x1‖2

c1 − ε̂‖x1‖2
.

The fact that σj ≤ σ̂j , j = 1, . . . , k, also follows immediately from (2.4), since restrict-
ing the pencil {A,B} to {AV1, BV1} corresponds to minimizing only over a subset of
all possible subspaces.

A similar result for the regularization of ill-conditioned generalized eigenvalue
problems was proved in [16]. Let us apply this theorem to the pencil {AB(λ), AI(λ)}.
If σ1(λ) � 1 close to an eigenvalue, then c1(λ) ≈ 1, and we obtain

σ̂1(λ) ≤ s1(λ) + ε̂‖x1(λ)‖2

c1(λ) − ε̂‖x1(λ)‖2
≈ σ(λ) + ε̂‖x1(λ)‖2

1 − ε̂‖x1(λ)‖2

= σ1(λ) + (1 + σ1(λ))ε̂‖x1(λ)‖2 + O((ε̂‖x1(λ)‖2)
2).

Hence, to first order the change of σ1(λ) is essentially at most ε̂‖x1(λ)‖2. This result
can also be obtained by noting that ‖AB(λ) − AB(λ)V1(λ)V1(λ)T ‖2 ≤ ε̂, ‖AI(λ) −
AI(λ)V1(λ)V1(λ)T ‖2 ≤ ε̂ and applying (3.2).

Therefore, close to an eigenvalue we can expect only a small penalty due to this
regularization strategy if ‖x1(λ)‖2 is of moderate size there. For example in the case of
the GWW-1 isospectral drum the parameter ε̂ = 10−14 leads to σ̂1(λ1) = 2.3×10−11,
while the original value is σ1(λ1) = 1.90×10−11. The upper bound from Theorem 4.1
is σ̂1(λ1) ≤ 7.76×10−11. The right generalized singular vector x1(λ1) has a magnitude

of 103 in that example. In Figure 4.2 the regularized curve tan θ̂1(λ) = σ̂1(λ) is
plotted. The variation away from the eigenvalue is not visible on this scale any more.
The following argument due to Eisenstat explains this effect.

Let ε̂ be the regularization parameter, let y(λ), ‖y(λ)‖2 = 1 be a right singular
vector corresponding to the smallest singular value ξp(λ) of AB(λ)V1(λ), and let
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ψp(λ) = ‖AI(λ)V1(λ)y(λ)‖2. Then by definition

ξp(λ)2 + ψp(λ)2 =

∥∥∥∥∥
[
AB(λ)

AI(λ)

]
V1(λ)y(λ)

∥∥∥∥∥
2

2

≥ ε̂2

and σ̂1(λ) ≤ ξp(λ)
ψp(λ) . Ignoring the higher order term and the factor 1 + σ1(λ) in (3.7),

the computed value σ̃1(λ) from the regularized problem satisfies

|σ̃1(λ) − σ̂1(λ)| ≤ σ̂1(λ)K
εmach

ξp(λ)
.

If ξp(λ) ≥ ε̂√
2
, then

|σ̃1(λ) − σ̂1(λ)| ≤
√

2σ̂1(λ)
Kεmach

ε̂
,

which is a relative bound if ε̂ >
√

2Kεmach. If ξp(λ) < ε̂√
2
, then ψp(λ) ≥ ε̂√

2
. Taking

this together with σ̂1(λ) ≤ ξp(λ)
ψp(λ) , it follows that

|σ̃1(λ) − σ̂1(λ)| ≤ K
εmach

ψp(λ)
≤

√
2K

εmach

ε̂
,

an absolute bound. By increasing ε̂ we reduce the bound on the difference between
the computed and the exact smallest generalized singular value of the regularized
problem in both cases.

The SVD-based regularization strategy proposed in this section is not the only

possible strategy. One can also apply a rank-revealing QR decomposition to
[AB(λ)
AI(λ)

]
that selects a subset of the columns of this matrix and thereby avoids round-off errors
introduced by multiplying QB(λ)U1(λ). In practice both strategies behaved similarly
for our examples.

5. Limits of the GSVD approach. What are the limits of the GSVD ap-
proach? Assume that we have a basis of particular solutions for which

(5.1) min
Φ∈A(λk)

‖Φ‖∂Ω

‖Φ‖Ω
= O(εmach),

where λk is an eigenvalue of (1.1). Hence, with a good discretization it also follows
that σ1(λk) = O(εmach).

Then it is still possible that the coefficient vector c = (c1, . . . , cp)
T of the function

Φ =

p∑
k=1

ckΦk

from A(λ) that achieves the minimum in (5.1) has very large coefficients; that is,
‖c‖2 � 1.

But then we can also expect that ‖x1(λk)‖2 � 1, where x1(λk) is the right
generalized singular vector associated with the generalized singular value σ1(λk).

This may limit the accuracy to which we can compute σ1(λk) in floating point
arithmetic. From (3.5) it follows that to first order

|σ̃1(λ) − σ1(λ)| ≤ K
‖x1(λ)‖2

c1(λ)
(1 + σ1(λ))εmach ≈ K‖x1(λ)‖2εmach
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Fig. 5.1. A circular L region.
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Fig. 5.2. Convergence of σ1(λ1) = tan θ1(λ1) on the circular L region using a Fourier–Bessel
and a real plane wave basis set.

for σ1(λ) � 1. We therefore have to expect in the worst case that σ̃1(λk) ≈ σ1(λk) +
K‖x1(λk)‖2εmach � σ1(λk).

This shows that it is not enough to have a basis of particular solutions that can
approximate an eigenfunction to high accuracy. We also need to ensure that the
coefficients of the approximate eigenfunction in that basis do not grow too much.

Figure 5.2 shows σ1(λ1) = tan θ1(λ1) for two different basis sets at the smallest
eigenvalue λ1 of the circular L region in Figure 5.1. Using a growing number of
Fourier–Bessel functions, we can minimize σ1(λ1) until 10−12. But with a real plane
wave basis that theoretically leads to the same rate of convergence on this region, we
can minimize σ1(λ) only up to 10−3. This becomes clear by looking at ‖x1(λ1)‖2.

If N = 20, we have for the Fourier–Bessel basis the value ‖x1(λ1)‖2 ≈ 10, while
the same value for the real plane wave basis is approximately 9.7×1012. One might be
tempted to explain this effect purely algebraically with the condition numbers of the

discrete basis A(λ1) =
[AB(λ1)
AI(λ1)

]
. At N = 20 for the Fourier–Bessel basis set we have

κ2(A(λ1)) ≈ 3.8× 103, and for the plane waves we obtain the value 9.7× 1014, where
κ2(A(λ1)) is the condition number in the 2-norm of A(λ1). However, at N = 70 the
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condition number of the Fourier–Bessel basis set has grown to κ2(A(λ1)) ≈ 9 × 1013.
But still we only have ‖x1(λ1)‖2 ≈ 2.8 × 103 for this basis set.

This behavior cannot be improved by regularization, since it follows from The-
orem 4.1 that the error in σ1(λ) introduced by regularizing is itself on the order of
ε̂‖x1(λ)‖2.

We emphasize that the coefficient growth phenomenon is not a property of a
certain algorithm for finding approximate eigenfunctions of a set of particular solutions
but a property of the underlying basis set itself. For fundamental solution bases this
was recently investigated in [3].

6. Conclusions. In this article we showed that the GSVD is the right frame-
work for computing accurate approximations of eigenvalues and eigenfunctions of
(1.1) from a basis of particular solutions. While SVD-based approaches fail if AB(λ)
is highly ill-conditioned, the GSVD still allows accurate approximations of eigenval-
ues and eigenfunctions in this case, as the two examples suggest. Eigenvalues and
eigenfunctions on several challenging regions are also computed in [7, 8, 27] with the
subspace angle method which is equivalent to the GSVD approach as we showed in
section 2.2. The advantage compared to the GEVD is that we do not work with a
squared formulation that may suffer from limited accuracy. Furthermore, the regular-
ization strategy discussed in section 4 allows us to smooth the curve σ1(λ) with only
a small penalty on the minimum of the curve at an eigenvalue λk. Accurate bounds
for the relative distance of an approximation λ to the next eigenvalue λk can also
be obtained from the smallest generalized singular value σ1(λ). This is discussed in
[8, 6, 14].

The choice of optimal sets of particular solutions for different regions is currently
under investigation. But if the basis admits approximations to high accuracy, then,
as this paper shows, the GSVD approach is a robust and easily implementable way
to obtain them.
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