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Abstract

We describe a collection of nonlinear eigenvalue problems that we provide in the form of a

MATLAB toolbox. The collection contains problems from models of real-life applications as

well as ones constructed specifically to have particular properties. A brief description is given

of each problem and the problems are classified according to their structural properties.
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1 Introduction

In many areas of scientific computing collections of problems are available that play an important
role in testing and benchmarking software. Among the uses of such collections are

• testing the correctness of a code against some measure of success, where the latter is typically
an error or residual whose nature is suggested by the underlying problem;

• measuring the performance of a code—for example, speed, execution rate, or again an error
or residual;

• measuring the robustness of a code, that is, the behaviour in extreme situations, such as for
very badly scaled and/or ill conditioned data;

• comparing two or more different codes with respect to the factors above.

A collection ideally combines problems artificially constructed to reflect a wide range of possible
properties with problems representative of real applications. Problems for which something is
known about the solution are always particularly attractive.

Two areas that have historically been well endowed with collections of problems are optimiza-
tion and linear algebra. In optimization we mention just the collections in the widely used Cute
and Cuter testing environments [3], [20], though various other, sometimes more specialized, col-
lections are available. In linear algebra the Matrix Market website [33] provides access to several
collections of matrices, in a variety of formats. A recent collection of sparse matrices is the Univer-
sity of Florida Sparse Matrix Collection [12], which comprises over 1800 matrices from practical
applications, including those from many earlier collections. Both the latter collections include
the Harwell–Boeing collection [14] of sparse matrices and the NEP collection [1] of standard and
generalized eigenvalue problems.
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The growing interest in nonlinear eigenvalue problems has created a need for a collection of
problems in this area. The standard form of a nonlinear eigenvalue problem is F (λ)x = 0, where
F : C → C

m×n is a given matrix-valued function and λ ∈ C and x ∈ C
n are the sought eigenvalue

and eigenvector, respectively. Rational and polynomial functions are of particular interest, the
most practically important case being the quadratic Q(λ) = λ2A + λB + C, which corresponds to
the quadratic eigenvalue problem. For recent surveys on nonlinear eigenproblems see [34] and [41].
Associated with an n×n matrix quadratic Q(λ) are the matrix equations X2A+XB +C = 0 and
AX2 + BX + C = 0, where the unknown X ∈ C

n×n is called a solvent [13], [18]. Thus a matrix
polynomial P (λ) defines both an eigenvalue problem and two matrix equations.

We have built a collection of nonlinear eigenvalue problems that is described in the remainder
of this report. In order to provide focus and keep the collection to a manageable size we have
chosen to exclude linear problems from the collection.

Our matrices come from a variety of sources. Some are from models of real-life applications,
while others have been constructed specifically to have particular properties. Many of the matrices
have been used in previous papers to test numerical algorithms.

Nonlinear eigenvalue problems are often highly structured and it is important to take account
of the structure both in developing the theory and in designing numerical methods. We there-
fore provide a thorough classification of our matrices that records the most relevant structural
properties.

We have chosen to implement the collection in MATLAB, as a toolbox, recognizing that it is
straightforward to convert the matrices into a format that can be read by other languages by using
either the built-in MATLAB I/O functions or those provided in Matrix Market. The collection
is accessed via a single MATLAB function nlevp, which is modelled on MATLAB’s gallery

function. A criterion for inclusion of problems is that the underlying MATLAB code and data
files are not too large, since we want to provide the toolbox as a single file that can be downloaded
in a reasonable time.

This document describes Version 1.0 of the toolbox. The collection will grow and contributions
are welcome (see Appendix C).

2 Installation and Usage

The collection is available from

http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html

It is provided as both a zip file and a tar file. To install the toolbox create in a suitable location
the directory nlevp and make this the current directory. Download nlevp.zip or nlevp.tar

into this directory. Then use appropriate “unzip” software (making sure to preserve the directory
structure) or type tar xvf nlevp.tar. This creates the subdirectory private. For serious use it
is best to put the nlevp directory on the MATLAB path, which can be done using the addpath

command (ideally in startup.m).
To try the toolbox from within MATLAB, change to the nlevp directory if it is not already on

the MATLAB path, and run the demonstration script by typing nlevp_example. Then execute
the following commands:

help nlevp

nlevp query problems

nlevp query properties

nlevp help railtrack

nlevp query railtrack

coeffs = nlevp(’railtrack’)

spy(coeffs{2})

coeffs = nlevp(’bicycle’)

polyeig(coeffs{:})
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The collection has been tested in MATLAB 7.5 (R2007b) and 7.6 (R2008a). It does not work
with versions 6.5 (R13) and earlier of MATLAB, since it uses functionality introduced in MATLAB
7.0 (R14).

3 Identifiers

We give in Table 1 a list of identifiers for the types of problems available in the collection and in
Table 2 a list of identifiers that specify the properties of problems in the collection. These properties
can be used to extract specialized subsets of the collection for use in numerical experiments. In
the next two subsections we briefly recall some relevant definitions and properties of nonlinear
eigenproblems.

3.1 Nonlinear Eigenproblems

The polynomial eigenvalue problem (PEP) is to find scalars λ and nonzero vectors x and y
satisfying P (λ)x = 0 and y∗P (λ) = 0, where

P (λ) =

k∑

i=0

λiAi, Ai ∈ C
m×n, Ak 6= 0 (1)

is an m × n matrix polynomial of degree k. Here, x and y are right and left eigenvectors cor-
responding to the eigenvalue λ. A quadratic eigenvalue problem (QEP) is a PEP of degree
k = 2. For a survey of QEPs see [41]. PEPs are defined by their coefficient matrices A0, A1, . . . ,
Ak. Polynomial and quadratic eigenproblems are identified by pep and qep, respectively, in the
collection (see Table 1), and any problem of type qep is automatically also of type pep.

The matrix function R(λ) ∈ C
n×n whose elements are rational functions

rij(λ) =
pij(λ)

qij(λ)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where pij(λ) and qij(λ) are scalar polynomials of the same variable and qij(λ) 6≡ 0, defines a
rational eigenvalue problem (REP) R(λ)x = 0 [27]. Unlike for PEPs it is difficult to impose
a unique format for specifying REPs. For the collection we use the form

R(λ) = P (λ)Q(λ)−1,

where P (λ) and Q(λ) are matrix polynomials, or the less general form (often encountered in
practice)

R(λ) = Ax + λBx +

p∑

j=1

λ

σj − λ
Cjx, (2)

where A, B, and the Cj are m × n matrices, and the σj are the poles. Which form is used is
specified in the help for the M-file defining the problem. Rational eigenproblems are identified by
rep in the collection.

As mentioned in the introduction, PEPs and REPs are special cases of nonlinear eigenvalue

problems (NEPs)
F (λ)x = 0, (3)

where F : C → C
m×n. Any problem that is not polynomial, quadratic, or rational is identified by

nep in the collection (see Table 1).

3.2 Some Definitions and Properties

Nonlinear eigenproblems are said to be regular if m = n and det(F (λ)) 6≡ 0, and nonregular

otherwise. Recall that a regular PEP possesses nk (not necessarily distinct) eigenvalues [18]. As
the majority of problems in the collection are regular we identify only nonregular problems, for
which the identifier is nonregular.
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Table 1: Problems available in the collection and their identifiers.

qep quadratic eigenvalue problem

pep polynomial eigenvalue problem

rep rational eigenvalue problem

nep other nonlinear eigenvalue problem

Table 2: List of identifiers for the problem properties.

nonregular symmetric hyperbolic

real Hermitian elliptic

nonsquare T-even overdamped

sparse *-even proportionally-damped

scalable T-odd gyroscopic

parameter-dependent *-odd

solution T-palindromic

*-palindromic

T-anti-palindromic

*-anti-palindromic

The identifiers real, Hermitian, and symmetric are defined in Table 3. For PEPs, the real

identifier corresponds to P having real coefficient matrices, while hermitian corresponds to Her-
mitian (but not all real) coefficient matrices. Similarly, symmetric indicates (complex) symmetric
coefficient matrices, and the real identifier is added if the coefficient matrices are real symmetric.
For problems that are parameter-dependent the identifiers real and Hermitian are used if the
problem is real or Hermitian for real values of the parameter.

The reversal of the matrix polynomial (1) is defined by

rev
(
P (λ)

)
= λkP (1/λ) =

k∑

i=0

λk−iAi.

Identifiers for odd-even and palindromic-like square matrix polynomials, together with the special
symmetry properties of their spectra (see [31]) are given in Table 4.

Gyroscopic systems of the form Q(λ) = λ2M + λG + K with M , K Hermitian, M > 0, and
G = −G∗ skew-Hermitian are a subset of ∗-even (T -even when the coefficient matrices are real)
QEPs and are identified with gyroscopic. Here for a Hermitian matrix A, we write A > 0 to
denote that A is positive definite and A ≥ 0 to denote that A is positive semidefinite. When

Table 3: Some identifiers and the corresponding spectral properties. For parameter-dependent
problems, the problem is classified as real or hermitian if it is so for real values of the parameter.

Identifier Property of F (λ) ∈ C
m×n Spectral properties

real F (λ) = F (λ̄) eigenvalues real or come in pairs (λ, λ̄)

symmetric m = n,
(
F (λ)

)T
= F (λ) none unless F is real

Hermitian m = n, (F (λ))∗ = F (λ̄) eigenvalues real or come in pairs (λ, λ̄)
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Table 4: Some identifiers and the corresponding spectral symmetry properties.

Identifier Property of P (λ) Eigenvalue pairing

T-even PT (−λ) = P (λ) (λ,−λ)

*-even P ∗(−λ) = P (λ) (λ,−λ̄)

T-odd PT (−λ) = −P (λ) (λ,−λ)

*-odd P ∗(−λ) = −P (λ) (λ,−λ̄)

T-palindromic revPT (λ) = P (λ) (λ, 1/λ)

*-palindromic revP ∗(λ) = P (λ) (λ, 1/λ̄)

T-anti-palindromic revPT (λ) = −P (λ) (λ, 1/λ)

*-anti-palindromic revP ∗(λ) = −P (λ) (λ, 1/λ̄)

K > 0 the eigenvalues of Q are purely imaginary and semi-simple [15], [29] and the quadratic
Q(ıλ) is hyperbolic.

A Hermitian matrix polynomial P (λ) is hyperbolic if there exists µ ∈ R∪∞ such that P (µ)
is positive definite and for every nonzero x ∈ C

n the scalar equation x∗P (λ)x = 0 has m distinct
zeros in R∪{∞}. All the eigenvalues of such a P are real, semisimple, and grouped in k intervals,
each of them containing n eigenvalues [32], [21]. These polynomials are identified in the collection
by hyperbolic. Overdamped systems Q(λ) = λ2M + λC + K are particular hyperbolic QEPs
for which M > 0, C > 0, and K ≥ 0; they have the identifier overdamped. Finally, a QEP is
said to be proportionally damped when M , C, and K are simultaneously diagonalizable; such
a QEP is identified by proportionally-damped.

Hermitian matrix polynomials P (λ) with even degree k that are elliptic, i.e., P (λ) > 0 for all
λ ∈ R [32, §34], are identified by elliptic. Elliptic matrix polynomials have nonreal eigenvalues.

The identifier sparse is used if the defining matrices are stored in MATLAB’s sparse format.
Problems that depend on one or more parameters are identified with parameter-dependent. A
separate identifier, scalable, is used to denote that the problem dimension (or a function of it)
is a parameter; for such problems a default value of the parameter is provided, typically being a
value used in previously published experiments.

For some problems a supposed solution (eigenvalues and/or eigenvectors) is returned via the
last output parameter, being either an exactly known solution or an approximate or computed
solution. These problems are identified with solution. The documentation for the matrix will
provide more information on the nature of the supposed solution.

4 Collection of Problems

This section contains a brief description of all the problems in the collection. The identifiers for
the problem properties are listed inside curly brackets after the name of each problem.

Acoustic wave 1D {pep,qep,real,symmetric,parameter-dependent,scalable}. This prob-
lem is a QEP Q(λ) = λ2M +λC +K that arises from the finite element discretization of the wave
equation for the acoustic pressure in a bounded domain, where the boundary conditions are partly
pressure release and partly impedance [11].

On the 1D domain [0, 1] the n × n matrices are defined by

M =
1

n
(In − 1

2
eneT

n ), C =
1

ζ
eneT

n , K = n




2 −1

−1
. . .

. . .
. . . 2 −1

−1 1


 ,
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where en is the last column of the n × n identity matrix and the parameter ζ is the (possibly
complex) impedance.

Acoustic wave 2D {pep,qep,real,symmetric,parameter-dependent,scalable}. A 2D ver-
sion of Acoustic wave 1D. On the unit square [0, 1] × [0, 1] with mesh size h the n × n coefficient
matrices of Q(λ) with n = 1

h ( 1
h − 1) are given by

M = h2Im−1⊗(Im−1

2
emeT

m), C =
h

ζ
Im−1⊗(emeT

m), K = Im−1⊗Dm+Tm−1⊗(−Im+
1

2
emeT

m),

where ⊗ denotes the Kronecker product, m = 1/h, ζ is the (possibly complex) impedance, and

Dm =




4 −1

−1
. . .

. . .
. . . 4 −1

−1 2




m×m

, Tm−1 =




0 1

1
. . .

. . .
. . .

. . . 1
1 0




(m−1)×(m−1)

.

Bicycle {pep,qep,real,parameter-dependent}. This is a 2×2 quadratic polynomial arising in
the study of bicycle self-stability [36]. The linearized equations of motion for the Whipple bicycle
model can be written as

Mq̈ + Cq̇ + Kq = f,

where M is a symmetric mass matrix, the nonsymmetric damping matrix C = vC1 is linear
in the forward speed v, and the stiffness matrix K = gK0 + v2K2 is the sum of two parts: a
velocity independent symmetric part gK0 proportional to the gravitational acceleration g and a
nonsymmetric part v2K2 quadratic in the forward speed.

Bilby {pep,qep,real,parameter-dependent}. This 5 × 5 quadratic matrix polynomial arises
in a model from [2] for the population of the greater bilby (Macrotis lagotis), an endangered
Australian marsupial. Define the 5 × 5 matrix

M(g, x) =




gx1 (1 − g)x1 0 0 0
gx2 (1 − g)x2 0 0
gx3 0 (1 − g)x3 0
gx4 0 (1 − g)x4

gx5 0 (1 − g)x5


 .

The model is a quasi-birth-death process some of whose key properties are captured by the ele-
mentwise minimal solution of the equation

R = β(A0 + RA1 + R2A2), A0 = M(g, b), A1 = M(g, e − b − d), A2 = M(g, d),

where b and d are vectors of probabilities and e is the vector of ones. The corresponding quadratic
matrix polynomial is Q(λ) = λ2A + λB + C, where

A = βAT
2 , B = βAT

1 − I, C = βAT
0 .

We take g = 0.2, b = [1, 0.4, 0.25, 0.1, 0]T , and d = [0, 0.5, 0.55, 0.8, 1]T , as in [2].

Butterfly {pep,real,parameter-dependent,T-even,scalable}. This is a quartic matrix poly-
nomial P (λ) = λ4A4 +λ2A3 +λ2A2 +λA1 +A0 of dimension m2 with T-even structure, depending
on a 10×1 parameter vector c [35]. Its spectrum has a butterfly shape. The coefficient matrices are
Kronecker products, with A4 and A2 real and symmetric and A3 and A1 real and skew-symmetric,
assuming c is real. The default is m = 8.

CD player {pep,qep,real}. This is a 60×60 quadratic polynomial Q(λ) = λ2M +λC+K, with
M = I60 arising in the study of a CD player control task [9], [10]. The mechanism that is modeled
consists of a swing arm on which a lens is mounted by means of two horizontal leaf springs. This
is a small representation of a larger original rigid body model (which is also quadratic).
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Closed-loop {pep,qep,real,parameter-dependent}. This is a quadratic polynomial

Q(λ) = λ2I + λ

[
0 1 + α
1 0

]
+

[
1/2 0
0 1/4

]

associated with a closed-loop control system with feedback gains 1 and 1 + α, α ≥ 0. The
eigenvalues of Q(λ) lie inside the unit disc if and only if 0 ≤ α < 0.875 [40].

Concrete {pep,qep,symmetric,parameter-dependent,sparse}. This is a quadratic matrix
polynomial Q(λ) = λ2M + λC + (1 + iµ)K arising in a model of a concrete structure supporting
a machine assembly [16]. The matrices have dimension 2472. M is real diagonal and low rank.
C, the viscous damping matrix, is pure imaginary and diagonal. The factor 1 + iµ adds uniform
hysteretic damping. The default is µ = 0.04.

Damped beam {pep,qep,real,symmetric,scalable}. This QEP arises in the vibration anal-
ysis of a beam simply supported at both ends and damped in the middle [22]. The corresponding
quadratic Q(λ) = λ2M + λC + K has real symmetric coefficient matrices with M > 0, K > 0,
and C = ceneT

n ≥ 0, where c is a damping parameter. Half of the eigenvalues of the problem are
pure imaginary and are eigenvalues of the undamped problem (C = 0).

Dirac {pep,qep,real,symmetric,parameter-dependent,scalable}. The spectrum of this ma-
trix polynomial is the second order spectrum of the radial Dirac operator with an electric Coulom-
bic potential of strength α,

D =




1 +
α

r
− d

dr
+

κ

r
d

dr
+

κ

r
−1 +

α

r


 .

For −
√

3/2 < α < 0 and κ ∈ Z, D acts on L2((0,∞), C2) and it corresponds to a spherically
symmetric decomposition of the space into partial wave subspaces [38]. The units are chosen so
that c = m = 1. The problem discretization is relative to subspaces generated by the Hermite
functions of odd order. The size of the matrix coefficients of the QEP is n+m: n Hermite functions
in the first component of the L2 space and m in the second component [5].

For κ = −1, α = −1/2 and n large enough, there is a conjugate pair of isolated points of
the second order spectrum near the ground eigenvalue E0 ≈ 0.866025. The essential spectrum,
(−∞,−1] ∪ [1,∞), as well as other eigenvalues, also seem to be captured for large n.

Gun {nep,sparse}. This nonlinear eigenvalue problem models a radio-frequency gun cavity. The
eigenvalue problem is of the form

T (λ)x =
[
K − λM + i(λ − σ2

1)
1

2 W1 + i(λ − σ2
2)

1

2 W2

]
x = 0,

where M,K,W1,W2 are real symmetric matrices of size 9956 × 9956. K is positive semidefinite
and M is positive definite. In this example σ1 = 0 and σ2 = 108.8774. The eigenvalues of interest
are the λ for which λ1/2 is close to 146.71 [30, p. 59].

Hospital {pep,qep,real}. This is a 24× 24 quadratic polynomial Q(λ) = λ2M + λC + K, with
M = I24, arising in the study of the Los Angeles University Hospital building [9], [10]. There are
8 floors, each with 3 degrees of freedom.

Loaded string {rep,real,symmetric,parameter-dependent,scalable}. This rational eigen-
value problem arises in the finite element discretization of a boundary problem describing the
eigenvibration of a string with a load of mass m attached by an elastic spring of stiffness k. It has
the form

R(λ)x =

(
A − λB +

λ

λ − σ
C

)
x = 0,
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where the pole σ = k/m, and A > 0 and B > 0 are n × n matrices defined by

A =
1

h




2 −1

−1
. . .

. . .
. . . 2 −1

−1 1


 , B =

h

6




4 1

1
. . .

. . .
. . . 4 1

1 2


 ,

and C = keneT
n with h = 1/n [37].

Mobile manipulator {pep,qep,real}. This is a 5 × 5 QEP arising from the modelling as a
time-invariant descriptor control system of a two-dimensional three-link mobile manipulator [8,
Ex. 14], [7]. The system in its second-order form is

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t),

y(t) = Cx(t),

where the coefficient matrices are 5 × 5 and of the form

M =

[
M0 0
0 0

]
, D =

[
D0 0
0 0

]
, K =

[
K0 −FT

0

F0 0

]
,

with

M0 =




18.7532 −7.94493 7.94494
−7.94493 31.8182 −26.8182
7.94494 −26.8182 26.8182


 , D0 =



−1.52143 −1.55168 1.55168
3.22064 3.28467 −3.28467
−3.22064 −3.28467 3.28467


 ,

K0 =




67.4894 69.2393 −69.2393
69.8124 1.68624 −1.68617
−69.8123 −1.68617 −68.2707


 , F0 =

[
1 0 0
0 0 1

]
.

The quadratic Q(λ) = λ2M + λD + K is close to being nonregular [8], [23].

Orr-Sommerfeld {pep,parameter-dependent,scalable}. This example is a quartic polyno-
mial eigenvalue problem arising in the spatial stability analysis of the Orr-Sommerfeld equation
[40].

Power plant {pep,qep,symmetric,parameter-dependent}. This is a QEP Q(λ)x = (λ2M +
λD + K)x = 0 describing the dynamic behaviour of a nuclear power plant simplified into an
eight-degrees-of-freedom system [26], [41]. The mass matrix M and damping matrix D are real
symmetric and the stiffness matrix has the form K = (1 + ıµ)K0, where K0 is real symmetric
(hence K = KT is complex symmetric). The parameter µ describes the hysteretic damping of the
problem. The matrices are badly scaled.

Railtrack {pep,qep,t-palindromic,sparse}. This is a T-palindromic QEP of size 1005: Q(λ) =
λ2AT + λB + A with B = BT . It stems from a model of the vibration of rail tracks under the
excitation of high speed trains [24], [25], [31]. This problem has the property that the matrix A is
of the form

A =

[
0 0

A21 0

]
∈ C

1005×1005,

where A21 ∈ C
201×67, that is, A has low rank (rank(A) = 67). Hence this eigenvalue problem has

many eigenvalues at zero and infinity.
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Schrödinger {pep,qep,real,symmetric,sparse}. The spectrum of this matrix polynomial is
the second order spectrum, relative to a subspace L ⊂ H2(R), of the Schrödinger operator Hf(x) =

f ′′(x)+ (cos(x)− e−x2

)f(x) acting on L2(R) [6]. The subspace L has been generated using fourth
order Hermite elements on a uniform mesh on the interval [−49, 49], subject to clamped boundary
conditions. The corresponding QEP is given by K − 2λC + λ2B where

Kjk = 〈Hbj ,Hbk〉, Cjk = 〈Hbj , bk〉 and Bjk = 〈bj , bk〉.

Here {bk} is a basis of L. The matrices are of size 1998.
The essential spectrum of H consists of a set of bands separated by gaps. The end points of

these bands are the Mathieu characteristic values. The presence of the short-range potential gives
rise to isolated eigenvalues of finite multiplicity. The portion of the second order spectrum that
lies in the box [−1/2, 2] × [−10−1, 10−1] is very close to the spectrum of H.

Sign1 {pep,qep,hermitian,parameter-dependent,scalable}. The spectrum of this quadratic

matrix polynomial is the second order spectrum of the linear operator Mf(x) = sign(x)f(x)+af̂(0)

acting on L2(−π, π) with respect to the Fourier basis Bn = {e−inx, . . . , 1, . . . , einx}, where f̂(0) =
(1/2π)

∫ π

−π
f(x) dx [4]. The corresponding QEP is given by Kn − 2λCn + λ2In where

Kn = ΠnM2Πn, Cn = ΠnMΠn

and In is the identity matrix of size 2n + 1. Here Πn is the orthogonal projector onto Span(Bn).
As n increases, the limit set of the second order spectrum is the unit circle, together with two

real points: λ±. The intersection of this limit set with the real line is the spectrum of M . The
points λ± comprise the discrete spectrum of M .

Sign2 {pep,qep,hermitian,parameter-dependent,scalable}. This problem is analogous to
problem Sign1, the only difference being that the operator is Mf(x) = (2 sin(x) + sign(x))f(x) +

af̂(0).
Near the real line, the second order spectrum accumulates at [−3,−1] ∪ [1, 3] ∪ {λ±} as n

increases. The two accumulation points λ± ≈ {−0.7674, 3.5796} are the discrete spectrum of M .

Sleeper {pep,qep,real,symmetric,scalable,proportionally-damped,solution}. This QEP
describes the oscillations of a rail track resting on sleepers [28]. The QEP has the form

Q(λ) = λ2I + λ(I + A2) + A2 + A + I,

where A is the circulant matrix with first row [−2, 1, 0, . . . , 0, 1]. The eigenvalues of A and
corresponding eigenvectors are explicitly given as

µk = −4 sin2

(
(k − 1)π

n

)
, xk(j) =

1√
n

exp

(−2iπ(j − 1)(k − 1)

n

)
, k = 1: n.

The eigenvalues of Q can be determined from the scalar equations

λ2 + λ(1 + µ2
k) + (1 + µk + µ2

k) = 0.

Due to the symmetry, manifested in sin(π − θ) = sin(θ), there are several multiple eigenvalues.

Spring dashpot {pep,qep,real,parameter-dependent,scalable}. Gotts [19] describes a
QEP arising from a finite element model of a linear spring in parallel with Maxwell elements
(a Maxwell element is a spring in series with a dashpot). The quadratic polynomial is Q(λ) =
λ2M +λD+K, where the mass matrix M is rank deficient and symmetric, the damping matrix D
is rank deficient and block diagonal, and the stiffness matrix K is symmetric and has arrowhead
structure. This example reflects the structure only, since the matrices themselves are not from a

9



finite element model but randomly generated to have the desired properties of symmetry etc. The
matrices have the form

M = diag(ρM̃11, 0), D = diag(0, η1K̃11, . . . , ηmK̃m+1,m+1),

K =




αρK̃11 −ξ1K̃12, . . . −ξmK̃1,m+1

−ξ1K̃12 e1K̃22 0 0
... 0

. . . 0

−ξmK̃1,m+1 0 0 emK̃m+1,m+1


 ,

where M̃ij and K̃ij are element mass and stiffness matrices, ξi and ei measure the spring stiffnesses,
and ρ is the material density.

String {pep,qep,real,symmetric,proportionally-damped,parameter-dependent,scalable}.
This example is an n × n QEP arising from a linearly damped vibrating string [39]. The n × n
matrices K, D, and M are defined by

M = µI, D = τT, K = κT, T =




3 −1

−1
. . .

. . .

. . .
. . . −1
−1 3




,

where µ, τ , and κ are real nonnegative parameters.

Wing {pep,qep,real}. This example is a 3 × 3 quadratic Q(λ) = λ2A2 + λA1 + A0 from [17,
Sec. 10.11], with numerical values modified as in [29, Sec. 5.3]. The eigenproblem for Q(λ) arose
from the analysis of the oscillations of a wing in an airstream. The matrices are

A2 =




17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725


 , A1 =




7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658


 ,

A0 =




121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5


 .

Wiresaw1 {pep,qep,real,t-even,gyroscopic,parameter-dependent,scalable}. This gy-
roscopic QEP arises in the vibration analysis of a wiresaw [42]. It takes the form Q(λ)x =
(λ2M + λC + K)x = 0, where the n × n coefficient matrices are defined by

M = In/2, K = diag
1≤j≤n

(
j2π2(1 − v2)/2

)
,

and

C = −CT = (cjk), with cjk =





4jk

j2 − k2
v, if j + k is odd,

0, otherwise.

Here, v is a real nonnegative parameter corresponding to the speed of the wire.
Note that for 0 < v < 1, K is positive definite and the quadratic

G(λ) := −Q(−ıλ) = λ2M + λ(ıC) − K

is hyperbolic (but not overdamped).

Wiresaw2 {pep,qep,real,parameter-dependent,scalable}. When the effect of viscous damp-
ing is added to the problem in Wiresaw1, the corresponding QEP has the form [42]

Q̃(λ) = λ2M + λ(C + ηI) + K + ηC,

where M , C, and K are the same as in Wiresaw1 and the damping parameter η is real and
nonnegative.
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A The MATLAB Function nlevp

function varargout = nlevp(name,varargin)

%NLEVP Collection of nonlinear eigenvalue problems.

% [OUT1,OUT2,...] = NLEVP(NAME, ARG1, ARG2,...)

% generates the matrices defining the problem specified by NAME (a string).

% ARG1, ARG2,... are input arguments and OUT1, OUT2, ...

% are the output arguments. See the list below for the available problems.

%

% PROBLEMS = NLEVP(’query’,’problems’) or NLEVP QUERY PROBLEMS

% returns a cell array containing the names of all problems

% in the collection.

% NLEVP(’help’,’name’) or NLEVP HELP NAME

% gives additional information on problem NAME, including number and

% meaning of input/output arguments.

% NLEVP(’query’,’name’) or NLEVP QUERY NAME

% returns a cell array containing the properties of the problem NAME.

% PROPERTIES = NLEVP(’query’,’properties’) or NLEVP QUERY PROPERTIES

% returns the properties used to classify problems in the collection.

% NLEVP(’query’,PROPERTY1,PROPERTY2,...) or NLEVP QUERY PROPERTY1 ...

% lists the names of all problems having the specified properties.

%

% Available problems:

%

% acoustic_wave_1d Acoustic wave problem in 1 dimension.

% acoustic_wave_2d Acoustic wave problem in 2 dimensions.

% bicycle 2-by-2 QEP from the Whipple bicycle model.

% bilby 5-by-5 QEP from Bilby population model.

% butterfly Quartic matrix polynomial with T-even structure.

% cd_player QEP from model of CD player.

% closed_loop 2-by-2 QEP associated with closed-loop control system.

% concrete Sparse QEP from model of a concrete structure.

% damped_beam QEP from simply supported beam damped in the middle.

% dirac QEP from Dirac operator.

% gun NEP from model of a radio-frequency gun cavity.

% hospital QEP from model of Los Angeles Hospital building.

% loaded_string REP from finite element model of a loaded vibrating

% string.

% mobile_manipulator QEP from model of 2-dimensional 3-link mobile manipulator.

% orr_sommerfeld Quartic PEP arising from Orr-Sommerfeld equation.

% power_plant 8-by-8 QEP from simplified nuclear power plant problem.

% railtrack QEP from study of vibration of rail tracks.
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% schrodinger QEP from Schrodinger operator.

% sign1 QEP from rank-1 perturbation of sign operator.

% sign2 QEP from rank-1 perturbation of 2*sin(x) + sign(x)

% operator.

% sleeper QEP modelling a railtrack resting on sleepers.

% spring_dashpot QEP from model of spring/dashpot configuration.

% string QEP from finite element model of vibrating string.

% wing QEP from analysis of oscillations of a wing in an

% airstream.

% wiresaw1 Gyroscopic system from the vibration analysis of wiresaw.

% wiresaw2 QEP from vibration analysis of wiresaw with viscous

% damping effect.

%

% Examples:

% coeffs = nlevp(’railtrack’)

% generates the matrices defining the railtrack problem.

% nlevp(’help’,’railtrack’)

% prints the help text of the railtrack problem.

% nlevp(’query’,’railtrack’)

% prints the properties of the railtrack problem.

%

% For example code to solve all polynomial eigenvalue problems (PEPs)

% in this collection of dimension < 500 with MATLAB’s POLYEIG

% see NLEVP_EXAMPLE.M.

% Reference:

% T. Betcke, N. J. Higham, V. Mehrmann, C. Schroeder, and F. Tisseur.

% NLEVP: A Collection of Nonlinear Eigenvalue Problems,

% MIMS EPrint 2008.40, Manchester Institute for Mathematical Sciences,

% The University of Manchester, UK, 2008.

% Check inputs

if nargin < 1, error(’Not enough input arguments’); end

if ~ischar(name), error(’NAME must be a string’); end

if strcmpi(name,’query’) && nargin == 1

error(’Not enough input arguments’)

end

switch lower(name)

case ’help’

if nargin < 2, error(’Not enough input parameters’); end

name = varargin{1};

if ~ischar(name), error(’NAME must be a string’); end

eval([’help ’, name]);

return

otherwise

[varargout{1:nargout}] = feval(name,varargin{:});

end

B The MATLAB Function nlevp example

The function nlevp_example.m illustrates the use of nlevp and running it provides a quick test
that the toolbox is correctly installed.

%NLEVP_EXAMPLE Run POLYEIG on PEP problems from NLEVP.
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probs = nlevp(’query’,’pep’);

fprintf(’ Problem Dim Max and min magnitude of eigenvalues\n’)

fprintf(’ ------- --- ------------------------------------\n’)

nprobs = length(probs);

m = ceil(nprobs/4);

j = 1;

for i=1:nprobs

coeffs = nlevp(probs{i});

n = length(coeffs{1});

if n < 500

% POLYEIG will convert sparse input matrices to full.

e = polyeig(coeffs{:});

fprintf(’%20s %3.0f %9.2e, %9.2e\n’, ...

probs{i}, n, max(abs(e)), min(abs(e)))

subplot(m,4,j)

plot(e,’.’)

title(probs{i},’Interpreter’,’none’)

j = j+1;

else

fprintf(’%20s %3.0f is a PEP but is too large for this test.\n’, ...

probs{i}, n)

end

end

This function produces the output

Problem Dim Max and min magnitude of eigenvalues

------- --- ------------------------------------

acoustic_wave_1d 10 1.98e+001, 2.88e+000

acoustic_wave_2d 30 1.64e+001, 4.29e+000

bicycle 2 1.41e+001, 3.23e-001

bilby 5 Inf, 8.76e-018

butterfly 64 2.01e+000, 3.59e-001

cd_player 60 1.87e+006, 2.23e-004

closed_loop 2 1.07e+000, 3.31e-001

concrete 2472 is a PEP but is too large for this test.

damped_beam 200 3.69e+006, 7.26e+001

dirac 80 1.14e+001, 8.68e-001

hospital 24 8.97e+001, 5.24e+000

mobile_manipulator 5 Inf, 2.30e-001

orr_sommerfeld 64 3.39e+000, 1.73e-004

power_plant 8 3.69e+002, 1.77e+001

railtrack 1005 is a PEP but is too large for this test.

schrodinger 1998 is a PEP but is too large for this test.

sign1 81 1.00e+000, 1.00e+000

sign2 81 3.00e+000, 1.00e+000

sleeper 10 1.62e+001, 6.88e-001

spring_dashpot 10 Inf, 1.08e-003

string 5 4.68e+001, 5.05e-001

wing 3 8.49e+000, 1.99e+000

wiresaw1 10 3.14e+001, 3.14e+000

wiresaw2 10 3.14e+001, 3.14e+000

and the eigenvalue plots in Figure 1.
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Figure 1: Eigenvalue plots produced by nlevp example.m.
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C Contributing to the Collection

Contributions of suggested new problems for the collection are welcome. They should be sent to
ftisseur@ma.man.ac.uk. The following rules should be followed when providing new problems.

Write a latex file called problemname.tex, where problemname is the proposed name of your
example, describing the problem. The tex file should consist of a problem environment, with first
line stating the relevant identifiers for the problem from Tables 1 and 2:

\begin{problem}{matrix_name}{identifier1,identifier2,...}

This is a xxx-problem of dimension nnn.

It arises in ...

\end{problem}

Provide any of your citations in a bib file; one bib file suffices even if multiple tex files are
provided.

Write an M-file generating the coefficients of the example called matrix name.m. Document
the M-file in the leading comment lines with the most important information from the tex file. If
the problem is parameter dependent set default values for any parameters not specified when the
function is called. If you need extra data files, their names should begin with matrix name, e.g.,
matrix name.mat.

To specify a polynomial problem the first output of the M-file should be a cell array containing
the coefficient matrices starting with the constant term. Thus if the first output is called coeffs

and you want to define a PEP (1), then coeffs{1}=A0, coeffs{2}=A1, . . . , coeffs{k+1}=Ak.
If a supposed solution is provided it should be returned in a structure sol with the following

format:

sol.eval: an m × 1 vector, where m eigenvalues are provided,

sol.evec: an m×n matrix, where column j is the eigenvector corresponding to sol.eval(j).
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