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Abstract

Consider a linear action of the gro@ on X = C™1. We study the fundamental
algebraic properties of the sheaves of invariant and b&&eehtial forms for such an
action, and use these to define an algebraic notion of migltipfor critical points of
functions which are invariant under tii&-action. We also prove a theorem relating
the cohomology of the Milnor fibre of the critical point on theotient space with this
algebraic multiplicity.

Contents
1 Cr*-actions and their quotient spaces 4
The quotientspace. . . . . . . . o i i i i e e 4
The stratification of the quotientspace. . . . .. .. .. .. ... ... .... 6
Examples . . . . . . . 8
2 Invariant and basic differential forms 10
Local cohomology calculations . . . . . . .. .. .. ... .. ... ... ... 13
3 Quasi-acyclicity of thed f A-complexes 19
The invariantd fA-complex. . . . . . . .. ... L 19
The basid fA-complex. . . . . . . .. . . . . . 20
The equivariand fA-complex . . . . . . . . ... L 21
4 Deforming the critical point 27
Generic multiplicities. . . . . . . . . . 28
Finite extensions o€* . . . . . . . . .. 30
5 Equivariant vector fields and critical points 31
Liftable vector fields . . . . . . . . . . ... 31
Multiplicity after Bruce & Roberts. . . . . . .. . . ... .. .. ... ... .. 33
6 The quotient Milnor fibre 35
Chernclass ofthe quotientmap . . . . . .. ... .. ... ... ....... 39
A Cech complexes and local conomology 41



2 JAMES MONTALDI & DuUCO VAN STRATEN

Introduction

If an analytic function gernf on X = C™* has an isolated critical point at 0, then under any
1-parameter deformatiofy of f this critical point decomposes into finitely many (simpler)
critical points. For a generic deformation, the simpletical points are all non-degenerate
and in this case the number of critical points can be compalgbraically as the dimension
of the Jacobian algebra, dgtOx/Jf), whereJf is the Jacobian ideal generated by the
partial derivatives of . The essential reasons for this are that the partial dems(d f /0x;)
form a regular sequence, and that for a non-degenerateatiiint the Jacobian algebra
has dimension 1.

Consider now a linear action of a finite gro@on X and letf be an invariant function
with an isolated critical point at 0. If; is an invariant deformation of, thenG acts by
permuting the critical points of. Moreover, if the critical points are non-degenerate (Wwhic
is the case generically if the action is real) then the aasedipermutation representation
of G is isomorphic to the representation @fon (Ox/Jf). Consequently, the number of
group orbits of critical points is equal to dgfOx /J f]€, (where[M]® denotes the fixed
point space of th&-space M). If the critical points in the deformation remaggdnerate,
then the permutation representation must be counted witlhoppgate multiplicites. For
further details see?P] and [21].

If Gis an infinite (reductive) group then invariant critical pts are no longer isolated,
and (Ox /J f) is accordingly no longer finite dimensional. Furthermdegy /J f]®, which
is finite dimensional, does not behave well in a deformatids:dimension is in general
only upper semicontinuous. Mark Roberts has conjecturad fir complexifications of
representations of compact Lie groupsRitt? this number is well behaved and determines
the multiplicity of a degenerate invariant critical poif.[

An alternative approach is to use differential formsf lias an isolated critical point,
then the complexQy,d fA) of differential forms onX

dfA dfa dfa dfa dfa
0-0x —Qk—50% —5... =5 Q) =5 Q% -0, (0.2)

is exact except foH™ () := H™(Q;,d fA) = QX /d f AQY. The complex is therefore
a free resolution of thi®)x-module, and it follows that in a family of functionfs the sum

> xdime H"1(f)y is constant. (This is really the same reason as given in stepfiragraph:
the partial derivatives forming a regular sequence. AngisgphismOx — Q%" ! takesJ f
ontodf A Q%, and the compleXQy,dfA) is isomorphic to the Koszul complex on the
partial derivatives.)

If the function is invariant under a finite gro@ then one can also consideg™(f) :=
[H™(£)]C = QY /df A QY , whereQf denotesinvariant differential forms. This also
behaves well under deformations and so defines a multipliithe isolated critical point,
though it does not necessarily agree with the multiplicfimed by[Ox /J f]©.

This approach has the advantage that it does generalize fafthite groups, and the
main purpose of this paper is to establish this @ C*, the simplest infinite reductive
group. We expect that the results on multiplicity hold inajex generality — the basic
feature here is that fo€* all the computations can be done explicitly. If tBé-action is
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the complexification of a$t-action onR™?, thenQ}™ /d f A Q% = [Ox /I f]€", and con-
sequently the latter behaves well under a deformatiofhy etipporting Roberts’ conjecture.

The paper is organized as follows.

Section 1 consists of background material on quotient€bwpctions and their natural
stratifications by orbit type; most, if not all, of this sextiis well-known.

Sections 2 and 3 aim at understanding @ieequivariant analogues dd.(l). In Section
2 we consider the two classes of “equivariant” differenf@ms, theinvariant forms and
thebasicforms. The first are forms oK which are invariant under the group action, while
the latter are those invariant forms which annihilate vefiedds tangent to the firbres of the
qguotient map, and so are more properly forms on the quotmateY. Accordingly, there
are two equivariant analogues d@f.{), which are intimately linked. These complexes are
both studied in Section 3, where it is seen that in contratdmrdinary case, they are not
in general acyclic, although their low cohomology grouppeatel more on th€*-action
than on the critical point in question. Section 3 concludéth & brief discussion of the
implication of local duality for the cohomology groups ottanalogue of((.1) using basic
forms.

Most of Sections 2 and 3 are written with the simplifying amgtion that the origin
in X is an isolated fixed point of th€*-action. The modifications for the general case are
described in Remarka.10and3.8.

The top cohomology group of(1) gives the multiplicity of an isolated critical point.
In the same way, the top cohomology group of the equivariaohterparts can be used
to define a multiplicity of an invariant critical point. Sem 4 uses the results of Section
3 to show that this multiplicity behaves well in a deformati®o can indeed be called a
multiplicity. We also give some estimates on the multipyi@f generic critical points away
from the fixed point set of th€*-action. In Section 5 we compare the multiplicity defined
in Section 4 with the Jacobian algebra approach describedeab

In Section 6 we use technigues due to Malgrange to show thatachomology of the
Milnor fibres in the quotient space of an invariant functiorthvan isolated critical point
is given by the cohomology of the analogue 6f1j with basic forms. We also relate the
cohomology of this quotient Milnor fibre to the Chern clasgh@# quotient map, which is
an extension of a theorem of Duistermaat & Heckman.

The paper concludes with an appendix containing an accésonoe simple basic facts
on local cohomology which are relied on heavily in Sectiorm@ 5. Although most of the
material contained in the appendix is well-known to expettaso serves to establish some
notation which facilitates the spectral sequence calicatperformed in Section 2.

This research was done while James Montaldi was supportedsBRc grant held at
the University of Warwick.
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1 C*-actions and their quotient spaces

We will be considering linear actions @* on X = C™?1. Any such action can be diago-
nalized, so that the action is determined solely by a ligt 6f1 integers, theveights We
can assume that the highest common factor of the weightslisvlll be convenient to use
a notation which distinguishes between the positive wesigthie negative weights and the
zero weights and their respective coordinates. d.be the number of positive weights,
the number of negative weights anthe number of zero weights. Thus;-1=a-+b+c.
LetAq,...,A5 be the positive weights and, . .., i be the negative weights. We denote the
corresponding coordinates By, ..., Xa, Y1,...,Yb, andz,...,Z. We assume tha,b > 0
(otherwise the invariant functions would just be functiammsthe fixed point seff = C°).
We also assume that> b, for the involution ofC* given byt — t~! changes the signs of
all the weights, but leaves the invariant theory invaridntthis notationt € C* acts by

t' (X17" * 7Xa7y17' M 7yb7217' M 7ZC) - (t)\lx:I-" M 7t)\axa7tuly17" * 7tubyb7zl7" * 7ZC)'

The vector field which generates tlis-action is,
- a 2 ]
3=_Zl7w><ia—,q+z HiYidy, - 1.2)
i= =1

The quotient space

The C* orbits are all 1-dimensional except those in the fixed paéhfs= C°. The orbits
which are not closed lie in the “bad planes” ¢aill cone$

By ={(x,0,2)} and B_={(0,y,2)}.

Each orbit in the bad sef = B, UB_ contains a unique point d¥ in its closure. The
guotient space ‘as a set is defined to be the set of closed orbits. The quotigmturX — Y
associates to each poixe X the unique closed orbit in the closure of the orbit throvgh
The restrictionrg : F — 1(F) is clearly an isomorphism, so we denatg-) by F as well.
Note then thatt1(F) = B. The topology orY is the finest such thatis continuous.

The algebraic structure ofis given by the ring of invariant polynomials ofy denoted
by R. The invariant polynomials separate the closed orbits ibtithe others, of course).
The ringRis finitely generated by, sayg, ..., (which can be chosen to be monomials)
and the quotient ma can be identified with{ry, ..., 15) : X — C'. It is easy to see that
| > ab+c, since for each paifi, j), with 1 <i <a, 1< j <b, there must be a generator
of the formx(y; for somer,s. Furthermore, since dif¥) =n=a+b+c—1 it follows
thatY is never smooth unlegs= 1. In Section 2, we show thatlif# 1 thenY is not even
isomorphic to a finite quotient a@".

The following result is well-known.

Proposition 1.1 The quotient space is a normal, Cohen-Macaulay variety.
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PrROOF That it is Cohen-Macaulay follows from a general theoremldi,[see also 6],
which states that the quotient space for any reductive gemtion on a smooth space is
Cohen-Macaulay. It also follows from the local conomologynputations we do in Section
2. Itis easy to see that the quotient by a reductive groupyhammal space is normal: just
take the invariant part of any monic polynomial in the deitimitof normality. a

It is not true in general that the quotient of a Cohen-Macaglpace by a reductive
group is again Cohen-Macaulay, unlike the case for finitegso A simple example can be
found in Remarls.7. However, p] has established that the quotient by a reductive group
action of a variety with only rational singularities itsékis only rational singularities.

We now give a brief account of the geometry¥af Let Xg = C2+P X, so thatX =
Xo x F. LetYp be the quotient oKg by C*, so thaty = Yy x F. Now, there is another action
of C* on Xp which commutes with the given one, namslg C* acts by

s-(%,Y)) = (8%, 57 My;).

Note that all the weights are positive. We denote this cop@'oby C*.. The action ofC*.
passes down to an action Whwhose only fixed point is @ Yp. Consider(Yp\0)/C*.. This
is isomorphic ta(X \ B)/(C* x C%). Now, C* x C*_acts by

(t,9)- (%) = ((t9x;, (ts™)Hy;).

The epimorphismp: C* x C*. — T2, (t,s) — (ts,ts™) = (u,v) (whereT? is the complex
2-torus) induces an action @ on X \ B by

(U, V) - (6,y)) = (WX, W),

The quotient(X \ B)/T? is thus isomorphic to the product of two weighted projective
spaces, one B(A1,...,A,), the quotient o2\ {0} by theC*-action with weightgAs, ..., As),
and the other iP(W,..., ), the quotient ofC?\ {0} by the C*-action with weights
(Ma,.-.,Hp). Itfollows thatY =Yy x F andYp is a ‘weighted cone’ on the produtAy, ..., A,) ¥
P(W,-..,U). (For details on weighted projective spaces $afd [11].)

The real linkS of the origin inY, which is the intersection of with a real(2l —1)-
sphere surrounding 0, has real dimension-2. One can show that the rational homology
is as follows: the betti numbers &fare 1 in all even degrees up to and includirig 2 1)
and in all odd degrees froma2- 1 up to 21— 1 = dimS; the other betti numbers are zero.
We do not make any use of this fact so do not give a proof here.

Example 1.2 Consider theC*-action onX = C™*with Ay =--- =N =1andy =--- =
W = —1. If c =0, then this action is free outsid®}, and soY has an isolated singular
point. The quotient space is just the cone@Pf 1 x CP°~1, and if we write the invariants
asa;; = XYj, then itis clear that the quotient space can be identifiek thi variety ofa x b
matrices(a; ) of rank 1.
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This action ‘covers’ the action with with same valuesagh, ¢ but general values of;
andy; by the following diagram
CxX 2 x oy
! ! !
crxxX %ox oy

where @, is the action with weightst1l andY; its quotient. The vertical arrows are the
qguotient maps for the action of the product of cyclic groups

G=2Z) X XZ\, XLy X+ XZ

on X, with each factor acting on the appropriate coordinate, isnishduced action on the
guotientY;.

LetU C Y, and consider the ring of invariant analytic functionsrort(U ). This defines
a presheaf of rings oM, which can be sheafified to form the shé&af onY of germs of
invariant analytic functions oK. It is a coherent sheaf, by the general result2af.[

Letx € X\ B, and denote by the isotropy subgroup at(that is, the subgroup a@@*
leavingx fixed). There exists a complex submanifold (germ) athich is invariant under
Hy and transverse t6*.x, the C* orbit throughx; it is denotedS, and called the slice at
One defines théwisted productC* x, S, to be the quotient o€* x S, by the Hy-action
h-(t,s) = (th~1,hs). C* acts on this space Ity [t, 5| = [tit, 5] (where[t,s| denotes the point
corresponding tdt,s) in the twisted product). The quotient of this action is isopiuc to
S«/Hx. The action oHy on S is called theslice representation

Theorem 1.3 (The Slice Theorem: Lunal}]) Let x lie on a closed orbit. With notation as
above, $can be chosen so that ti@ equivariant map

Q:C'xpy, S — X
t,9 — t-s

is an isomorphism onto @*-invariant neighbourhood U of x. It follows thgtpasses down
to an isomorphisng: S,/Hyx — 1(U), a neighbourhood ofi(x) €Y .

PrROOF (Outline) It is easy to see that @ is well-defined; (ii) thatd@ 4 is an isomor-

phism, and thus is an isomorphism at each poir€oky, S, if S, is sufficiently small, and

(iii) @is a bijection, again if5; is chosen to be suitably small. The result follows. Luna in

fact proves this theorem in the algebraic category, whéjagiconsiderably more subtle.
O

The stratification of the quotient space

The quotient spacé comes equipped with a natural stratification: st@tification by orbit
type For each isotropy subgroup of the C*-action, the associated stratumYotonsists
of all closed orbits inX with isotropy group precisely, and we denote this by,. Let
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Xy =T (Y)) \ B, so thatXy, consists of points on closed orbits which have isotropy
preciselyH. Clearly,X ) is a submanifold oK contained in FixX;H), the fixed point set

of H. Moreover, the grou*/H (which is either trivial or isomorphic t€*) acts freely

on X), and so the restriction atto Xy, is a submersion ontg), which is therefore a
manifold itself. The stratification of by orbit type is given by the collection of manifolds
Yn) asH varies through the isotropy subgroups@fincludingYc:) = F.

A (closed) orbité € Y is said to beegular if its isotropy subgroup is trivial, and the set
of all regular closed orbits is denot¥dy. Because of the nature of tki-action (recall we
are assuming that the h.c.f. of all the weights is one) theregualar orbits irX are contained
in coordinate hyperplanes, so form a subspace of codimemgiteast 1 in botlX andY.
SupposeY(y) has codimension 1 iM and thatf € Y). Then forx € m1(€), H acts on a
neighbourhood ok by pseudoreflections (i.e. the generator of the cyclic gitdums only
one eigenvalue different from 1). The quotient is theremmoth at any point i), and
we see thaY is non-singular in codimension 1, in accordance with Pritipps1.1. The
open subspace of consisting of regular points and these pseudoreflexionrpiqrees will
be denoted). Obviously,U = Y if and only if the action is without pseudoreflexions.

This seems to be a convenient point to state the relatiorstipeen critical points of
functions onY and of their lift toX. (We use the same notation for a functionYorand
its lift to X.) Recall first that a function on a stratified set hastratified critical point
at ¢ if its restriction to the stratum throughhas a critical point a€. Recall also the so-
calledprinciple of symmetric criticalitywhich states that a function on a smooth manifold
X invariant under the action of a reductive grd@gas a critical point ax if and only if its
restriction to FiXHy) has a critical point at. A geometric proof of this principle is roughly
that theHy-invariant complement tdy (Fix(Hx)) in TyX has no trivial component and sdy
restricted to this complement must be 0. There is a more edgebtatement and proof as
follows:

Lemma 1.4 Let H be a subgroup o€*, and let V= Fix(H; X). Let f and f be invariant
functions on X whose restrictions to V agree. Then ff c 1(V)2. Consequently, J§
[(V)=J3f"+1(V), where Jf is the Jacobian ideal of f.

PROOF We may assume thet={x; =--- =% =y1 =--- = ys= 0} for somer <a, s<b,
and letW be the complementary coordinate subspace soV &W. It is enough to prove
the assertion fof’ = fy, wherefy, is defined byfy (v,w) = f(v,0).

Now, f — fy is a sum of monomials, and it is enough to show that each maiaesnin
1(V)2. So,xy® is invariant if and only if(a, A) + (B, ) = 0. If H = Z /Z,, then reducing this
equation modul@givesyi_; aiAi +35_1Bjlj =0 (modv). Since the\;, y; occurring in
this sum are non-zero moduwloit is not possible for all but one of the and(3; to vanish,
with the remaining one being equal to 1. O

Lemma 1.5 Let f be an analytic function (germ) §tc Y. Then f has a stratified critical
point atg if and only if f has a critical point at some (and hence any)paiin the closed
orbit in T 1(€).
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PROOF Suppos€ € Y) and choose any to lie on the closed orbit im1(€), sox €
XH) C XH. Now, m: XH) — Yn) is a submersion, antl is constant along the fibres, so it
follows that f has a critical point & if and only if its restriction taX ) has a critical pont
atx. By the principle of symmetric criticality, this is in turmaivalent tof having a critical
point atx. O

Examples

We end this section with a brief discussion of three sped@ases of actions, firstly where
b =1, secondly actions for which the sum of the weights is zeydhs representation is in
SLy+1(C), and thirdly “real actions”. We will be returning to each bése in later sections.

Actions with one negative weightSuppose th€*-action has only one negative weight
sob=1. Thus X =C?x C x F. Now the cyclic grougZ /uZ C C* acts onX; = C?x F and
trivially on C? = C. Let R; denote the ring of polynomials ofy invariant under this group,
then there is a ring homomorphisRi— Ry, p(x,Y,2) — p(x,1,z). This is clearly injective,
as aC* invariant function which vanishes diy = 1} must be identically 0, and is surjective
as each term in an¥ /pZ invariant function must have weight jnZ (with respect to the
C*-action). The terms can then be multiplied by appropriategre ofy to make the weight
0.

Thus if b =1 and the only negative weight |§ thenY is isomorphic to the product
of C%/(Z/uz) andF, and so is a cyclic quotient singularity. In particularpi= —1, then
Y is smooth. Y is also smooth if the action & /puZ on C? is by pseudoreflexions, which
happens when all but one of theare multiples of..)

It is not hard to show that the stratifications by orbit typéraind ofY; = X3 /(Z/uZ)
coincide outsidd~. If, furthermore, FiXZ/uZ;X;) = F, then the stratifications coincide
completely. Indeed, if we identif{; with C? x {y=1} x F C X, thenX; is invariant under
Z/pZ and a mapy — Y; can be defined bix.y, Z — [x,y,z N X1, (square brackets means
the C* orbit through a point — note thak,y,z N X is aZ /pZ-orbit in X;). LetYy, be
a stratum ofY. Then eithertH = C* or H = Z/vZ for someZ/vZ C Z/pyZ (otherwise
Fix(H;X) C B). Clearly, then, FixZ /vZ;X;) = Fix(Z/vZ;X) N X;. So the image oYy
is Yynyy. The stratifications o¥ \ F andY; \ F therefore coincide. If Fi¢Z /pZ;X;) = F
thenF is a stratum ofy; as well as ofY. The fact that the stratifications coincide on the
complement of was already noticed by[)] for C*-actions orC2.

Actions with the sum of the weights equal to zerdrhese actions have some patrticularly
nice properties. We will see in Section 2 that the quotiemiceps Gorenstein. For now
though, we will limit ourselves to noting that ti*-action contains no pseudoreflexions,
because a pseudoreflection cannot have determinant 1.

If the sum of the weights is 0, and there is only one negativightg we have tha¥ and
the cyclic quotienY; are isomorphic as stratified varieties, since in this cas@uZ; X; ) =
F.

Real actionsA complex representation of a (reductive) group is said toelaéif it is the
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complexification of a real representation of a (real redegdtgroup. This is particularly
simple in the case of finite groups, as the complexificatioa @hite group is the group
itself. On the other handC* can be viewed as the complexification of the circle group
St =SO(2;R).

Let the circle grougs! act onR™ 1, with rotation speedas,...,\,,0,...,0 with each
Ai > 0 and(n—2a) O’s (note that and—A give isomorphic actions). The complexification
of this action is the action o&* on C"*1 with weights

()\1,...,)\a,—)\l,...,—)\a,o,...,O)

Thus aC*-action is real if and only if the weights occur in equal angagite pairs.

It follows from this characterization that real actions @édkie property that the sum of
the weights is zero, so there are no pseudoreflections.

In [25], there are the following characterizations of real acti@rhich we will need in
Section 4.

Proposition 1.6 (Schwarz, 25]) The following are equivalent:
1. TheC*-action is real,
2. Every slice representation is real, and

3. There is an invariant non-degenerate quadratic form.

The proof in theC* case is easy (Schwarz’s theorem is for general reductivepgro
actions). In particular, if the weights are as above, then+ - - +xaya+z§ 4.+ Zisan
invariant non-degenerate quadratic form.
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2 Invariant and basic differential forms

In order to do analysis on singular spaces it is useful to laavetion of differential forms.
Now, for any singular space, there are the Kahler diffea¢sitbut these do not usually have
very nice properties. In our casé,is a quotient space for @*-action so it is natural to
use differential forms related to the group action. Theestao such classes of differential
forms: the invariant forms and the basic forms. In this sective define these two classes
of forms and then discuss some fundamental properties.

On X = C"™! we have the ordinary holomorphic differential form’g‘z. There are two
operators oy : exterior differentiation,

d:Qf — bt
and contraction withy, the vector field given byl(2) generating th€*-action,
191 QF — Qb L.
These can be combined to give the Lie derivative,
Ly =1sd+dis: QY — QF,

which acts on a monomial form = 2'd 2 as multiplication by its weightv(w) = (a4, ),
whereA is then-tuple of weights of theC*-action. For each integdy; there is a subset of
QQ consisting of forms of weight, which we denote bj,QQ]k. Each of these weight spaces
is a module over the rin® of invariants, and more generally the wedge product respect
the weights:

[QRIA QX1 € [QF ks

We put:
Qf = [QfJo = {we QF | L5(w) =0}

This R-module is called the module afivariant differential p-formsbecause they satisfy
t*w=wforallt € C*. The elements oR{ are not to be regarded as differential forms on
Y, since they are not necessarily killed by vector fields aliwegfibres of the quotient map
1T, and moreovetgg‘il is non-zero and torsion free, even though ¥ig n. The module of

basic p-formss defined to be,
Qb = kerfig : QF — Q0 1.

Note thatiy : Q¥ — Qf is injective, so thaRi™ = 0. Note also thaf?, like QF, is a
torsion free but not necessarily fréemodule.

The above constructions can be sheafified, and from now on mederQ} andQY to
be sheaves ofly modules. By the theorem of Rober®?] the sheaves_IQ are coherent,
and it then follows that so are ti2).

Away fromF, the basic forms can be identified with forms invariant uraienite group
action:
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Proposition 2.1 Let& € Y\ F, and xc T 1(§). Let S be a slice to the group action at X,
and H be the isotropy subgroup of x. Theg &tts on the modul@& of p-forms on gand
the stalkQy , is isomorphic to thedy ;-module of H-invariant forms(Qg )*.

PrROOF We use the notation of the slice theorem (Theoref). Leti: S — U be the
inclusion, and let € QY (U). Theni*w ¢ (Q&)HX. Moreover the restriction of* to the
basic formsQf}(U) is injective. Its surjectivity is seen by using the slicedtem: one has
the composite€C* x S, — C* xy, Sc — U (where the first map is the quotient by the action
of the finite groupHy, and the second map @. Leta € (Q&)HX. This p-form can be
extended trivially toC* x S, and the trivial extension is the@* x Hy-invariant and lies in
kerig. O

Corollary 2.2 Forany§ €Y\ F, the stalksﬂ\"iE are Cohen-Macaulayy -modules.

PrROOF QP(S,)x is a free, and hence Cohen-Macaulé, x-module, and is therefore a
Cohen-Macaulayy g-module (sinceHy is finite). FurthermoreQ\'?E is a direct summand

of QP(S)x, so it too is Cohen-Macaulay. O

Recall that the set of smooth pointsC Y consists of the regular orbits and the pseu-
doreflexion hyperplanes.

Corollary 2.3 The restriction onf} to U is precisely thedy-module of holomorphic p-
forms on U.

There is therefore no ambiguity in writir@ﬁ.

PROOF Firstly, let Yieg C Y be the set of regular orbits (those with trivial isotropy). |
€ € Yreg then the result holds sinaeis a submersion oveéfeg. If & € Y4y with H acting by
pseudoreflexions, then this follows from the propositioralsimple local computation3

It should perhaps be emphasised that basic forms do notideimdth Kahler forms.
If we denote the Kahler forms b@p then there is a maﬁzp — Q{?, which in general is
neither injective nor surjective. We will show at the end hitsection thaf¥ = j.QJ),
wherej : U — Y denotes the inclusion; in general the Kahler differesti@ not have this
nice property. It follows, in fact themf} is the sheaf oZariski forms— the bidual ofQP.

Example 2.4 Consider the real*-action onX = C"1 = C?2 with weights+1. The ring of
invariantsOy is generated by the? monomialsxyj. The modules of invariant differential
forms areOy-modules with the following generators:

QY w=dxgA...dXAdyr A ... Adys,

® R
QF 1 Xig Yigs
==X de y'dyj
01 W W W
x dx /\dyj’x'xjd&/\d)q’y'yldyk/\dyi’
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Q% : dx Adyj, X dykAdy, YiyjdxcAdx,
Q% xdy;, yidx.
Here the notatioqj‘% meangdx; A...AdX_1 AdX, 1 A...AdxgAdyr A... Ady,, and simi-
larly for other forms. The basic forms are then generated by:
n 2 W

a

oyt o xiZ(xk @

w a
— Yk Z — Yk
dxc A dx; dykAdxJ d><k/\dyJ dykAdyJ

);

Qy o oxdy;+Ydx, %X (Ykdy —yidyk), YiY; Oxdx —xdx).
Note that the Kahler one-forn€3! on the quotient space are generated byy;) = xdy; +
y;jdx and so do not coincide wit@y.

The following lemma is well-known, though we give a proof here does not seem to
be a good reference. The referee has pointed out to us tharukNgives a proof in19,
Lemma 2.1.1], but only in the case that all the weights hagestime sign (so that the Lie
derivativeLy acts as an isomorphism on e&@h).

Lemma 2.5 The homology of the compléRy,1g),
0—- Q2,00 2, ... 2,00 ¥, 000

is given by _

Hi(QX>I3) = Q;:
Here Qg is just differential forms on FQO = O and if F = 0, then_OF = C. The isomor-
phism is induced from restriction to F of differential fomf3}y — Q.

PROOF Suppose first thdt = 0, and consider the sheaf compléX,, 1), of all differential
forms onX. In a neighbourhood of arge X\ 0, coordinates can be chosen so that %
It is then clear that the complex is exact in a neighbourhdoz] and thus is exact on the
complement of 0}. Now, theQQ are all freeOx-modules, so by the acyclicity lemma (see,
for example, the appendix) it follows that (Qy,1s) = 0 fori > 0. Using the form ofd
given in (L.2), it is immediate thaty (Q%) = m (the sheaf of functions vanishing at 0), so
Ho(Qy,15) =C.

The lemma now follows in the case that= 0 by taking invariant parts, an operation
that commutes witlng.

The general case follows since the ring of invariant diffisd formsQy, is isomorphic
to the tensor product of the pull-backgQ} ®o, P5QE, wherep; : X — Xpandpy : X — F
are the cartesian projections, agds zero on thep;Qf factor. O

Note that this lemma implies in particular that: Q”+1 — QY is an isomorphism.
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Local cohomology calculations

As usual, we suppos€* acts linearly onC™1, with a positive weights{Ay,...,A,} and
b negative weight§y, ..., }, and we choose coordinatgs y; andz accordingly (as in
Section 1). The ring of invariant polynomials is denokedrhe ringC|x,y, Z is anR-module
on whichC* acts in the obvious way. The submodu@,y, z]x consist of polynomials of
weightk with respect to thi<C*-action, andC[x,y,z] decomposes as a direct sum of these
weight spaces.

For simplicity, in this subsection we consider only the cBse 0. Thus,n=a-+b—
1. The modifications necessary for the general case areiliesden Remark?.10. For a
discussion of local cohomology, see the Appendix.

Proposition 2.6 For i < n, the local cohomology groups@t Y ofC[x,y] (as an R-module)
are given by:

0 if i £ a,b;
| .} cAX) ifi=azb;
Hioy (COYD = 0 cigay) it i =ba;
CXA(y) ®Cly|JA(x) ifi=a=h.
Here 1
A(X):C[XI1’ ) gl]'X]_Xz...Xa

and Ay) is defined similarly. The isomorphism is an isomorphism Gf-Riodules (in
particular, it respects the weighting).

PROOF For this proof, we denot€[x,y] by S and as usuatt: X — Y is the quotient map.
Sincertis affine, T, is exact and we have an isomorphism,

H;O}(T[*S) >~ TLHE(S),

whereB =11(0) =B, UB_, andB, = {y=0}, B_ = {x=0}. The result is then obtained
by computing the local cohomology along the subspagesind B, N B_ = {0} (which

is well-known, see Examplé.5), and then using the Mayer-Vietoris sequence (see for
example [2]) to deduce the local conomology aloig O

Recall that a module is maximal Cohen-Macaulay if it is CoMataulay and has full
support.

Corollary 2.7 LetA =3 ,Aj, and p= Z?:l H; and suppose-A < k < —p. ThenC[x, Y]«
is a maximal Cohen-Macaulay R-module. Furthermore, @$-Riodules,

1 ifi —
C i ffi=a

Hig (C[X,Y]_p) =
(0 (CHY) {O otherwise,

and
1

Hio}(C[X, y]—u) = {C ViV ifi=>b

0 otherwise.
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A particular case of this corollary is thRt= C[x,y]o is itself Cohen-Macaulay.
We turn to the invariant differential form@%. Now,

Qf =[Qklo= P [ClxydX Ady],
lal+1Bl=p

Herea andp are multi-indices of lengtha andb respectively. Since the weight di® A dy?
is ¥ aiAi + 3 Bjlj = (a,A) + (B, ) it follows that, asR-modules,

[C[Xv y]dxa A dyB]O = C[Xv y]f((l.)\)f(ﬁ.p) .

Now, since all the entries in and3 are 0's and 1's—A < —(A,a) — (B,1) < —p, with
the equalities occurring fax = (1,...,1), B = (0,...,0) and vice-versa. Thus we have the
following central result.

Theorem 2.8 Suppose = 0. The local comology groupsiu (QF) of the invariant differ-
ential forms for i< n are as follows.

Hio(@)=0 forp#ab.

In other words, for p£ a, b, QQ is maximal Cohen-Macaulay.
The local cohomology groups 6% andgﬁ{ are all zero (for i< n) except for

dxgA...AdXg b b dyi A...Adw
cL PR b Qb xR R
X1 ... Xa {0} (&%) Vi.--Yb

1

H{oy (%)

for a # b, while if a= b,

dxl/\.../\dxaegcdyl/\.../\dyb.

X1...Xg Y1.-.-Yb

12

C

HE, (Q%)
PrRoOOF This follows quite simply from the Corollary, and the dissias above. O

We now derive from the local cohomology g‘; the local cohomology groups for the
basic formsQy.

Theorem 2.9 Suppose = 0. For i < n, the local cohomology groups @atof the modules
of basic differential forms are given by,

_ C ifi=p+landl<p<b
Hio}(Q\?) = {C ifi =pand p>a
0 otherwise.

This result is summarized pictorially in Figure 1.
PROOF We will use the truncations of th@y,1s) complex,

1 _
T<p: O—>Q$—>Q§—3>Q§l—>---—>g§(—>(9y—>0.
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A
Nk x *x *x x * k% % x k ok H

>
0 b—1 a N

Figure 1. The local cohomology groubl%o}(fz\?).
(Dots represent 1-dimensional groups, while stars reptésgnite-dimensional groups)

By Lemmaz2.5this is acyclic, withHo (1<) = C. The proof proceeds by a spectral sequence
argument on the€ech double compleﬁ:‘{0 (T<p) over t<p (see Exampled.5), together
with Theorem2.8. The result does not folﬁow immediately, however, and itésessary to
analyse the higher differentials.

We use theCech complexes associated to the covering€tf! \ B by the open sets

VV”' =U; ﬁVj where

U = {X|7é0}, i:17"'7a7
Vi = {y£0}, j=1..b

ThusW; = {@;j # 0}, wheregq; = xi_”j)/}i. To facilitate the computation we use the denom-
inator symbolssij,i =1,...,aandj=1,...,b, as introduced in the Appendix.

First consider the total untruncated double coml€k, = @, 4C9(QY). Elements of
éq(gﬁ) are linear combination of terms of the forqwy, wherel is a g-tuple of pairs
(i,]), andwy is an invariantp-form with denominators which are nowhere zeroWin=
N,j)etWj- The double compleégx is made into a graded-commutative algebra by giving
all the generators;j, dx anddy; degree 1, and letting them all anticommute. To remind us
of this, we use the/’ notation for thec;; as well.

OnCQy there are two differentials:

15:CHQY) — CUQY )
c:CIQY) — CHLYQR).

Note thatis (o AB) = tsa AR+ (—1)1%a.15B, and say andc anticommute.D = (15 +C)
is the total differential.
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Define a map evégx — C to be the composite
CQy — Oy —C

where the first map is the cartesian projection from the tsem to one of its summands
Oy =C%Oy), and the second map is just evaluation a R. By the spectral sequence of
PropositionA.2 we know that ev induces an isomorphism on homology,

ev, : H(CQy,D) — C.
Consider the following elements 6% (Q%):

a b d)q
& = i;glcum

22y
oo i;,;c” Y

As aCech form £ is justdx /Aix; onWj for eachj, and§_ is analogous. Itis immediate
thatig(§+) = —c, wherec = ¥;; cjj, and so

() ()

N+ = expé+),

Thus, with

one has

Dn.: = (19 +c)n+ =0.
Consequently, we have two cyclgs andn_ in H(égX,D) and both are non-trivial as
ev(ny) =ev(n-) = 1. Moreover, it follows that the differenag, —n_ is a boundary, say
N+ —n- = D¢ for somel = 37_; L, with i € CH(QK™). (Infactls = ;3 ¢ij (dx /Aixi) A
(dyj/Hjy;).) .

With this much in hand, we now pass to the truncated doublepterasCr< . Again

one has

ev, : H(Cr<p,D) — C.

The computations depend to some extenppand we distinguish three cases.
Case 1 0 < p< b. In this range it follows at once from the ‘first vertical’ spieal sequence

that, forg < n
q pn _JC ifg=p+1
Hioy () = {0 otherwise.

A representative ofit(QP) can be taken taken as

{0}
1 ( 1
o <<p+ 1>!Eip+1>> - ”(HEi) |
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Case 2 b < p< a. In this range, the ‘first vertical’ spectral sequence afidine following
two possibilities:

(A)  Hp(Q)) = 0 forallg<n

a gy — JC ifg=pp+1
(B) H{O}(QY) - {0 otherwise.

Now (B) would occur if there were a non-zero higher diffe'rahH{pO}(Q{?) — HFO} (Q%).
But, becausé&” ™ = 0, the element)_ = exp(§-) is a cycle inérgp. The non-zero higher
differential would imply thatn_ is a boundary irCt<,, which contradicts ein_) = 1.
Consequently (A) must hold.

Case 3a< p<n+1. Again there ara priori two possibilities:

©  Hh@) = {§ T

{0} 0 otherwise,

C? ifg=p
(D)  Hy(@QY) = (c ifg=p+1
0 otherwise.
We claim (D) cannot occur. Siné@ ™ = &P = 0 in this range, both, andn_ are cycles

in érgp. Possibility (D) could occur if botm. andn_ were killed by higher differentials,
but this is impossible since @y ) = 1.

Furthermore,
p
D (ZZH— lsZp+1> =Ny—nN_,

so19{p+1 Can be taken as a generatorl-q%}(Qf;) for pin this range. O

Remark 2.10 All computations of local cohnomology for the general cksg 0 (fori < n)
can be derived from the corresponding results for the Ease0 by using Lemmai.4 in
the Appendix. WriteX = Xg x F andY =Yy x F. The results corresponding to Theorem
2.8are:

HA(QE) = HE Q%) 2Qf™ (2.3)
~Y _b
HR(QY) = Hp(Q%)@QF (2.4)

(where{0} C Xo) and fori # a,b, i < n, one ha#\:(Q%) = 0. The local cohomology along
{0} C X is given by

HEG Q) = Higy(Q%) @ Hig (QF ) (2.5)

~ —b
HR(QR) = Hip (@) @M (QF ) (2.6)
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(where on the left hand sid®} C X, while on the right hand sidf0} C Xo), and again, for
i #a+c.b+candi <nallHi, (QF) =0.

For the basic forms one oé)talns similar statements Qithreplaced byQy andQy by
Qy,. More precisely, the analogues of Theorgriare

Cc

HLQD) = DHIg QL") 0oL @7)
r=0
Cc

. N g

Hio (@) = PHR(Qf ") ©Hi(QF) (2.8)
r=0

Recall thatd C Y \ F is the set of smooth points ¥, and thaty \ U has codimension
at least 2 inY. The following result does not assurfe= 0.

Theorem 2.11 1. Let j: U — Y denote the inclusion, and Iaﬁ denote the usual p-
forms on the smooth space U. Then,

Qb =j.qf.
2. Q) is the dualizing sheaf ay.
3. If the the sum of the weights of the action is zero then Y Isri3tein.
4. If b> 1thenY is not isomorphic to a quotient©F by a finite group.

PROOF (1) Consider the inclusions : U < Y\ F, andB :Y\F <Y, sothatj =Boa.
Now, by Corollary2.2, QY\F is Cohen Macaulay, s@P _ = a*QS. Secondly, by Theorem

2.9 (and Remark.10if F # 0), B.Q Y\F = QY.

(2) On a smooth space, the sheaf of top differential forms dsiaizing module, so
this holds forU. Thus (2) follows from the fact that dualizing sheaves &{dare both
Cohen-Macaulay.

(3) This foIIows from (2) because if the sum of the weights ésazthen there is an
isomorphismQy — Q’”rl given by f — fdx A... Adz. Furthermore, as already pointed
out,lg : Q”*l — Qf is an isomorphism.

(4) If Y is a finite quotient of a smooth space theh is Cohen-Macaulay. Ib > 1 this
contradicts Theorerf.9. 0

Y\F

For anyOy-moduleM one setM¥ = Homp, (M, QY), sinceQy is the dualizing sheaf
of Oy, and it follows that depth , M" > 2. SinceQY A QU P QU it follows that there is
a natural mag@y ” — (QY)". Now, onU this map is an isomorphism, and since both P
and(QY)Y have depth at least two we obtain the following:

Corollary 2.12 For each p,
(@f)=al™.
For similar reasons,
(@) =y P
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3 Quasi-acyclicity of thed fA-complexes

Let f be an analytic function defined in a neighbourhood &f & = C™! and invariant
under the action oE*. Recall that the action haspositive weightsb negative weights and
c zero weights, and without loss of generality we assarireb. Thend f is a 1-form which
is not only invariant but also basic. Thus, for egth

dfAQRc @bt and dfaQbcabtt

We can therefore define two complexes of sheave$with differentialsd fA: theinvariant
d fA-complex,

@ dfn):  0—0y ot Mg 4 A gni1_ g
and thebasic d fA-complex,
(QY>df/\): OHOYMQ\];mQ%m...MQ\F}_)O'

We are interested in the cohomology of these complexes. drldéssical case where
there is no group acting odand f has an isolated critical point, all cohomology groups are
zero, except foH™?! = QY™ /d f A Qf, and the complex is said to be acyclic. Moreover,
the multiplicity of the isolated critical point is given blge dimension oH™L. In our case,
the lower cohomology groups are not all zero, though theyedémnly on theC*-action
and not on the functiof, provided it has an isolated critical point ¥nand the action o£*
has an isolated fixed point, and we say rather loosely thatdh®lexes arguasi-acyclic

We consider each of the complexes in turn, and usesthavariant d fA complex to
relate them. To simplify the exposition, we assume that tkedfipoint seF = 0. For the
modifications necessary in the general case, see Redrtark

The invariant d f A-complex

Lemma 3.1 The cohomology of the invariant dfcomplex is supported on the critical
locus of f.

PROOF Let& €Y be a regular point of, and letx € T %(€). Thenf is non-singular ak

by Lemmal.5, and there is a neighbourhood»bn which the complex of ordinary (non-
invariant) differential formgQ;y,d fA) is exact. The result follows by taking invariant parts
(which commutes withd fA). a

Since theQQ are coherent sheaves, so are the cohomology sheaves ofote @im-
plex. It follows from the Lemma and the Nullstellensatz foherent sheaves thatffhas
an isolated critical point ol then the cohomology groups are finite dimensional.

We now show that the compléQy,d fA) is quasi-acyclic.

Proposition 3.2 If f has an isolated critical point a €Y then, for i< n,

0 ifi+2b,

o —
H (def/\)_{c fori=2bifa> b+ 1.
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PrRoOF Since we know the local cohnomology groups of g, we can use the spectral
sequence of Propositioh.2. By Theorem2.8, we know that folg < nanda > b,

Ep»q ~ {C if (paq) = (ava) or (b>b)
L 0 otherwise.

If a=bwe get forg < n,

Ep’q ~ {Cz if (p,Q) = (a>a)
1 0 otherwise.

The spectral sequence therefore degeneratég and the result follows. O

Example 3.3 Consider theC*-action with weights+1 only. Recall that the local co-
homology groupH (QX) is generated ove€ by n = W. Suppose thaf is a
generic linear form on the quotient space, then after arvagant change of coordinates,

f =X1y1+ - XoYb. The element oH?(Q;,d fA) corresponding tq in the above proof is
thendx A--- Adx Adyr A--- Ady,. This is not hard to show using the spectral sequence,
however it is simpler to observe that this form is indeedekilbyd fA though it is clearly

not contained ird f A Q1.

The complexQy,d fA) has two further cohomology groups, namel$(Qy,d fA) and
H™1(Qy,d fA). We will see below that these two groups are in fact very ¢yossated.

The basicd f A-complex

Lemma 3.4 The cohomology of the basic dfcomplex is supported on the critical locus
of f.

ProOF Define the compleX’'Qy,d fA) to coincide with(Qy,d fA) except for replacing
Oy by my in degree 0. There is then an exact sequence of complexes

0— (Qy,dfA) — (Qx,dfA) — (Qy L dfA) =0,
with the associated long exact sequence in cohomology,
o HE S H S R S R (3.9)

(with the obvious notation). Fop > 1, ’H$ = H$ while for p = 1 there is short exact

sequence 8- C — ’H$ — H$ — 0. The result follows by induction oip asH' = 0 off the
critical locus. O

Proposition 3.5 Let f be an invariant function, with an isolated critical pbiat0 € Y, then
fori <n,
C if3<i<2b-1andiisodd

H'(Qy,dfA) =
(Qy,dfA) {O otherwise.
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PROOF As in the proof of Propositio.2we use the spectral sequence of Propositich
The details are left to the reader. 0

The complex(Qy,dfA) has one more cohomology grodf'(Qy,dfA), which is in
fact closely related téi"™1(Qy,d fA). Indeed,s provides a mapi™! — HY, as in @.9),
which is an isomorphism ifi > 1, and is surjective with a 1-dimensional kernet i£ 1 (i.e.
ifa=b=1).

The equivariant d f A-complex

For any group action there are the so-called equivariantrooligy groups, see for example
the paper of Atiyah & Bott, I]. In the case of a circle action, the de Rham model for the
equivariant cohomology can be described by a comxu],D), where the differential
isD =d+u.lg, andd is the exterior derivativey is a formal variable which commutes with
everything, ands is the contraction with the vector field generating the eittion.

We have found it useful to consider the analogous com@syu],D), withD =d fA+
u.lg, and agairu is a formal variable commuting with everything. We can repré this
complex as a double complex with teria89 = QF9.u9, and with horizontal differential
d fA and vertical differentialg as follows:

Oyv.U2 — - — QE}TZ.UZ N Q?(Tl.uz N QQT.UZ -
T T T T
Oyu — Qku — . - Q¥lu - Qfu — QFlu
Tuly T T T
o — o 4 — - o) - ot

The complex is &[u]-module, and since the differential commutes witthe cohomology
of the complex is also €[u]-module.

The homology of this complex can be computed by two speoctgliences. Compari-
son of the two limits gives a way of constructing explicit geators ofH?°(Q;,dfA) and
H'(Qy,d fA)fori < n, as well as enabling us to compare the remaining grétiiQ;,d fA),
H™1(Qy,dfA) andH"(Q;,,d fA). We will denote these three groups HY, H"! andH?
respectively. As usual, we assufRe= 0 to simplify the exposition, see Rema3l8 for the
general case.

Computing the horizontal homology of this complex giv¢$Qy,d fA) on each row,
most terms of which are 0 if the critical poiritis isolated inY. On the other hand, the
vertical homology give$), along the bottom row, copies Gfalong the diagoneEElp’p, p>
0, and zeros elsewhere.

Consider as usual a functidhe my C Oy with an isolated critical point at 8 Y. By
the acyclicity of the(Qy,15) complex, there is an elemeatc Q% satisfying

ls(a) = f. (3.10)
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Consequentlyd f = dis(a) = —15(da). Define the closed forrw = da € Q%, so
lg(w) = —df.

(This is the same relationship as between a symplectic forntlae hamiltonian function
associated to a symplectic vector field — see Section 6.) Nhatizo is only an invariant
form, whilewA d f is a basic form, fors(wAdf) = —-dfAdf=0.

Now consider, fok =1,2..., the elements

i < > € Qy[ul. (3.11)

We have

D(0®) = (dfA+urg) (éu“ <‘I”I—|>> =dfA <‘;k> € Q&L (3.12)

It will be useful to consider a particular choice @fsatisfying .10, which is defined

as follows. Let
a 0f

d+f—zla

andd = Y2 1Ax0/0x, thenig(d, f) =9, (f). We can decomposkinto its ‘9., -homo-
geneous’ parts:

f=S f,

where f, satisfiesd (f,) = p.f,. Define

-1
a=Y p d.f,. (3.13)

and one hasy (a) = f, as required. The forrm = da is then

W= Hijdy; Adx = zozpfl o dyJ/\d)q (3.14)
p>01,)

We call thisw the “weighted mixed Hessian” df.

Proposition 3.6 Let a satisfy 8.10) and leto(®) be as in 8.11) with @ = da. Then the
elementgy := D(c) =dfA (%) are d-closed representatives of non-zero elements of
HZ(Qi,,dfA), fork=1,2,...,b—1.

Moreover, withw defined by $.14), and the resultingy in (3.11), one has

1. % represents a non-zero cohomology class M (&5, d fA).
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2. The elements

(2b) (2b) 20+2) (2b)

0@ u.g® =g+ 2o

are cycles in ng which are not boundaries, i.e.
Clu].o® — Hg,
asC[u]-modules.
3. This choice ofv gives a splitting ofZ[u]-modules
Heq=Clu.o® &T.
Here T is theC[u]-torsion part which is concentrated in degree n, thus
ng:{T if nis odd

T@C.oW ifniseven.

4. The groups T, AL and H" are related as follows:

a=b: 0-C. [%] — H™L Z {0, TH"

a=b+1: O—)ﬂn+ll—3>ﬂn—>c. [%}HO; T%ﬂmrl

a>b+1: H™! —H"~T.

IR

PROOF By the first horizontal spectral sequence for the equivarlmuble complex we
see thaﬂ—llgq = 0 for k < 2b. It follows then from the first vertical spectral sequencatth
the elementss(®) form a ‘ladder’ for the higher differentials, so the classé(a(?))
generateH?"“. Furthermore, because= da the formspy ared-closed.

Let w now be given by §.14).

1) First we show thatl f Aw= 0. Now, 15 (w) = —d f implies

of of
o EJ HjYjHij dy; EI i Hij

The coefficent ofix Adyi A ... Ady, in df AP is therefore ab+ 1) x (b+ 1)-minor of

thea x (b+ 1) matrix
of of
T

These minors are zero however, since the ve@dydx) is a linear combination of the
rows of the matrixH;; ).
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By (3.12), 6'® is a cycle in the equivariard f A-complex. Moreover, the coefficient
of u? in 6/® s 1, so from the first vertical spectral sequence one seeéstf4 is not a
boundary. The contibution af(?®) to the first horizontal spectral sequencedyb! which
is therefore non-trivial itH?.

2) Fork > b, the element‘® is a non-trivial cycle in the equivariant double complex
by the same argument as given &7 in part (1).

3) This follows from the first vertical spectral sequence.

4) Consider the casa > b+ 1 (the other cases are similar). In the first horizontal
spectral sequence, one has

p+2b,p  ~ 2b ,.p—1
E2 = ﬂ .Up 5

gleknik o [HT ifk=0
2 T O1Quk ifk>0’

ESTRMITK &~ KUK fork>0,
whereK andQ are defined by
0—-K—-H™L B2 Hr Q0.

Since theH?uP are all non-trivial inHg,, the higher differentials vanish which implies that

K=Q=0. 0

So, in particular, all the grougg™*, H", HY, ng andT are essentially equal, differing
in dimension by at most 1. (Recall that induces an isomorphisti™?! — HY unless
a= b =1, in which case there is a 1-dimensional kernel.) The group always the
smallest.

Example 3.7 Consider a real action @* on X with weights{+A1,...,£A,} and consider
the invariant functionf = ¥ xy;. This function has an isolated critical point acX and so
dfAQf = meQ“. Taking invariant parts givedf A Q% = ng;“ and consequently,

irA C ifi=3,5,...,n
HI(Qy,dTA) = {O otherwise.
Remark 3.8 So far in this section we have assumed that {0}, that is,c=0. The
modifications necessary for the general case are reasostadityhtforward.
Firstly, Lemmas3.1and3.4 are unchanged, with identical proofs. Propositi@rsand
3.5remain very similar. The non-zero cohomology groups arskhifted to the right by,
though they are no longer 1-dimensional in general but d&perthe restriction of to F.

Write fg for the restriction off to F, and put

oF
MEe(f):= ,

F(f) dfe AQE T
which measures the multiplicity of this restriction. Themposition3.2becomes, with the
same hypotheses,

0 if i £ 20+,

Me(f) fori=2b+cifa>b+1. (3.15)

WmeMg{
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The cohomology of the bas@tfA complex, given folF = 0 in Proposition3.5, becomes

. Me(f) if3+c<i<2b-1+candi—-cisodd
H'(QY,df/\):{o F(f) foic=ls + (3.16)

The proofs of these are very similar to those of the corredipgr= = 0 statements, except
that the spectral sequence now degeneratés r@ther thark;. TheE; consists now of two

horizontal complexes, each copies of the comr@lﬂfb}(Q‘F),d feA). Since by hypothesis
fr has an isolated critical point at O we get that

dfa
ker[Hfo}(OF) - Hfo}(Qili)] = Me(f),

and elsewhere these complexes are exact, by a spectrahsegagument on th€ech
resolution of(Qg,d fA), see Examplé\.6.

One still hagg ; H"1 =, HY unlessa= b = 1. In this latter case there is a short exact
sequence

0— Mg(f) —>ﬂn+ll—3>H\?—>O.

Representatives of the non-zero cohomology groups of thie ddA complex can be
found as follows. Giverf, definef’ by

f/(X,y,Z) = f(X,y,Z) - f(0,0,Z)

with the usual splitting of the coordinates intgy andz Note thatd f’ Av =df Av for
v € QF (if we considerQg as a subset d@%).
Now, the restriction off’ to F is identically zero, so by Lemma5there is a 1-fornu
with
lg(a) = f'.

Let, as usuako= da € Q%, soig(w) = d f’. The non-trivial representatives Hf (Q,,d fA)
fori < nare given by

{dfAvVAW [i=1,2,....b—1;ve M(f)}.

Remark 3.9 (Local Duality)

Suppose- = 0 (the modifications for the general case can be found easilging the
Cartan-Eilenberg projective resolution of the comp{€x,,d fA), together with local du-
ality in the form of the existence of natural pairings B4t QY) x Hyg (M) — C, one can
prove the existence of the following natural pairings:

For a+£ b:

Hig (@) x Hg, Py P) — ¢,

HY x HY — C,
forp=1,...,b—1.
Fora=nh:

H Q) x HP@yP) - C,
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forp=1,...,b—2, and a degenerate pairing B} with a one-dimensional null-space:
0— C.o’—H!— (H)" — (C.w’)* =0

where( )* represents th€-dual of a vector space.

For details on Cartan-Eilenberg resolutions, se& p.74] or [L4, Lemma 9.4].

The argument is briefly as follows. Denote the Cartan-Egeglprojective resolution of
(Qy,dfA) by P= (P), so that for eaclp, the subcomplexPP) is a projective resolution
of Qf;. Now apply Hont—,QY), and call the new comple® = Q; recall thatQy is a
dualizing module orY. The homology of the associated single complex is the HyxiesE
(Qy,dfA). This homology can be computed via two spectral sequences.

First horizontal spectral sequence: Use the fact that th®’s are projective to see that
E1(Q) is isomorphic to theQy-dual of E1(P), and the fact that it is Cartan-Eilenberg to
show thatE}” (P) is a projective resolution dfly. Thus,

_ { Hom(Hy,C) if g=n
0 otherwise.

First vertical spectral sequence:As the p-th column ofP is a projective resolution d®?,
one has thakE[? = Ext4(Qf,QY). Forg = 0 this is justQ{ P by Corollary2.12, while for
q> 0 itis C-dual to the local cohomology gro&pﬂ;ﬂ(()& by local duality. If the original
resolutionP is written below the complefQ;,,d fA), then the picture is the same as that in
Figure 1 (in Section 2), with the stars representing@je and the dots th€-duals of the
local cohomology groups.

E)% is the same a&}“ for g > 0 (though fora = b one needs to be careful), and
E2’0 = H?‘p. Comparing this with the results from the other spectralisaqe, one sees
that all the higher differentials are isomorphisms (saa of Ext'"#(Q%,Q0) — Hy for
a = b, which must be injective).

Comparing the limits of the two spectral sequences givesliéisaed result. In the case
thata = b, one obtains a 4-term exact sequence

0— Hy (QF) — HY — (HY)" — H, (QF) — 0,

and one can identify this (or itS-dual) with the 4-term exact sequence given above.

It would be interesting to find an explicit formula for thesatural pairings. We will
return to these questions of local duality and the resultiaigiral pairings in greater detail
and greater generality at a later date.
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4 Deforming the critical point
Let f be an invariant analytic function defined on an open st iand define
M(f) =H"1(Qy,dfA) = Q%1 /dfA QY.

This is a coherent sheaf defined on the domain of definitioh df was shown in Section
3, that the mapss : QF — QP induce an isomorphist™1(Q;,d fA) — HM(Qy,d fA)
forn—c> 1. Forn—c=1 (i.e.a=b= 1) the map is surjective with kern@Hg (f), and in
this case the quotient space is smooth. Recalltat f) is the multiplicity of the critical
point of the restriction off to F which if c = 0 is just a 1-dimensional space. Thus, for
n—c>1,

Q?(-i-l

M(f) = ~
S dfAQL T dfaQl Y

Let f; be an invariant deformation d§ = f, witht € S a neighbourhood of 8 C. The
purpose of this section is to show th&t(f) is a multiplicity of the critical point in the
sense that it is supported on the critical locugidl.,emma3.1) and viewed as a sheaf over
S M(f) is locally free. However, there are some cases wligoan have a critical point
but M(f;) =0, as we shall see. In the case of real action€9f M does define a good
multiplicity in the sense that the contribution from gewgegtitical points is one. It follows
from these results and Propositi@r5(4) that the other homology group depending fgn
H"(Qy,d fA) also behaves well in a deformation. Note thdt i 0, the lower cohomology
groupsMe (f) behave well in a deformation by the standard theory.

We need to consider sheaves of relative differential formXoc SandY x S These
can be defined as

X5SS T graql L

The sheavef” andQP

) s/s YxS/S onY x Sare defined similarly.

Let F(x,t) be aC*-invariant analytic function defined on some neighbourhob(D, 0)
in X xS and letf () = F(x,t). Now, dFA: QP o — QP  anddFA: Q. 55—

2=XxS/S 2EX%S/S

QY /s We defineM(F) by
M(F) =1.[Q%5/o/dF AQ% .s/d;

wheret : X x S— Sis the cartesian projection. tf— ¢ > 1 then M (F) =1, [Q(}Xs/s/d fA

Q{};ls/s]. (There should be no confusion arising from the two usesestimbolF.)

Theorem 4.1 Let f be an invariant function with an isolated critical poat 0 €Y, and let
fi, t € S be in invariant deformation of ¥ fo. ThenM (F) is a freeOs-module.

PrRoOF We show that

0— M(F) -5 M(F) — M(f) =0 (4.17)
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is exact, for then\(F) is torsion free ove§, and hence free. In the case that b= 1, the

quotient space is smooth, and it follows thaQ}, S/S/d fA Q{};ls/g is free by the standard

theory, and hence so i%1(F) (as the kernel of the map from one to the other is a thge
module of rank 1. From now on assume- ¢ > 1.
For eachp, the following is clearly a short exact sequence:

t
0— Q\[()xS/S — Q\F;XS/SH QYp — 0.
Since multiplication by commutes withdF A, it follows that
0— (Q, s dFA) = (Qf, g5, dFA) — (Qy,d FA) — 0. (4.18)

is exact.
Consider the long exact sequence of cohomology arising {(fohd):

. t . . .
0— HO(QYXS/S) - HO(QYXS/S) - HO(QY) - Hl(QYxS/S) o

— H™ Q) = M(F) =5 M(F) = M(f) —0.

(HereHi(nys/S) refers to the cohomology of the compl(ﬂws/s,dFA), etc.)
By Proposition3.5 (and RemarlkB.8if ¢ # 0) one has exactness of

0—H" Q59 = H™ H(Qyg9) = HH(Qy) — 0.

(Note that in the case that~ 0 anda= b+ 1, we are using the exactness 6FOMg (F) —
Mg (F) — Mg (f) — 0, which follows from the standard theory as the spadég smooth.)
The exactness ofi(17) follows. O

Generic multiplicities

The theorem above states that when an invariant fundtiaith an isolated critical point
is perturbed, the number of critical points Ynappearing in the deformation is equal to
dimc M(f), provided local multiplicities are taken into account. Tibeal multiplicity of

a critical point off; aty € Y is of course given by dig(M(f;)y). It is therefore important
to know what local multiplicities to expect for generic @él points. The answer depends
on the local geometry of, that is, on the stabilizer of an orbit.

Proposition 4.2 The minimal multiplicity for any stratum of a real action isTlhe minimal
multiplicities for the strata of low codimension are as folis:

1. 1 for the open stratum;
2. 0 for the codimension 1 strata (i.e. the pseudoreflexigeiplanes);

3. e—2for the codimensiof strata (where e is the embedding dimension of the quotient
singularity).
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PrROOF For the real actions, the result follows from Schwarz’ Tlesoy given as Theorem
1.6above. 1) and 2) are straightforward, since at such pdingssmooth and the modules
Q{? are just the usual differential forms. Note that an invariumction with a generic
critical point at a pseudo-reflexion hyperplane is non-giagon the quotient space.

3) This follows from the proofs of Theorems 4.1 and 5.1 of Wa[B0], usingQ™/d f A
Q™1 rather tharOcm/J f, but first we must reduce to the case of a transversal to teistr

This reduction proceeds as follows. Clearly, for a stratifigitical point to be generic,
it is necessary that its restriction to the stratum be a regederate critical point. One can
then apply the equivariant splitting lemma to write the fime locally as a sum of a non-
degenerate quadratic form on the stratum and a generiddarant a transversal to the fixed
point set invariant under the action of the isotropy subgrotihe multiplicity is then the
multiplicity of the restriction to a transversal.

Following Wall, letf (x,y) = x®+yP. ThenQ™/d f A Q™1 is the sum of a trivial repre-
sentation and a freEG-module. On deforming two types of critical point emerge from
the origin: those with trivial isotropy and those on the retfleg hyperplanes. By (2), the
critical points on the reflecting hyperplanes do not contehto the multiplicity, so, as in
Wall's proof, the effect of the deformation is to redu@&/d f A Q™1 by a number of free
CG-modules. Thus, for generitwe have, in Wall's notation,

dim(QR/d f AQR1Y) = 14 vC(¥).

Furthermore, Wall shows (using Koushnirenko’s formulaM@wton diagrams) that {6 is
cyclic, thenv®(f) =e— 3. O

If the C*-action is free outsidé then the multiplicity we have defined gives complete
information on the decomposition of a degenerate criticahtpunder a generic perturba-
tion. If, on the other hand, the action is not free outdikben it is also necessary to be able
to compute the number of critical points lying in any giverefixpoint subspace. By the
principal of symmetric criticality (see Section 1) it is emyh to repeat the multiplicity com-
putation for the restriction of to each fixed point spadé. However, in the real case there
is an easier method, namely factoring aut( ) by the ideal (V) of functions vanishing on
V. Summing up in the real case, we have the following result.

Corollary 4.3 Let f be a function invariant under a real action 6f with an isolated
critical point at0, and let { be a generic invariant deformation of f. Then the number of
critical points of f emanating fron® is equal to

dimc M(f) = dimc[Ox /J f]o,

where Jf is the jacobian ideal of f, and the subsc@ipheans the invariant part. Moreover,
the number of critical points of; fvith isotropy group H is equal to

where | is the ideal of functions vanishing Bix(H;C"1).
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PROOF The first observation is that generic functions have norederate critical points.
By the proposition above, these have multiplicity 1, and o8 (f) does indeed count
the number of critical points. Now, for a real action, thengwphismQOy — Qg‘{rl, h+— hw,
with w=dx A...AdxgAdyr A ... Adyg, is equivariant. Moreover, this isomorphism maps
JftodfAQY. The first part follows.

The final part is proved using the Principle of SymmetriciCaiity, as stated in Lemma
1.4. For the multiplicity of the restrictiorf, is given by dimOy /J /o, but

Lonvv}f Lnﬁxuvﬂo: {%T(V)]o

Finite extensions of C

We consider briefly the effect of a finite extension@facting onX = C™?. Let G be such
an extension, so
1-C"-G—-TI—1,

with I a finite group.

As before, lety denote the quotient bg*, ande denote theC*-invariant p-forms.
ThenT acts onY, and on thd_)Q, the local cohomology groups computed in Section 2, and
so on. We denote the full quotient space Yy, the G-invariant forms b)Q(p;, and the
G-invariant basic forms b) i

Let f be aG-invariant function orC™?* having an isolated critical point oA (or, what is
the same, ol /I"). Thenl” acts on the cohomology groupt(Qy,d fA) andH'(Q;,,d fA).
For anyG-invariant functionf denote byC( f) the set of critical points of in'Y. Now, "
acts onC(f) by permutations, and we denote the associated permut&jwaesentation by

[C(H)]-

Proposition 4.4 Let G act onC"t! as a real representation, and lgtlfe a generic invariant
deformation of f with f having isolated critical points on Yhen there is an isomorphism
of representations df:

[C(f0)] = M(f).

The action ofl” on the 1-dimansional groupdk(Qy,de) fork=357,...,2b—1
depend on its action on the vector fiéldjenerating th€*-action, sinceH%k+1 is generated
by df Aok, andw is defined byd f = 13w. Furthermore, by the results of Section 6, the
action of" on the cohomology groups of the Milnor fibre 6fin the quotient space are
isomorphic to its actions on tHes.

Similarly, other results of WallZ9] and RobertsZ1] generalize to this setting.
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5 Equivariant vector fields and critical points

Liftable vector fields

The action ofC* on X induces an action 0®x, the Ox-module of analytic vector fields on
X. The vector fieldv satisfying Lgv = 0, those fixed by the action, are callequivariant
vector fields; they form ady-module denote®y. Clearly,

a b c
O = (@[Ox]maixi> S (@[OX]Hjaiyj> S% (@OY%> (5.19)

i=1 j=1

Any equivariant vector field oX defines a derivation ady, and so passes down to a vector
field onY. Itis well-known (and not hard to show) that such a vectodfalY is tangent to
the stratification by orbit type (see Section 1). This sugggdefining thedy-module of all
vector fields or¥ tangent to the stratification by orbit type, which we der®te It should

be emphasized that th&, does not coincide with the usual module of vector fields tahge
to a variety, unless the stratification ¥fas a quotient space is the same as its logarithmic
stratification.

There is a homomorphismp : ©4 — Oy, whose kernel consists of equivariant vector
fields tangent to the orbits. Thus kee Oy3d. The question of whethgp is surjective is a
‘lifting problem’, which, for reductive group actions, hbsen studied by G. Schwarz4).
We begin this section by giving a more precise result in tlee @dC*-actions. We say that
aC*-action has thédifting propertyif p is surjective.

Theorem 5.1 A C*-action has the lifting property if and only if one of the @lling condi-
tions holds:

1. b>1,
2. a=b=1,

3. For a> b= 1, there are no non-negative integer solutiopssrto the equation,
Ai = ;rj)\j +S(—H),
J#

with s> 0 and at least one of thg r> 0. In particular, this condition holds if the sum
of the weights is zero.

PROOF It is enough to prove this foF = 0 since the general case is just a product of this
case with a smooth space.
1) Consider the exact sequence of sheaves on

0—- Oy — 0y >0y >N —0, (5.20)

which defines the cokerne\/ consisting of non-liftable vector fields. We wish to find
criteria which ensuré/’ = 0.
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The first observation is that supp C F since outside oF the isotropy is finite, and by
[3] and [25], we have thap is surjective offF. If A/ # 0 then it follows that depth/ = 0,
where by depth we meany-depth.

By (5.19 we have that

depth®y = min{deptHOx],,,deptHOx],, }- (5.21)

It now follows from Theoren?.6 that deptl®y > b. Clearly, depti®y > 0 since©y is
torsion free. Finally, dept?y = codimy(F) = a+b—1. Taking theChech resolution of
(5.20 for the subsefF of Y gives the following fact (PropositioA.2): if depthOy > 2,
depth®y > 1 and depti®y > 0 then deptt\" > 0. Thus, ifb > 1 then all these conditions
are satisfied, so indeed = 0.

2) If a= b =1 then this follows from 25, Proposition 7.2] (or by direct calculation as
for case (3)).

3) The third case is proved in the same way that Wall proves a=2,b=1,c=0In
[30, Example 2.3]. (In fact Wall makes an error as he does notvetho the possibility that
the stratifications of =V /G andY; =W/H differ at the origin.) At the end of Section 1,
we note that ib = 1, the quotienY is isomorphic to the quotient of; by Z /puZ, and their
stratifications differ at most at the origin. Now, sinf¢uZ is finite, it follows that every
vector field on the quotienf; tangent to the stratification is liftable. Thus we can repnes
Oy, by equivariant vector fields a¥;. Thus,

Oy, = @{xf — N =0}

To obtain the vector field®y onY tangent to the stratification, we can Ug, but we must
ensure that the vector fields vanish at O, thus

Oy = {ve Oy |r £ 0}

On the other hand,
ex—@{xys [(r.A) = A+ sp= O} P {XY*S | (L A) + (s— 1) =0}

Using the same argument as Wall, we can ignore the last suthifcause of the 1-
dimensional kernel op). Then usingx — (x,1) to identify X; with a subset oX (as in
Section 1), we see that= xrai)q € Oy lifts if and only if there is ars > 0 such thals<’ysai)q €

Oy, that is, (r,A) +spu= Ai. Thus, it fails to be liftable precisely when the congruence
(r,A) — A = 0(p) is satisfied bys < 0. That is, non-liftable vector fields correspond to
multiindices satisfying

(LA) + (—S)U=A

with r £ 0 and—s > 0, as was required. O
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Multiplicity after Bruce & Roberts

In [7, Section 8], Bruce & Roberts consider the multiplicity oftical points of analytic
functions on quotient varieties. Their approach is to warkeally on the stratified quo-
tient spacey’; they show that critical points of the functidncorrespond to intersections of
graph@ f) andLC™ (Y), the logarithmic characteristic variety ¥f and that the intersection
multiplicity is given by dimt(Oy /Oy (f)). In the case that the group is finite, they prove
thatLC~(Y) is a Cohen-Macaulay space, and so deduce that intersectittiplioites are
preserved under deformations. On the other hand they poinhbat it is easy to find exam-
ples of reductive group actions for whitl®~ (Y) is not Cohen-Macaulay. Such an example
is provided byC* acting onC3+? (a > 1) with weights(1,1,...,1, —1). The quotient space
is then smooth with orbit type stra¥gg = C?\ {0} and{0}. ThusLC™ (Y) consists of two
transvers@-dimensional subspaces©f® and is therefore not Cohen-Macaulay. Bruce and
Roberts suggest thhC~(Y) is Cohen-Macaulay for any real action of a reductive group.

It turns out that there are many instancesGCdfactions for whichLC™ (Y) is indeed
Cohen-Macaulay, and not just the real actions conjectuyeBirbce and Roberts.

We begin with an obvious result. Recall from Section 4 thatbfinition, M(f) :=
Q" t/dfAQR.

Proposition 5.2 Suppose thaC* acts onC™! and the sum of the weights is zero. Then the
two modulesDy /Oy (f) and M(f) are isomorphic.

PROOF There is always an isomorphism 6fx-modulesOx — QQ“ given by multipli-
cation by the(n+ 1)-form w=dx A ... Adz. Furthermore, for any functio, one has,
wJ(f) =dfAQ%, wherel(f) =0Ox(f) is the jacobian ideal generated by the partial deriva-
tives of f.

Suppose now that the sum of the weights is zero, sodhatC*-invariant. Then the
isomorphism is also an isomorphism Gf-modules. Taking invariant parts, it follows
that .0y = Q%™, andw.Oy(f) = df A QY for an invariant functionf. Thus, M(f) =
Oy /0x(f).

Finally, it follows from Theoren®.1, that if the sum of the weights is zero thég (f)
Oy (f).

o

Corollary 5.3 If the sum of the weights is zero, and f has an isolated ctificént at O,
thenOy /Oy (f) deforms flatly under any invariant deformation of f. O

Corollary 5.4 If the sum of the weights is zero then the logarithmic chanastic variety
LC~(Y) of the quotient space is Cohen-Macaulay.

PrROOF First let f be an invariant function with an isolated critical pointMpnand letf be
an extension to an open set@h (the ambient space of). Consider the family of functions
parametrized by € (C')* defined byf,(u) = f(u) — au. Now define a map

®:T°Cc' — (C'y
(ua) — dfa(u)=df(u)—a
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For eacha, the intersectionb—1(a) N LC~(Y) is finite (by the preparation theorem, sinte
has an isolated critical point at 0). By Corolla#y3 above, the restriction ob to LC™(Y)
is flat. Consequently,C~(Y) is Cohen-Macaulay. O

Another case whereC~ (Y) is Cohen-Macaulay occurs whehis isomorphic as a
stratified variety to a finite quotient, see the examples ictiSe 1. In general, we do not
have necessary and sufficient conditions lf&r (Y) to be Cohen-Macaulay. Indeed, the
only general negative result we have is the following.

Proposition 5.5 Consider the action with weightd,...,1,—1,...,—1). Then LC (Y) is
Cohen-Macaulay if and only if & b.

PROOF Write M = My, for the space ofix b matrices. The quotient spa¥és isomorphic
to the subvariety oM of matrices of rank at most 1, which has an isolated singylatiO.
ThusLC™(Y) C T*M has two components, oneTgM, the fibre over the zero matrix, and
the other is the closure of the conormal bundle over the smpaitt. The conormal space
over the matrixQ € Y consists of matrice® € M for which P!Q = QF* = 0. These two
components are of dimensiai = dimM, and each is Cohen-Macaulay. Their intersection
is the subset offyM = M of matricesP of rank at most — 1, which has codimension
a—b+1in each of the components. At a generic point of the intéim@cthe variety is just
a union of two smooth subspaces intersecting along a subgibaodimensiom— b+ 1. At
such a point, the variety cannot be Cohen-Macaulay unlessititersect in a hypersurface,
i.e. unlesa=Dh. O

Remark 5.6 There are examples of for which LC™(Y) is Cohen-Macaulay which are
not accounted for by the results above. For example, we fasimd) the computer package
Macaulay P] that for the action with weight$1,1, —1,—2) LC~(Y) is Cohen-Macaulay,
while for the action with weight$1,1, —1,—3) it is not.

Remark 5.7 In the situation of Propositiof.5with a=2,b =1, one sees thatC~(Y)
is the union of two transverse 2-planesdf which is not Cohen-Macaulay. However, it is
the quotient byC* of a Cohen-Macaulay space of dimension & given by equations,

l1x1 + 1% = 11y = 1oy =0,

whereC* acts on(xy, X2, Y,l1,l2)-space with weight$1,1,—1,0,0). (This space is in fact
the appropriat& defined in 7, Section 8].)
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6 The quotient Milnor fibre

Let f: (Y,0) — (C,0) be an invariant function germ with isolated singularityddet f :
U — Sbe a representative (wild; =Y N Bg, the intersection o¥ with the e-ball in the
ambient space of, and f non-singular orlJ \ {0}). For anyt € Sone can define the
fibreY; = f~1(t) Cc U. We callY; the quotient Milnor fibre as it is the quotient 6f 1(t) N
T 1(Ue) C X by C*. (We do not assumi = 0 in this section.)

Theorem 6.1 € andn € R, can be chosen sufficiently small so that for amyid,, (the disk
in C centre0 and radiusn), and for each > 1,

dimcH' (%, C) = dimec HFY(Qy,,d fA).

This agrees with the classical case wh¥riss smooth. However, in the smooth case
H*1(Q,,dfA) =0fori+ 1< dimY.

In the classical case of an isolated singularity on a smogdites one knows that the
Milnor fibre is homotopic to a wedge of spheres of middle disien. In the present case
this is clearly not so, though it seems likely thvats homotopic to a wedge of spheres of
middle dimension and the generic hyperplane section:

Y~V STV L,

wherel; is the Milnor fibre of a generic linear functidnonY. We conjecture that this is
the case at least ¥ has an isolated singularity, and that following Furist][the integer
cohomology of the Milnor fibre is torsion free.

The proof of this theorem follows closely the proofs of Bkes [6] and Malgrange
[18]. There are also discussions of this theoren?ig] pnd [26] for the case that the group
is finite and the functiorf on X has an isolated critical point.

We will need a (well-known) Poincaré Lemma for the basicrfer

Lemma 6.2 The complex of sheavéQy,,d) is a resolution of the constant she@f.

PROOF Away from F C Y this follows from the Poincaré lemma for finite groups by the
slice theorem.

OnF a different argument is needed. Lzt F and letU be a contractible Stein neigh-
bourhood ofzin Y. First observe thatQi (rr1(U)),d) is acyclic by the usual Poincaré
lemma and the fact that1(U) is contractible Stein. Then by taking invariant parts we
deduce the acyclicity ofQy (U),d).

Consider now the double complex

KPa — {Qi_q(u) if p#q
mU)  ifp=q

wherem,(U) is the ideal of functions obJ vanishing atz. The maps on this complex are
d: KP4 - KPFLA andig : KP9 — KP4 Since(Qy (U),d) is exact, the homology of the
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total complex is zero. Now, the spectral sequence commegnaii 13 degenerates &b to
give
EPA_ gPA_ HP(Qy,d) ifg=0
® 2 0 otherwise.

The result now follows. O

As usual, define the sheaf of relative differentials as
P9
Y/S —1°
5T dEAQP

We used to denote both the absolute exterior differential @p as well as the relative
exterior differential orQ);, .. As a preliminary result, we need the following.

Y/s
Lemma 6.3
HO(Q.Y/Svd) = f_l(QS
H'(QY/5,d)jy, g 0 fori>0.
ProOF This follows from the Poincaré Lemnta2, and the exactness (®,,d fA) outside
0, Lemma3.4. O

Proposition 6.4 (Brieskorn B]) For p> 0,
1) HP(f.Qy g, d) is Os-coherent,

3) For t # 0, HP(£.Qy . d)i 2 HP(Y,C) ®c Ost.

PrROOF It follows from Lemma6.3that(QY/S,d) is a concentrated complex in the sense
of [27]. The three statements are general properties of contetttamplexes, and as such

are proved as Theorem 1 and Propositions 1 and 27f | O

The coherent she&iP := HP( £.Qy g d) restricts orS\ {0} to (the sheaf associated to)
the bundle ofp-th cohomology groups of the fibr&s Corresponding to parallel transport
of cohomology classes there is a connection

O : HP HP
©sqop  svoy

the so-called Gauss-Manin connexion. This connexion doeextend to a connexion over
the zero stall«”Hg of HP; itis necessary to mang to a slightly larger module.
In order to deal with such a problem, Malgrandé][introduced the notion ofE,F)
connection, wher& C F are finitely generatedsp-modules withF /E torsion, andD :
E — F is aC-linear derivation. That is, foe € E andh € Osp
dh

D(h.e) = a.e+ h.D(e).
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There is an index theorem for such a set-Uif, [Theorem 2.3] which states that, with
(D;E,F) as aboveD has finite dimensional kernel and cokernel and

dimcker(D) — dimc CokeD) = rk(E) — dimc(F /E).
We apply these ideas to the following pairs@$o-modules and derivations:

: weQl |doedfAQ !}
Ei = H'(Qy/s0.d 1 . —
= H (Qys0.d) dL T +dfaQl?

9

(whereQy now means germs at O rather than sheaves) and

~ {weQl |dfAdw=0}

F i g
'odol T4 dfaQlt

ClearlyE; C F. The derivation is

at:Ei - 1y
w — N

wheren satisfiedw=df An.

Proposition 6.5 1. ¢; is an isomorphism, and
2. F/E - HI*1(Q;,,d fA) is an isomorphism.

PROOF 1) First we show thad; is well-defined. Leto € Q| represenfw) € E;. Thendw =
df An for somen € Ql. Thisn is determined up to elements of f&fA : Q| — QU
which are zero iy, because by Propositidh6,

dol 1 +dfAQL T =dQl T +kerfdfA: QL — Q.

Changing the representative [of] by da + d f A B changes) by —dp which is also zero in
F. Thuso; is well-defined.

Supposel;[w] = 0, that isdw=df An wheren =da+df AB for somea,B. Then
dw=df Ada for somea, sow=df Ao+ dyby the Poincaré Lemn@2. This means that
[Q)] =0inkE.

Letn represenfn] € K, sod(df An) = —dfAdn = 0. Using the Poincaré lemma we
see thatl f An = dw for somew € QQ. This proves the surjectivity af;.

2) Now,

{we Q| |df Adw=0}
{weQl |dwedfAQLY

F/E =

so the statement is obvious. O
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PROOF OFTHEOREM 6.1. Firstly, Propositiort.4 states that fot £ 0,
rk(E;) = dimc(H'(Y;, C)).
Secondly, using Propositioh 5, Malgrange’s index theorem applied (@; E;, F) gives
rk(E;) = dimc (H'*(Qy,,d fA)).

d

Remark 6.6 Exactly as in L8], one can show that thig; andF; are free. Foi = 2,4,...
with i < n—1 andc= 0 they have rank 1, and representatives of generators & thedules
are as follows.

e = 213d(%) A (da)e
6 f
ox = 212d(%)A (ot

wherely(a) = f asin 3.10. One checks that

gx € Ex
ok € Fx
Ot€k = O
dox = dfa(da).

It follows thatey and@y are generators @ andFy respectively. Furthermore
tor€xx = 3exk,

S0 0, is regular singular, and the monodromy on the cohomologymsavithi < n—1is
trivial.

If F # 0, then these modules have rank dimtg(f), and generators are given by a
construction similar to that in Remafk8, namely by taking the exterior product with
asv varies overMeg (f). In this case the monodromy of the low dimensional cohomplog
groups will be just the monodromy associated to the regiridi of f toF.

Remark 6.7 One can introduce the equivariant version of the GaussiMsystem as the
cohomology of a complex analogous to the oneZf, [p. 158] or P4]. This equivariant
version is the total complex of a triple complex with terms

cPar — QQ—Q-H

)

and differentialsd, 13, andd fA. To be more precise, we considgy[u,D],d), whereu
andD are commuting symbols and where

dw.u“.D' = dw.uk.D' +15.U1.D' —df A w.Uu.D'*FL.
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Becausal, 13 andd fA pairwise anticommute we haa# = 0.
On this complex, one has three additional operatiotsandd;:

uwukD' = wulp
twukD' = fwukD —lwuD'?
d..ukD = wukD'*?

These commute witd, anddit —td; = 1, whereass commutes witht andd;. The coho-
mology H gets the structure of B[u]-module, whereD = C{t,d; }, and it is not hard to see
that in factH is a coherenD][u]-module.

There is a natural filtration, called the Hodge filtratién,on this (triple) complex with
terms

FPl= Qbrkrmy pm
kl,m>0

One has thatlFP~1 ¢ FP, soF " induces a filtration ofi{. It seems that thiE can be used
to define a mixed Hodge structure bh(Y;,C) in a manner completely analogous .
We hope to elaborate on this on another occasion.

Chern class of the quotient map

We end this section with a discussion of various closed &$oon the quotient spadeand
the Milnor fibreY;, and the relationship between them.

With the usual notation, we have= 130 andw = da; consequently, there is the fun-
damental “Hamiltonian” relationship

df = —15w. (6.22)

Example 6.8 (Symplectic Reduction

In symplectic geometry, idois a symplectic form, this equation is used to define the Hamil
tonianf of the symplectic vector fielft. Note that if the invariant formvis non-degenerate,
then by Darboux’ theorem, it can be written in the fows= y dx Ady;, and so th&€*-action
must be real since each “monomial form% A dy; must be invariant. (In other worde)
defines an equivariant isomorphism®@#+* with its dual, which implies that the action is
real.)

The quotient Milnor fibre¥; are in this case the reduced spaces forGheaction. The
restriction ofw to X; is a basic form ork, i.e. w ‘=ifwe Q%, wherei; : X — X is the
inclusion (we also writé; : Y; — Y). Thus any statements about quotient Milnor fibres can
be viewed as generalizations of statements about reduaedsm symplectic geometry. A
particular result is the following:

Let C* act symplectically on the symplectic spag€, w) with an isolated fixed point
at 0, and letf be the Hamiltonian, withf (0) = 0. Then fort # 0, the cohomology of the
reduced spacH is given by

C ifi<n-2iseven

H'(Y,C) =
(%,C) {0 otherwise.
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This is clear from Theorerfi.1 and Example3.7, since the relatiorf = 1sa implies thatf
is homogeneous of degree 2, aBd2Q) implies that it has an isolated critical point.

Returning to the general (non-symplectic) case, conskienteromorphic 1-forna’ =
a/f. This is an invariant form with poles alon = {f = 0}. Since it satisfiessa’ = 1
off Xo, it is a connection 1-form for the principle fibratiam: X .o — Y..o, andwf = da’
is a curvature 2-form. It follows that the Chern class ch af fibration is given by the
cohomology clasfw] € H%(Y.0,Z) C H%(Y.0,C). Notice that is indeed a basic form on
Y#o, as

Ly =19da’ = —d(150’) = 0.

It has a pole of order 2 along, (or Yp).

Now, i =ifda’ =dif (a/f) = (difa) /t = ifw/t. Thus we have the following result
on the variation in the cohomology class @f, similar to the theorem of Duistermaat &
Heckman [LO, Theorem 1.1]:

Theorem 6.9 Let t £ 0 and supposey € Q? is a closed form satisfying5(22 where f has
an isolated critical point on Y. Then the cohomology clasindd bywy and the Chern
classch of the fibration X— Y; (which is independent of t) are related by

[wx] =tch.

These forms are also related to the generatoEs @ndF, given in Remark 6.7:

(e = %fSCh
1
(@] = Efzch.

Remark 6.10 There is no basic form € QZ (defined on a neighbourhood of0Y) with
the property that the restriction gftoY; is wy, for otherwisedf An =df Aw, butdf A w
is non-trivial inH3(Q,,d fA), by Propositior3.6. Howevertoy = i (fw) is the restriction
of the basic formf2w = fw—df Aa. This is of course consistent with the fact that the
cohomology groupd3(Q;,,d fA) is killed by my and f € my.

As a final observation, note that the “reduced fogtan be obtained from the special
form d f A w by taking residues:

df Aw
w =Resgt_q —t /)
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A Cech complexes and local cohomology

In this appendix, we describe a complex associated tdRampduleM, and any finite set
of functions® = {@y,...,@} in R. The main property of this complex is that it computes
the (algebraic) local conomology df alongZ = Z¢ =V (1), wherel is the ideal generated
by the@. See Remarl.7 for why the algebraic cohomology is sufficient for our purpms

Let X be a spacd{ = {U;} an open cover oK andF a sheaf orX. Associated to this
data there is the compléX (i, F) of alternatingCech cochains:

cp(u,f)z_ @_ [ (Uig,...ip, F) = @_ Fioyoins

for example, seeq].

In the case that th&; are ‘sufficiently small’ this complex can be used to compute
H'(X,F). Exactly what ‘sufficiently small’ means depends on the erhtIn the topolog-
ical case, th&J); would have to be contractible afél constant; in the analytic categody
would have to be Stein anfl coherent; in the algebraic category, thewould need to be
affine andZ quasi-coherent.

Thus, if X = Spe¢R), F = M whereM is anR-module, andb = {@,..., @}, then we
can form a covering oK \ Z, whereZ = V(I) as above, by the open séis= Spe¢Ry ),
whereRy, is the localization oR with resect to the multiplicative set generatedghyhat is
Ry=R[@1]. Thus

CPU,F) =My, g,

whereM, = Ry® M. As all theU; are affine, we have
HP(X\Z,F)=HP(CPU,F)).
In this setting, the local cohomology grouds] sit in exact sequences:
0— HIYM) =M — HO(X\ Z,M) — HZ(M) — 0,
(A1)
0— H/(X\Z,M) — H:;"Y(M) -0  fori>0.

In order to perform calculations easily in local cohomolegg have found it convenient
to modify the notation as follows. Consider the two-term pteres,

Ki = Ki(R,CD) = [R—> R(nCi],
with Rin degree 0 an®,, in degree 1. For anR-moduleM define
C(M,®)=C;M: =K 9Ky ®--- @K @M

where all tensor products are over andM is considered as a complex concentrated in
degree 0. The symbols are used to make a distinction between elemenR afd their
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images inRg, . In other words, it helps keep track of tiech cover. We let the anticom-
mute, so

CPM, @)= P M.,

and the differential is just
c=(ci+...+¢)A:CP(M, @) — CP(M, b).

Thus, for exampleC°M = M andC'M = @'_; M[g Yc.

The complexc (M, @) is isomorphic to the ordinar§ech complexC (M, i) with index
shifted by 1, and augmented by the modMen degree 0. These constructions lead to the
following result.

Theorem A.1 Let R be a commutative ring, M an R-module @ne- {@y,...,@ } a subset
of R. Let Z=V/(l), where | is the ideal generated By, ...,@ }. Then

HL, (M) = H'(C ).
For more background information, see the book of J. Strofiker

Consider a complekF.) of sheaves oiX:
O—-Fn—Fn1—... o0 F1—Fo—0, (A.2)

and assume that the homology of this complex is supported dosad subseZ of X.
Associated to such a complex tise Cech complex ovefF.) (with respect taZ), which
is defined as follows. Le® = {@,...,@} defineZ, and consider th€ech complexes
CyFi = C F for eachi. These form a double compleP = CI(F,_p):

0—- CFH — CFy — - — CFHR — CF —0

T T T T
0 -Clrp -CtRys—- - -CtHR -Clr—0
T T T T
o o 3 3
0—- Cr/, - Ct/pqy - -+ - ClFy - Cl/9 — 0
T T T T

O0—- Fn — Faa — > F - Fg —-0

Proposition A.2 Let (F.) be a complex as inA(.2) with homology supported on Z. Then
there is a spectral sequence whosetérm is

EP?=HZ(Fa-p)
and which converges to

°° 0 if g> 0.
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PrRooOF All the rows of the double complelX -~ except the bottom one are exact becatise
is exact outsid&. Taking the horizontal homology we geh_,(F.) along the bottom row,
and zeros above. Taking first vertical homology we picH—LﬁQ]-‘n, p) asEx. O

Corollary A.3 (Acyclicity lemma) Suppose that the compleX.p) is exact outside Z. If
depth, 7 > i for all i, then the complex is acyclic (that is, (&.) = 0 fori > 0).

Lemma A.4 Let X=Xy x Xp,and let 4 C Xy and & C Xy, with Z=2Z; x Z, € X. Suppose
Fiis asheaf on Xand letF = F; ® F» be the tensor product sheaf on X (in the appropriate
category), then

HA(F) = @ H,(F1) @ Hy,(F2).
i+j=k
PROOF ConsideiCech complexeS;, (1) andCy, (F). ThenCy (F) :=Cy, (F1) ®Cy, (F2)
is aCech complex fo#; x Z,. The lemma follows from a spectral sequence argument on
the double compleKP4 = Cz(]-"l) ®C§2(]-'2), as the higher differentials all vanish. O

Example A.5 We derive the local conomology grouﬁgs(c[xl, ..+, X%n]), whereC"=C" x
CS. First we calculatdﬂo}(C[x]) in one variable, and then proceed by induction using
LemmaA.4. For any set of coordinates @1 say{x,...,% } define

AlXy,.... %) = Cixt,...,x 1.

X1... %

(Ais for ‘antiworld’.) To findHyg, (C[x]), we use the cover with one open ket= C\ {0},
and functiong = x. TheCech complex is just

0—C[X —C[xxc—0

and soH?O}(C[x]) =0, andH{lo}(C[x]) =~ C[x,x 1] /C[xjc = A(xX)c.
Then, by induction, using Lemm@&.4, we find thatH%o}(C[xl,...,xr]) =0fori<r,
and

Hig (CXa,. ., % ]) ZAXL, .. X )CLA L AG
Finally, by LemmaA.4, we get that

i ~ JAXL, . %) R ClXrga, .. XnlCLA L AG fi=T
H'cs(C[Xla--an]):{o(l X ) ®c ClX 41, -, Xn]C e

Example A.6 Supposef : C" — C has an isolated critical point at 0. Then the complex
éQ‘Cn, dfA)induces a compleéH{”o}(Q'cn), d fA). The cohomology of this complex is given
y

. 71 . .
HI Hn Qn,df/\ — an/df/\an |f|:0
( {0}( c) ) {0 otherwise.

This is seen by taking th€ech resolutiomA™ of the (Qen,dfA) complex. The first
horizontal spectral sequence degeneratés &b give

H"(A,D) = Q2./d f A QR
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andH'(A,D) =0fori #n. Onthe other hand the first vertical spectral sequence eegiers
at E, to give the cohomology groups'(HFO}(Q‘Cn),d fA).

Remark A.7 (Algebraic local cohomology applied to coherent analytieabe¥ Our ap-
plications of local cohomology are to analytic rather thigebraic sheaves. Nonetheless,
the results remain valid as all the sheaves are coherenglgeldraic local cohomology of
coherent analytic sheaves is a well-defined functor. Fomgkea, for the acyclicity lemma,

if a complex of coherent sheaves is exact off a subva#etyen its cohomology is annihi-
lated by a power of the ideal definiiZg and consequently it is enough to consider algebraic
local cohomology.
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