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A new bound for the smallest x with
π(x) > li(x)

Kuok Fai Chao and Roger Plymen

Abstract
We reduce the dominant term in Lehman’s theorem. This im-

proved estimate allows us to refine the main theorem of Bays & Hud-
son. Entering 2, 000, 000 Riemann zeros, we prove that there exists
x in the interval [1.39792101 × 10316, 1.39847603 × 10316] for which
π(x) > li(x). This interval is strictly a sub-interval of the interval in
Bays & Hudson [1], and is narrower by a factor of about 10.

1 Introduction

Let π(x) denote the number of primes less than or equal to x, and let li(x)
denote the logarithmic integral ∫ x

0

dx

log x
.

There was, in 1914, overwhelming numerical evidence that π(x) < li(x) for all
x. In spite of this, Littlewood [8] announced that there is a positive number
K such that

log x{π(x)− li(x)}
x1/2 log log log x

is greater than K for arbitrarily large values of x and less than −K for
arbitrarily large values of x. This implies that π(x) − li(x) changes sign
infinitely often.

Littlewood’s method provided, even in principle, no definite number X
before which π(x)− li(x) changes sign.

So began the search for an upper bound for the first x for which the
difference π(x)− li(x) is positive. The landmarks in this subject are

• Skewes [15], 1933: the first Skewes number

Sk1 = 10101034
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This statement is conditional on the Riemann hypothesis, see [15, p.278].
This paper develops a version of the Phragmen-Lindelȯf theorem. Skewes
writes the following passage:

No further difficulties of principle arise in the calculations, and
what remains to be done is the arithmetical development of the
ground already covered. This is a matter of some intricacy, and
it is perhaps capable of refinements. What would be more impor-
tant, it is possible that the restriction of the Riemann hypothesis
can be removed. I propose, therefore, to postpone the details to a
later paper; in the meantime, I have obtained a value of x0 which,
though possibly capable of improvement, undoubtedly provides a
solution to the original problem.

This number is Sk1. The first Skewes number is widely quoted, see for
example [5, p.17] and [14, p.421]. We repeat that there is no published proof
that, conditional on the Riemann Hypothesis, Sk1 is an upper bound for the
first crossover. For Littlewood’s own account of the Skewes number, and his
notation for very large numbers, see [9, p.110].

• Skewes [16], 1955: the second Skewes number

Sk2 = 1010101000

This is the later paper referred to in [15]. The method of proof in [16] is as
follows. Assume first a certain hypothesis (H) (not the Riemann Hypothesis)
and show that (H) leads to an upper bound X1; then assume (NH), the
negation of (H), and show that (NH) leads to an upper bound X2. Since
X2 > X1, we take Sk2 := X2 as an upper bound for the first crossover. This
is therefore, the first published, unconditional proof of a numerical upper
bound for the first crossover. In the notation of Littlewood [9], we have
Sk2 = N3(3).

• Lehman [7], 1966: an upper bound for the first crossover is

1.65× 101165

We attempt to explain the main idea in [7]. We think of Lehman’s theorem
as an integrated version of the Riemann explicit formula. His idea was to
integrate the function u 7→ π(eu)− li(eu) against a strictly positive function
over a carefully chosen interval [ω−η, ω+η]. The definite integral so obtained
is denoted I(ω, η). Let ρ = 1/2 + iγ denote a Riemann zero and let

ΣT := −
∑

0<|γ|≤T

eiγω

ρ
e−γ2/2α.
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Lehman proved the following equality

I(ω, η) = −1 + ΣT + R

together with an explicit estimate |R| ≤ ε. This creates the inequality

I(ω, η) ≥ ΣT − (1 + ε).

The problem now is to prove that

ΣT > 1 + ε. (1)

If (1) holds, then I(ω, η) > 0 and so there exists x ∈ [eω−η, eω+η] for which
π(x) > li(x). In order to establish (1), numerical values of the Riemann zeros
with |γ| < T are required. Each term in ΣT is a complex number determined
by a Riemann zero. It is necessary that the real parts of these complex
numbers, which are spiralling towards 0, reinforce each other sufficiently
for (1) to hold. The only known way of establishing this is by numerical
computation. When T is large, this requires a computer. It is interesting to
note that Lehman’s theorem leads to a single spiral; without this theorem,
the Riemann explicit formula leads to a very large number of spirals, as in
[3, p.348].

• te Riele [12], 1987: an upper bound for the first crossover is

6.69× 10370

The article by te Riele [12] uses Lehman’s theorem; see section 6 for some
more details.

We return to the interval [eω−η, eω+η]. This interval has half-length eω sinh η
and mid-point eω cosh η. Bays & Hudson make the following selection:

ω = 727.95209, η = 0.002.

The mid-point of this interval is 1.398223656 × 10316; the half-length of
the interval is 0.002796443583× 10316. The interval itself is

[1.395427212× 10316, 1.401020100× 10316]

We note that this interval is incorrectly stated in Bays-Hudson [1, Theo-
rem 2]. So we have

• Bays & Hudson [1], 2000: an upper bound for the first crossover is

1.401020100× 10316.
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We reduce the dominant term in Lehman’s theorem by a factor of more
than 2. This enables us to select the following parameters:

ω = 727.952074, η = 0.000198474.

The mid-point of this interval is 1.39819852×10316; the half-length of the
interval is 0.00027751× 10316. The interval is

[1.39792101× 10316, 1.39847603× 10316]

and so an upper bound for the first crossover is

• 1.39847603× 10316

Our interval is strictly a sub-interval of the Bays-Hudson interval. It
is narrower by a factor of about 10, and creates the smallest known upper
bound.

No specific X for which π(X) > li(X) is known. The 1914 article by
Littlewood [8] contains the barest outline of a proof. A detailed proof of
Littlewood’s theorem appeared in 1918, see Hardy & Littlewood [6]. A sketch
of the original argument is given in [10, Theorem 6.20].

We must mention the remarkable computer graphics of Demichel [2]. His
heuristics lead to the the following upper bound for the first Littlewood
violation:

1.39716292914× 10316.

We feel bound to say that his elaborate computer graphics are dependent on
the following formula:

π(x) ≈ li(x)− li(x1/2)/2−
∑

ρ

li(xρ).

This is not the true Riemann explicit formula, but an approximation to it.
The true formula is given below, equation (4). This formula is stated in
the 1859 memoir of Riemann [4, p.304]; concerning the erroneous value of
log ξ(0) in this formula, see [4, p.31]. For a graphic account of the Riemann
explicit formula applied to very large numbers, see Derbyshire [3, p. 348].

We thank Andrew Odlyzko for supplying us with the first 2, 000, 000
Riemann zeros. We also thank Aleksandar Ivić for drawing our attention to
the inequalities of Panaitopol [11].
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2 Lehman’s theorem

The classical function π(x) is defined, for any real number x, as the number
of primes less than or equal to x:

π(x) := #{p : p ≤ x}

where p is a prime number. Let

Π(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + ... =

∞∑
k=1

1

k
π(x1/k) (2)

This is a finite series. We define

Π0(x) = lim
ε→0

1

2
[Π(x− ε) + Π(x + ε)]

li(x) = lim
ε→0

(

∫ 1−ε

0

+

∫ x

1+ε

)
du

log u
(3)

We will describe a theorem proved by Lehman. The theorem is a powerful
tool for finding where the sign of π(x)− li(x) changes.

In this section, ρ = β+ iγ will denote a zero of the Riemann zeta function
ζ(s) for which 0 < β < 1 and we denote by ϑ a number satisfying |ϑ| ≤ 1.
This number ϑ will be different on different occasions.

Recall the Riemann explicit formula [4, p.65]

Π0(x) = li(x)−
∑

ρ

li(xρ) +

∫ ∞

x

dt

t(t2 − 1) log t
− log 2 (4)

where li(xρ) = li(eρ log x) and, for w = u + iv, v 6= 0

li(ew) =

∫ u+iv

−∞+iv

ez

z
dz (5)

If the terms in the sum are arranged according to increasing absolute values
of γ = Imρ, then the series (4) converges absolutely in every finite interval
1 ≤ a ≤ x < b.

We introduce some notation: θ and ϑ will denote real numbers for which
|θ| < 1 and |ϑ| < 1. The values of θ and ϑ will vary according to context:
but the inequalities |θ| < 1 and |ϑ| < 1 will always hold.

Rosser and Schoenfeld [13] have shown that, for x > 1, we have

π(x) =
x

log x
+

3
2
ϑx

log2 x
. (6)
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Using this estimate and the more elementary estimate π(x) < 2x/ log x, we
have for x > 1

1

2
π(x1/2) +

1

3
π(x1/3) + ... =

x1/2

log x
+ ϑ(

3x1/2

log2 x
+

2x1/3

log x

[
log x

log 2

]
) (7)

Estimating the integral in (4), we have for x ≥ e

0 <

∫ ∞

x

dt

(t2 − 1)t log t
< 2

∫ ∞

x

dt

t3
=

1

x2
< log 2

Since 2/ log 2 + log 2 < 4, we obtain, by combining (4) and (7),

π(x) = li(x)− x1/2

log x
−

∑
ρ

li(xρ) + ϑ(
3x1/2

log2 x
+ 4x1/3) (8)

for x ≥ e.

In this formula, it does not seem easy to determine a number x for which
π(x) > li(x) by numerical computation. Because of this, Lehman derived an
explicit formula for ue−u/2{π(eu)− li(eu)} averaged by a Gaussian kernel and
established the following theorem.

Theorem 2.1. (Lehman [7]) Let A be a positive number such that β = 1
2

for
all zeros ρ = β + iγ of ζ(s) for which 0 < γ ≤ A. Let α, η and ω be positive
numbers such that ω − η > 1 and the conditions

4A/ω ≤ α ≤ A2 (9)

and

2A/α ≤ η ≤ ω/2 (10)

hold. Let

K(y) :=

√
α

2π
e−αy2/2 (11)

I(ω, η) :=

∫ ω+η

ω−η

K(u− ω)ue−u/2{π(eu)− li(eu)}du (12)

Then for 2πe < T ≤ A

I(ω, η) = −1−
∑

0<|γ|≤T

eiγω

ρ
e−γ2/2α + R (13)
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where

|R| ≤ 3.05

ω − η
+ 4(ω + η)e−(ω−η)/6 +

2e−αη2/2

√
2παη

+ 0.08
√

αe−αη2/2 (14)

+e−T 2/2α{ α

πT 2
log

T

2π
+

8 log T

T
+

4α

T 3
}

+A log Ae−A2/2α+(ω+η)/2{4α−1/2 + 15η}

If the Riemann Hypothesis holds, then conditions (9) and (10) and the last
term in the estimate for R may be omitted.

3 An improvement

In this section, we will improve Lehman’s theorem. Quoting some results
from L. Panaitopol [11], we have

π(x) >
x

log x− 1 + (log x)−0.5
for x ≥ 59 (15)

π(x) <
x

log x− 1− (log x)−0.5
for x ≥ 6 (16)

Let us consider the condition x ≥ 59. We get

x

log x− 1 + (log x)−0.5
< π(x) <

x

log x− 1− (log x)−0.5
(17)

From the right side of (17) and (6), we get

π(x) =
x

log x
+

3
2
ϑx

log2 x
<

x

log x− 1− (log x)−0.5

Denote A = A(x) := (log x)
1
2 , so the inequality above can be expressed in

terms of A:

x

A2
+

3
2
ϑx

A4
<

x

A2 − 1− A−1

Then, we get

ϑ <
2

3
· A3 + A2

A3 − A− 1
for all x ≥ 59.
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In fact, the function

F (A) :=
A3 + A2

A3 − A− 1

is a monotone decreasing function for x ≥ e. Furthermore, we will choose a
very large value of x well-adapted to the subject of this article. We choose
x = 1095. This leads to the following inequality for ϑ:

0 ≤ ϑ < 0.71523279 for x ≥ 1095

From the above, we can change one coefficient in (8):

1

2
π(x1/2) +

1

3
π(x1/3) + ... =

x1/2

log x
+ ϑ

3x1/2

log2 x
+ θ(

2x1/3

log x

[
log x

log 2

]
)

and we obtain

π(x) = li(x)− x1/2

log x
−

∑
ρ

li(xρ)− ϑ
3x1/2

log2 x
+ 4θx1/3 for x ≥ 10190 (18)

Hence, by (12)and(18), we have for u > 437.5

ue−u/2{π(eu)− li(eu)} = −1−
∑

ρ

ue−u/2li(eρu)− ϑ
3

u
+ 4θue−u/6 (19)

From the positivity of the kernel K, we obtain the estimate

|
∫ ω+η

ω−η

K(u− ω)(−ϑ
3

u
+ 4θue−u/6)du| ≤ 3ϑ

ω − η
+ 4θ(ω + η)e−(ω−η)/6

≤ 2.1957

ω − η
+ 4(ω + η)e−(ω−η)/6

For the estimates of the rest of the terms, we follow Theorem 2.1 and finally
we get a new estimate of |R| denoted by |R′|:

|R′| ≤ 2.1957

ω − η
+ 4(ω + η)e−(ω−η)/6 +

2e−αη2/2

√
2παη

+ 0.08
√

αe−αη2/2 (20)

+e−T 2/2α{ α

πT 2
log

T

2π
+

8 log T

T
+

4α

T 3
}

+A log Ae−A2/2α+(ω+η)/2{4α−1/2 + 15η}
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Theorem 3.1. Let A be a positive number such that β = 1
2

for all zeros
ρ = β + iγ of ζ(s) for which 0 < γ ≤ A. Let α, η and ω be positive numbers
such that ω − η > 437.5 and the conditions

4A/ω ≤ α ≤ A2 (21)

and
2A/α ≤ η ≤ ω/2 (22)

hold. Let K(y) and I(ω, η) be defined as in Theorem 2.1. Then for 2πe <
T ≤ A we have

I(ω, η) = −1−
∑

0<|γ|<T

eiγω

ρ
e−γ2/2α + R′

where R′ is given by (20).
If the Riemann Hypothesis holds, then conditions (21) and (22) and the

last term in the estimate for R′ may be omitted.

Remark. When we compare Theorem 2.1 with Theorem 3.1, we see that
the conditions are different: in Theorem 2.1 we have ω − η > 1 and in
Theorem 3.1 we have ω− η > 437.5. This makes little difference because we
always take a large value for ω. A comparison of R and R′ shows that the
dominant term in Lehman’s theorem has been improved by a factor of more
than 1.3. In the next section we investigate the numerical consequences of
this improved estimate.

4 Numerical Data

As in the Introduction, let

ΣT := −
∑

0<|γ|≤T

eiγω

ρ
e−γ2/2α. (23)

We recall Lehman’s theorem (13):

I(ω, η) = −1 + ΣT + R.

As a first step, Lehman looked for values of ω for which the sum

ST (ω) = −
∑

0<|γ|≤T

eiγw

ρ
,
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which is the sum in (23) without the factor e−γ2/2α, is somewhat greater
than 1. Because the zeros of the Riemann zeta function occur in complex-
conjugate pairs, we can write the sum as

ST (ω) = −
∑

0<γ≤T

(
eiγω

1
2

+ iγ
+

e−iγω

1
2
− iγ

)

= −
∑

0<γ≤T

cos(γω) + 2γ sin(γω)
1
4

+ γ2

He found three values of ω,

727.952, 853.853, 2682.977

for which S1000(ω) is approximately 0.96. In 1987, Lehman proved that there
exists x with π(x) > li(x) in the vicinity of exp(853.853). In 2000, Bays &
Hudson [1] improved the result in the vicinity of exp(727.952).

In the following sections, we will discuss the numerical computations
based on Theorem 2.1 and its improved Theorem 3.1 and give a better result
about π(x)− li(x) > 0.

5 Error in computation

We introduce a notation for every term in the error R:

s1 =
3.05

ω − η

s2 = 4(ω + η)e−(ω−η)/6

s3 =
2e−αη2/2

√
2παη

s4 = 0.08
√

αe−αη2/2

s5 = e−T 2/2α{ α

πT 2
log

T

2π
+

8 log T

T
+

4α

T 3
}

s6 = A log Ae−A2/2α+(ω+η)/2{4α−1/2 + 15η}

From the above discussion, between Theorem 2.1 and Theorem 3.1, s1 is the
only difference. Therefore, we denote the first term in R′ as s′1, namely

s′1 =
2.1957

ω − η
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We will revert to the notation in te Riele [12]:

ΣT = H(T, α, ω) = −
∑

0<|γ|≤T

t(γ) where t(γ) =
eiγω

ρ
e−γ2/2α

and let H∗ be the approximate value of H by computer and γ∗ be the ap-
proximation of γ.

Before doing the computation, we need to discuss the relative error be-
tween H(T, α, ω) and H∗. By the mean-value theorem, we have

|t(γ∗)− t(γ)| = |γ∗ − γ| · |t′(γ)| with |γ − γ| < |γ∗ − γ|

For t′(γ), we have

t′(γ) = e−γ2/2α

[
cos(ωγ)(2ωγ − γ/α)− sin(ωγ)(ω + 2γ2/α)

1
4

+ γ2

−2γcos(ωγ) + 2γ sin(ωγ)

(1
4

+ γ2)2

]

and since γ < α(based on the value of α we choose)

|t′(γ)| < e−γ2/2α

[
2ωγ + ω + 2γ2/α

1
4

+ γ2
+

2γ(1 + 2γ)

(1
4

+ γ2)2

]
< e−γ2/2α

[
2ω

γ
+

ω

γ2
+

2

α
+

2

γ3
+

4

γ2

]

In our computation, the following inequalities will hold:

14 < γ1 ≤ γ, ω < 854, α ≥ 2× 108

It follows that

|t′(γ)| < 1770

γ
(24)

From above and the Riemann zeros given by Odlyzko, we have |γi−γ∗i | < 10−9
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for 1 ≤ i ≤ 2× 106 and can deduce

|H −H∗| <
N∑

i=1

|t(γi)− t(γ∗i )|

=
N∑

i=1

|γi − γ∗i | · |t′(γi)|

< 10−9

N∑
i=1

1770

γi

< 10−9

N∑
i=1

1770

γi − 10−9

where N is the number of zeros we use. Hence,we get

I(ω, η) > −1 + H∗ − |H −H∗| − |R|.

6 Computation

We will use Theorem 3.1 to find where the sign of π(x) − li(x) changes; we
will also make some comparisons between Theorems 2.1 and 3.1.

In all the computations in this section, we use MATLAB. In fact, we
do the computations with 2, 000, 000 zeros. This is a very large number to
store in a computer programme. So, we group the zeros together in blocks
of 50, 000 and input two 50, 000× 20 matrices by MS-Excel. Then, we trans-
fer these two matrices to our computer programme by some commands in
MATLAB.

First, we compare Theorems 2.1 and 3.1 via numerical examples.
Computation 1. We take the same parameters as in Bays & Hudson

[1, p.1288], using Theorem 2.1 and Theorem 3.1:

A = 107, α = 1010, η = 0.002,

T = γ1000000 = 600269.677..., ω = 727.95209

This leads to
H∗ ≈ 1.0128206

and the inequalities

|s1| < 0.00418985, |s′1| < 0.00301627

|s2| < 10−51, |s3| < 10−8688

|s4| < 10−8681, |s5| < 10−8

|s6| < 10−2000, |H −H∗| < 1.606959× 10−5
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This example shows that s1( or s′1) is the most important term to change the
value of I(ω, η). Reducing the term s1 is an effective method to get a more
accurate result. With Theorem 2.1, we need 432379 zeros; with Theorem
3.1, we need 426139 zeros.

Computation 2. In this computation, we decrease the parameters ω, η.
We change the values used in Bays & Hudson [1]. After several experiments,
we choose these values:

A = 7.8× 106, α = 7.86× 1010, η = 0.000198474,

T = γ2000000 = 1131944.4718..., ω = 727.952074

and apply Theorem 3.1 with 2, 000, 000 Riemann zeros. Our results are as
follows:

s′1 =
2.1957

727.951875526
< 0.003016271

s2 = 4(727.952272474)e−(727.951875526)/6 < 5.933× 10−50

s3 =
2e−7.86×1010(0.000198474)2/2√

2π(7.86× 1010)(0.000198474)
< 10−1000

s4 = 0.08
√

7.86× 1010e−7.86×1010(0.000198474)2/2 < 10−1000

s5 = e(−1131944.4718)2/2(7.86×1010){ 7.86× 1010

π(1131944.4718)2
log(

1131944.4718

2π
)}

+
8 log(1131944.4718)

1131944.4718
+

4(7.86× 1010)

1131944.47183
< 0.00006820541

s6 = (7.8× 106) log(7.8× 106)e−(7.8×106)2/2(7.86×1010)+(727.952272474)/2

{ 4(7.86× 1010)−1/2 + 15(0.000198474)}
< 0.000036261861

This leads to the following estimate of R′

|R′| = s′1 + s2 + s3 + s4 + s5 + s6 < 0.003120738272

and H is summed over all γ with 0 < |γ| < 1131944.4718. We obtain the
approximation

H∗ = 1.00319601829755

and the inequality

|H −H∗| < 2.05971416× 10−5
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It follows that

I(ω, η) > −1 + H∗ − |H −H∗| − |R′| > 5.468288× 10−5 > 0 (25)

The positivity of the kernel K implies that there is a value of u between ω−η
and ω + η where π(eu)− li(eu) > 0. That means we have proved that there
exists x in the vicinity of exp(727.952074) with π(x) > li(x) by computer.
Moreover, since ∫ ∞

−∞
K(u)du = 1 (26)

it follows that ∫ ω+η

ω−η

K(u− ω)ue−u/2{eu/2/u}du < 1. (27)

By (26) and (27), it follows that for some values of u between ω−η and ω+η
we have

π(eu)− li(eu) > 5.468288× 10−5eu/2/u > 10150

This implies that there are more than 10150 successive integers x between
1.39792101× 10316 and 1.39847603× 10316 for which π(x) > li(x).

Theorem 6.1. There exist values of x in the vicinity of 1.39819852× 10316,
in particular, between 1.39792101×10316 and 1.39847603×10316, with π(x) >
li(x).

Proof. See above.

We feel bound to say that the interval in Bays & Hudson is incorrectly
stated [1, Theorem 2]: the correct statement is

There exists values of x in the vicinity of 1.39822 × 10316 (in
particular, between 1.395427 × 10316 and 1.401201 × 10316) with
π(x) > li(x).

We have succeeded in decreasing ω and η. Maybe there exists x with
π(x) > li(x) in another interval. In Bays & Hudson [1], they gave some
possible candidates. We will use some rough computation to check their
possibilities. Firstly, we point out what the candidates are:

10176, 10179, 10190, 10260, 10298.

We find that the most likely candidate is in the vicinity of 10190 and Table 3
below records the values of S1000, S50000 and H∗.

14



ω S1000 S50000 H∗

437.763500 0.88258736 0.88666106 0.87987776
437.782672 0.88873669 0.88987227 0.87703253

Table 3. Estimated values in the vicinity of 10190

From the table above, we can see S1000, S50000 and H∗ are less than 0.9.
In fact, S1000 and S50000 are the sums H without the factor e−γ2/2α. When
doing the computation, we need to take this factor into account. On the
other hand, when γ ≥ γ2000000 = 1131944.4718, the value of e−γ2/2α is less
than 10−1271038775. It is very small and this is why H∗ is less than ST when
T is sufficiently large. Furthermore, let us consider every term in H,

−e−γ2/2α cos(γω) + 2γ cos(γω)

0.25 + γ2
< e−γ2/2α 2γ

γ2
=

2e−γ2/2α

γ

From this inequality and the estimate of e−γ2/2α, we see that the value
of every term is extremely small when γ is sufficiently large. We know that
if there exists x satisfying π(x) − li(x) > 0, then H must be greater than
1. It seems that in the vicinity of 10190 it is almost impossible to make
π(x) > li(x). Hence, the vicinity of 10316 is likely to be the first location for
which π(x)− li(x) > 0.
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