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1 Introduction

If R is a commutative noetherian ring then its Zariski spectrum - points, topol-
ogy and structure sheaf - has a definition, originating with Matlis and Gabriel,
which is purely in terms of its category Mod-R of modules. That definition ap-
plies to other categories: applied to Mod-R with R noncommutative and right
coherent it gives a spectrum based on the indecomposable injective R-modules;
applied to the functor category (R-mod,Ab), where R is any ring, it gives the
space referred to in the title of the paper. This latter space is the dual of the
Ziegler spectrum, hence may be regarded as a topology on the indecomposable
pure-injective (= algebraically compact) R-modules. At a fair level of gener-
ality our definition gives “the spectrum of finite type localisations of a locally
coherent category”. We present the definitions, including some background on
finite type localisations, show that this does nicely generalise the usual Zariski
spectrum, and then compute the result in a variety of specific contexts.

This paper is a rewritten and updated version of (part of) [34], with material
from [39] added 1. The more recent [42] can be seen as a sequel to this paper; it
deals with, among other things, functors between definable categories and the
morphisms of ringed spaces induced by these.

For assumed general background on modules and abelian categories see [50],
[31]. The references [33] and [20] give some perspective on where this line of
investigation arose. There is a fairly comprehensive account, [41], of the area,
due to be published.

2 Finite type localisation

Let C be a locally coherent abelian category. For example: the category Mod-R
of right modules over a right coherent ring; the category (mod-R,Ab) of addi-
tive functors from the category, mod-R, of finitely presented R-modules to the
category, Ab, of abelian groups, where R is any ring. More generally, if A is
a skeletally small preadditive category then the functor category (A-mod,Ab)
is locally coherent. Here A-Mod = (A,Ab) denotes the category of covariant
additive functors from A to Ab and A-mod denotes the category of finitely
presented functors. We write Mod-A for (Aop,Ab).

So C is abelian and is generated by its skeletally small subcategory, Cfp,
of finitely presented objects, and these objects are all coherent. Recall that
an object C ∈ C is said to be finitely presented if the representable func-
tor (C,−) : C → Ab commutes with direct limits (“directed colimits” in the
more logical terminology) and a finitely presented object is coherent if every

1This paper, the first version of which, [38], was written ten years ago, has undergone a
number of revisions. I expect not to make any further changes beyond annotation (for example
if there are corrections). Given this history and the fact that most of the content will appear
in the book [41], it is not now my intention to submit this to a journal for publication. This,
therefore, is the version for reference.
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finitely generated subobject is finitely presented. It follows, [8, 2.4], that C is
Grothendieck, hence every object C of C has an injective hull, denoted E(C),
and the full subcategory Cfp is an abelian subcategory, meaning that it is abelian
and also that the inclusion of Cfp into C is exact.

Let Inj(C) denote the class of injective objects of C. A hereditary torsion
theory on C is specified by a subclass, E ⊆ Inj(C) which is closed under direct
products and direct summands. We will usually drop the term “hereditary”
since we do not consider any other kind. The corresponding class of torsion
objects is T = {C ∈ C : (C, E) = 0}, where (C, E) = 0 is shorthand for
(C,E) = 0 for every E ∈ E . The class, F , of torsionfree objects consists of
those which embed in some member of E . Our notation for a typical torsion
theory is τ and this serves also to denote the endofunctor on C which takes an
object C to its largest torsion subobject, τC.

There is a well-developed theory of localisation at hereditary torsion theories
in Grothendieck categories, which may be found in [10], [31], [50] and which we
will assume to be known to the reader, giving only a brief reminder here.

There is a functor, Qτ : C → Cτ , localisation at τ , which is universal
for, i.e. initial among, the exact functors F : C → D where D is Grothendieck
abelian, F is exact and commutes with direct limits and FTτ = 0 where Tτ =
{C : τC = C} is the torsion class corresponding to τ . The category Cτ is referred
to as the localisation, or quotient category, of C at τ . The right adjoint of
Qτ embeds Cτ as a full subcategory of C, and although the embedding does not
in general preserve direct limits, it does in the case of a finite type torsion theory
(see below) on a locally coherent category. Often we write Cτ instead of QτC,
where C ∈ C, especially when regarding this as an object C via the embedding
Cτ ⊆ C. The process of localisation does have more explicit descriptions and
includes classical and Ore localisation, at least in their effect on modules.

A torsion theory τ on C is said to be of finite type if the functor τ commutes
with direct limits, equivalently if the corresponding torsionfree class, Fτ , is
closed under direct limits. If G ⊆ Cfp is generating in the sense that every
object of C is an epimorphic image of a direct sum of copies of members of G
then τ being of finite type is equivalent to each filter Uτ (G), G ∈ G, having a
cofinal set of finitely generated objects. Here Uτ (G) denotes the set of τ -dense
subobjects of G: those G′ ≤ G such that G/G′ ∈ Tτ . Clearly this is a filter
and the condition equivalent to finite type is that for each G ∈ G and each
G′ ∈ Uτ (G) there is some finitely generated G′′ ∈ Uτ (G) with G′′ ≤ G′. This is
the usual form of the definition of finite type in the case where C = Mod-R and
where G = {R}.

We need the following results, for which see, for instance, [21], [25] [41,
Chpt. 12].

Theorem 2.1. Let τ be a finite type torsion theory on a locally coherent abelian
category C. Then the localised category Cτ is locally coherent and (Cτ )fp = (Cfp)τ .
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Proposition 2.2. Each finite type torsion theory τ on a locally coherent abelian
category C is determined by the set of τ -torsionfree indecomposable injectives.
In particular Fτ consists of all objects which embed in a direct product of copies
of these indecomposables.

Note also that if τ is of finite type then the torsion class Tτ is determined
by the finitely presented objects in it, in the sense that Tτ is the closure under
direct limits of Tτ ∩ Cfp.

If E is any set of injective objects then set

cog(E) = {D ∈ C : D embeds in a product of copies of objects of E}

to be the torsionfree class cogenerated by E .
A set X of indecomposable injectives which is closed under taking indecom-

posable direct summands of direct products will cogenerate a torsion theory
τ = cog(X) but this torsion theory might not be of finite type. Set S = Tτ ∩Cfp
and X = {E ∈ Inj(C) : E indecomposable, (S, E) = 0}; then X ⊃ X will be
the set of indecomposable torsionfree injectives for a torsion theory of finite
type, with torsion class the closure of S under direct limits - a possibly proper
subclass of Tτ . The operation X 7→ X is exactly closure in the Ziegler topology,
discussed later.

3 The spectrum

Let C be locally coherent. Denote by inj(C) the set of isomorphism types of in-
decomposable injective objects of C. We define a topology on inj(C) by declaring
the sets

[A] = {E ∈ inj(C) : (A,E) = 0}

to be open, where A ranges over Cfp. Since [A] ∩ [B] = [A ⊕ B] these do
form a basis of open sets for a topology, which we denote Zar(C) and call the
Gabriel-Zariski topology on inj(C).

It will be shown that this does generalise the Zariski spectrum of a commu-
tative noetherian ring, in two senses. First, see Section 4.4, in the sense that
it is a category-theoretic definition of the usual Zariski spectrum, applied in a
more general context. Second, in the sense that the usual Zariski spectrum of
a commutative noetherian ring sits nicely within the Gabriel-Zariski topology
for an associated functor category, the “rep-Zariski spectrum” of that ring, see
3.12 and 4.10.

Lemma 3.1. Suppose that C is locally coherent and that B ⊆ Cfp is such that
every object of Cfp has a finite composition series with factors in B. Then the
open sets [B] with B ∈ B form a basis of the Gabriel-Zariski topology on inj(C).
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Proof. Indeed, if A = An ≥ An−1 ≥ · · · ≥ A1 ≥ A0 = 0 with each Bi+1 =
Ai+1/Ai ∈ B then [A] = [Bn] ∪ [Bn−1] ∪ . . . [B1]: for any morphism from some
Bi to an injective E extends to a morphism from A to E.

For example, if C = Mod-R for some right coherent ring R, then the sets of
the form [R/I] with I a finitely generated right ideal form a basis.

Let us consider the special case where C is a (generalised) module category.
Let A be a small preadditive category and assume that A is right coherent,
which we may take to mean that Mod-A is locally coherent or any of the usual
equivalent characterisations lifted from rings to this level of generality ([30]).
Write injA = inj(Mod-A) for the set of isomorphism classes of indecompos-
able injective A-modules and refer to this set as the Gabriel-Zariski spec-
trum of A when it is equipped with the topology described above, denoting it
GZspec(A). The terminology reflects Gabriel’s replacement [10] of prime ideals
by the corresponding indecomposable injective modules.

Example 3.2. Let A be the path category of the quiver A∞ shown.
1 // 2 // 3 // . . .

It is easily checked that the indecomposable injective objects of C = A-Modk,
the category of representations of A∞ in the category of k-vectorspaces, where
k is any field, are as follows: the En where, using the representation-theoretic
description, En(i) = k if i ≤ n, = 0 if i > n, and each arrow, if non-zero, is
an isomorphism; E∞, which is 1-dimensional at each vertex and each arrow is
replaced by an isomorphism. Note that En is the injective hull of the simple
representation Sn which is 0 everywhere except at n where it is 1-dimensional.
This gives us the points of inj(C).

Dually, the indecomposable projective objects are the Pn (n ≥ 1), where Pn

is 1-dimensional at each vertex m ≥ n and 0 elsewhere (note that P1 = E∞).
Clearly the indecomposable representation M[n,m] which is 1-dimensional at i
for n ≤ i ≤ m and 0 elsewhere is finitely presented.

For any representation M one has (M,En) = 0 iff M does not have Sn as
a subquotient, that is, iff M(n) = 0. Therefore each indecomposable injective
En is an isolated point, isolated by [S1] ∩ · · · ∩ [Sn−1] ∩ [Pn+1], and a basis
of open neighbourhoods of E∞ consists of the cofinite sets which contain that
point. For clearly the latter are open and, from the description of the Pn, it is
easily seen that every infinite-dimensional finitely presented object is eventually
> 0-dimensional, so there are no other open neighbourhoods of E∞.

Therefore GZspec(Aop) = Zar(A-Modk) is the one-point compactification,
by E∞, of the discrete set {En : n ≥ 1}.

Let Modk-A denote the category of representations of the opposite quiver,
which we regard as the same quiver but with arrows reversed. Now one has a
finite-dimensional indecomposable projective P ′

n for each n and, for each n, an
indecomposable injective E′

n. The dimension vector of P ′
n is as for En above

and that of E′
n is as for Pn above.
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It is similarly checked that the open sets (apart from ∅) of GZspec(A) =
Zar(Modk-A) are the cofinite sets.

An important special case is where A itself has the form (R-mod)op for some
ring (or small preadditive category) R, in which case we will refer to its Gabriel-
Zariski spectrum, that is inj(R-mod,Ab) with the Gabriel-Zariski topology, as
the (right) rep-Zariski spectrum of R and denote it ZarR.

Obviously there are choices there: R-mod or mod-R; (R-mod)op or R-mod.
Why we have chosen to define the right rep-Zariski spectrum of R as the Gabriel-
Zariski spectrum of (R-mod,Ab), rather than that of one of the other three
possible categories is explained later.

But first we must define another space.

3.1 The Ziegler spectrum

The space subsequently named the Ziegler spectrum was defined in Ziegler’s
paper [52] on the model theory of modules. The points of this space for a ring R
are the isomorphism classes of indecomposable pure-injective right R-modules;
we define these now.

An embedding A −→ B of right R-modules is said to be a pure embedding
if for every left R-module L the induced map A ⊗R L −→ B ⊗R L of abelian
groups is monic; it is enough to test with L being finitely presented. A right
R-module N is pure-injective if it is injective over pure embeddings in Mod-R,
equivalently if every pure embedding with domain N is split. These are also
known as the algebraically compact modules, reflecting a very different way
of arriving at them.

Let us denote the set of isomorphism types of indecomposable pure-injective
right R-modules by pinjR. This set is topologised, and the result is called the
(right) Ziegler spectrum, ZgR, of R, by taking, for a basis of open sets, the
sets of the form

(f) = {N ∈ pinjR : (f,N) : (B,N)→ (A,N) is not onto }

where f : A→ B ranges over morphisms in mod-R.

Theorem 3.3. [52, 4.9] The sets of the above form constitute a basis for a
topology and these basic open sets all are compact2.

All this makes sense if we start with any skeletally small preadditive category
A in place of R and the result is denoted ZgA. The only significant difference
is that if A has infinitely many objects then it might be that the whole space
is not compact: in the case of a ring R the open set defined by the forgetful
functor (RR,−), that is, by the morphism RR → 0, is the whole space which is,
therefore, compact.

2What some would call quasicompact since no separation property is intended.
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More generally still, if C is locally coherent, or even just locally finitely
presented, meaning that Cfp is skeletally small and generating, then we define
the Ziegler spectrum of C, Zg(C), to be the set, pinj(C) of isomorphism types
of indecomposable pure-injectives of C equipped with the topology which has,
for a basis of open sets, the (f) defined as above but using Cfp in place of
mod-R. Missing from this is a definition of pure-injectivity in C: we can get
this by embedding C as a full subcategory of Mod-(Cfp) via C 7→ (−, C) � Cfp
and use the definition in the latter category. Indeed, all of the usual equivalent
definitions make sense and are still equivalent in this generality.

Consider the functor Mod-R → (R-mod,Ab) which takes a module MR to
the functor M⊗R− on finitely presented left R-modules. It is a result of Gruson
and Jensen [17] that this is a full embedding and that NR is a pure-injective
module iff N ⊗R − is an injective functor. Moreover, every injective functor
is isomorphic to one of this form. Therefore there is a bijection between pinjR
and inj

(
R-mod,Ab

)
. Thus the Ziegler spectrum of R may be regarded as a

topology on the set of indecomposable injective functors in (R-mod,Ab). The
basis given above then takes the following form:

(F ) = {N ∈ pinjR : (F,N ⊗−) 6= 0}

where F ranges over (R-mod,Ab)fp. For, from f : A → B in mod-R we
get an exact sequence (B,−) → (A,−) → Ff → 0 and the cokernel Ff is a
typical finitely presented functor in (mod-R,Ab). Then one has the formula
−→
FfN ' (dFf , N ⊗−) from 3.6 below where the duality d and extension

−→
Ff are

as there.
Compare this with the definition of the rep-Zariski spectrum of R, which

has basic open sets those of the form

[F ] = {N ∈ pinjR : (F,N ⊗−) = 0}

where F ∈ (R-mod,Ab)fp.
Thus the Ziegler spectrum of R and the rep-Zarski spectrum of R can be

regarded as topologies on the same underlying set and they are “opposite”,
informally, and dual in the following precise sense.

Hochster [22] defined a duality for spectral spaces. The spaces we are dealing
with are not spectral, but no matter, we use the same definition and declare
the complements of compact Ziegler-open sets to form a basis of open sets for
a new, “dual-Ziegler”, topology. The resulting topology is precisely the rep-
Zariski topology. More generally, we have the following. We include the proof
for the case of a ring at 3.12; the proof in the general case is essentially the
same.

Theorem 3.4. Suppose that C is locally coherent. Then the Gabriel-Zariski
topology on inj(C) coincides with the dual-Ziegler topology restricted to inj(C) ⊆
pinj(C).
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Because C is locally coherent inj(C) is a closed subset with respect to the
Ziegler topology on pinj(C) (essentially [9]) so it makes no difference whether
we move to the dual-Ziegler topology on the latter then restrict to inj(C), or
restrict the Ziegler topology to inj(C) then apply the Hochester-dual process.

Corollary 3.5. Suppose that A is a small preadditive category. Then the
dual-Ziegler topology on pinjA ↔ inj(A-mod,Ab) coincides with the rep-Zariski
topology.

Thus we see why, in order to define the rep-Zariski spectrum for right R-
modules, we moved to the category of functors on finitely presented left R-
modules. In fact there is a duality, stated next, between the finitely presented
functors in (R-mod,Ab) and those in (mod-R,Ab) so, despite the switch from
right to left, we do stay close to the category of right modules.

Theorem 3.6. ([2], [18]) There is a duality d : (mod-R,Ab)fp ' ((R-mod,Ab)fp)op

such that, if M is any right R-module and F ∈ (mod-R,Ab)fp then (dF, M ⊗
−) '

−→
F M , where

−→
F denotes the unique extension of F to a functor from Mod-R

to Ab which commutes with direct limits (sometimes we write just F for this
extension).

The definition of d on objects is dF · L = (F, − ⊗ RL). Regarding the
extension

−→
F ; if M = lim−→Mλ with the Mλ finitely presented then

−→
F M is (well-)

defined to be lim−→FMλ. If (B,−) −→ (A,−) −→ F −→ 0 with A,B ∈ mod-R
is a projective presentation of F then, interpreting the representable functors
as functors on Mod-R, this can also be read as a projective presentation of this
canonical extension of F .

It follows that an alternative form for the basic open sets of ZarR is what
we will still write as

[F ] = {N ∈ pinjR :
−→
F N = 0}

where now F ranges over the finitely presented functors in (mod-R,Ab).
Also reflecting this duality there is, in general almost and in many cases

actually, a homeomorphism between the right and left rep-Zariski spectra of a
ring. What we mean by “almost a homeomorphism” is that the lattices (indeed
complete Heyting algebras) of open sets are isomorphic. The next result, stated
for a ring R, are also valid for a skeletally small preadditive category in place
of R. It follows from the corresponding result, [20, Section 4], for the Ziegler
spectrum. The notation RZar is used for ZarRop .

Theorem 3.7. For any ring R there is a bijection between the open subsets of
ZarR and those of RZar which preserves containment, intersection and arbitrary
union.

We can describe this by saying that there is “a homeomorphism at the level
of topology”. More precisely, there is a homeomorphism of locales.
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If R is countable, also under various conditions such as R having Krull-
Gabriel dimension (see [20, 4.10]), this is induced by a homeomorphism (ZarR/ ∼
) ' (RZar/ ∼) where ∼ denotes the equivalence relation on a topological space
which identifies topologically indistinguishable points - points which belong to
exactly the same open sets.

Corollary 3.8. If R is countable and commutative, then duality induces a self-
homeomorphism (ZarR/ ∼) ' (ZarR/ ∼).

This is the composition of the homeomorphism, (ZarR/ ∼) ' (RZar/ ∼), of
3.7 with that induced by right/left equivalence.

In the case of a commutative Dedekind domain R which, even if not count-
able, does have Krull-Gabriel dimension (equal to = 2 if R is not a field), the
above self-homeomorphism of ZarR, which is already equal to ZarR/ ∼, fixes all
finite length points, interchanges, for each prime P , the P -adic and P -Prüfer
points, and fixes the generic point, that is, the quotient field of R. For these
modules see Section 5.1.

Note that, just from the definition of the topologies, N ′ ∈ Zar-cl(N) iff
N ∈ Zg-cl(N ′). We also mention that, although the rep-Zariski topology can
be defined in terms of the Ziegler topology, the reverse is not true. This was
shown in [6, 3.1] where one sees a homeomorphism of ZarR for a certain finite-
dimensional algebra R which is not a homeomorphism with respect to the Ziegler
topology.

We reiterate the point that the definition of the Gabriel-Zariski topology
can be applied at different levels. Given a ring R, it can be applied with
C = Mod-R, yielding a topology on the set injR of (isomorphism types of)
indecomposable injective right R-modules. Or it can be applied to the func-
tor category (R-mod,Ab) and, as we have seen, this topology on the set of
indecomposable injective functors may be viewed as a topology on the set of
indecomposable pure-injective right R-modules.

In principle one may go arbitrarily further: the next stage would be to have
a topology on the set of indecomposable pure-injective functors, and so on. But
here at most three levels will concern us: a ring R, or small preadditive category;
its module category Mod-R; ‘the functor category’ (R-mod,Ab).

3.2 Embedding the Gabriel-Zariski spectrum

If R is any ring then, since any injective module certainly is pure-injective,
injR ⊆ pinjR. If R is right coherent then there is the Gabriel-Zariski topology
on injR. There is also the rep-Zariski topology on pinjR, hence an induced
topology on injR. We prove that this is just the Gabriel-Zariski topology.

We will use the following, where annM (I) = {a ∈M : aI = 0} for I ⊆ R.

Lemma 3.9. Let I ≤ J be right ideals of a ring R and let E be an injective
right R-module. Then annEI/annEJ ' Hom(J/I, E).
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Proof. Just apply (−, E) to the short exact sequence 0 −→ J/I −→ R/I −→
R/J −→ 0 and note that Hom(R/I,E) ' annEI, similarly for J , and Ext1(R/J,E) =
0.

If F ≤ (RRm,−) is finitely generated then, under the duality d of 3.6, this
gives an epimorphism (Rm

R ,−) = d(RRm,−) → dF → 0. Denote by DF the,
finitely presented, kernel of this epimorphism. Since, applying duality in the
other direction, F ' D2F , F also has the form DG for some finitely generated
G ≤ (Rm

R ,−).

Proposition 3.10. [44, 1.1] If E is any injective right R-module and F is any
finitely presented functor from R-mod to Ab which is a subfunctor of a power
of the forgetful functor then

−−→
DF (E) = annE

(
F (RR)

)
.

If F ≤ (RRm,−), so F (RR) ≤ Rm, then by annE(F (RR)) we mean {(a1, . . . , am) ∈
Em :

∑m
i=1 airi = 0 for all (r1, . . . , rm) ∈ F (RR)}.

The statement at [44, 1.1] is, like various of our other references, said in
terms of pp formulas. We give some explanation of that terminology in Section
7.

Theorem 3.11. ([53, 1.3], [48, Prop. 7]) A ring R is right coherent iff every
right ideal of the form F (RR) with F a finitely presented subfunctor of (RR,−) ∈
(R-mod,Ab) is finitely generated.

Now we prove 3.4 in this case.

Proposition 3.12. Let R be right coherent. Then the Gabriel-Zariski topology
on injR coincides with the topology induced from the rep-Zariski topology on
pinjR. That is, we may regard GZspec(R) as a subspace of ZarR.

Proof. One direction needs no assumption on R: given A ∈ mod-R, the basic
Gabriel-Zariski-open set [A] = {E ∈ injR : (A,E) = 0} is just the intersection
of the basic rep-Zariski-open set [(A,−)] with injR ⊆ pinjR.

For the other direction, given F ∈ (R-mod,Ab)fp we have, see just after
3.6, the basic rep-Zariski-open set [F ] = {N ∈ pinjR : (F,N ⊗ −) = 0} =
{N ∈ pinjR :

−→
dF (N) = 0} by 3.6. Since every finitely presented functor is the

quotient of two finitely generated subfunctors of some power of the forgetful
functor we have dF ' DG/DH for some finitely generated G ≤ H ≤ (RRn,−)
for some n. It follows from 3.10 that for E ∈ injR,

−→
dF (E) = annEI/annEJ

for some right ideals I, J which, by 3.11 are finitely generated. Hence, by 3.9,
{E ∈ injR :

−→
dF (E) = 0} = [J/I]. Since J/I is finitely presented this is a basic

Gabriel-Zariski open set, as required.

In general injR is neither an open nor closed subset of ZarR; compare with
the comment regarding the Ziegler topology after 3.4. It is enough to take
R = Z. To see that injZ is not closed, just note that Zp ∈ Zar-cl(Q) according
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to the list after 5.2. To see that it is not open, again just check the list after
5.2, and note that it is not the case that every injective point has an open
neighbourhood completely contained in injZ. The same will be true for any PI
Dedekind domain with infinitely many primes.

4 Associated structure

4.1 The presheaf structure

Let C be a locally coherent abelian category. We define a presheaf of localisations
over Zar(C). In fact, as for the usual definition of the structure sheaf of an affine
algebraic variety, we define a presheaf just on a basis: that is enough data for
the sheafification process. A difference is that, even on the basis, what we define
here is a presheaf rather than a sheaf: one may have a basic open set U = V ∪W
where V,W are basic open and disjoint yet with the set of sections over U not
equal to the product of that over V with that over W (see after 5.4).

Let A ∈ Cfp, so [A] = {E ∈ inj(C) : (A,E) = 0} is basic open in Zar(C). Let
τ[A] = cog([A]) denote the torsion theory on C cogenerated by this set. This
torsion theory is, since the torsion class is generated by the finitely presented
object A, of finite type. If B ∈ Cfp with [B] ⊆ [A] then T[B] ⊇ T[A] so the
localisation C → C[B] factors through C → C[A]. Thus we obtain the presheaf
(on a basis) of finite-type localisations of C.

This is a presheaf of large categories. By 2.1 there is induced a presheaf
of localisations of Cfp - a somewhat smaller object. Note that this is just the
presheaf of quotients of Cfp by its Serre subcategories.

Because functors between categories are often defined only up to natural
equivalence there is the issue of whether we do have precise commutativity
of restriction. That is, if [A] ⊇ [B] ⊇ [C] then is localisation from C[A] to C[B]

followed by localisation from C[B] to C[C] equal to, or only naturally equivalent to,
localisation from C[A] to C[C]? At least for current purposes, we can have exact
commutativity, hence avoid introducing more sophisticated concepts, provided
we use the definition of the localised category as being the original category on
objects but with modified morphism sets as at [10, p. 365].

We will refer to this structure, regarded as a presheaf of localisations of Cfp,
as the finite type presheaf on C, denoting it by FT(C) and its sheafification
by LFT(C). If C has the form Mod-A for some skeletally small preadditive
category A then we will write (L)FTA for the subpresheaf which has for its
values, not the finite-type localisations of Cfp but the image, induced by the
Yoneda-embedding of A in Mod-A, of A in these. In particular if A is a ring R
then the larger presheaf has, for its values, various localisations of mod-R and
the smaller has rings, various localisations of R, for its values. We will see, 4.7,
that if R is commutative noetherian then FTR = OSpec(R), the usual structure
sheaf.
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In the case where C = (R-mod,Ab), so the space is the rep-Zariski spectrum,
ZarR, of a ring R, there is another interpretation of this presheaf, in terms of
definable scalars with respect to definable subcategories.

4.2 Definable subcategories and rings of definable scalars

Let A be a skeletally small preadditive category. A subcategory of Mod-A is said
to be definable if it is closed in Mod-A under products, pure submodules and
direct limits. The terminology “definable” reflects the model-theoretic origin of
interest in these.

If F ∈ (A-mod,Ab)fp then those M ∈ Mod-A such that (F,M ⊗ −) = 0
are easily seen to form a definable subcategory. More generally, for any H ⊆
(A-mod,Ab)fp those M such that (H,M ⊗ −) = 0 for every H ∈ H form a
definable subcategory of Mod-A. In fact, this relation gives a bijection between
Serre subcategories of (A-mod,Ab)fp and definable subcategories of Mod-A.
Equally there is a bijection with closed subsets, X, of ZgA. Namely to X
associate the subcategory of Mod-A consisting of all those right A-modules M
such that M ⊗− is cogenerated by the set of N ⊗− with N ∈ X. To get from
a definable subcategory of Mod-A to a closed subset of ZgA, just intersect with
ZgA (4.2).

Theorem 4.1. For any small preadditive category A there are natural bijections
between:
the definable subcategories of Mod-A;
Serre subcategories of (A-mod,Ab)fp;
closed subsets of ZgA.

By 3.6 these are also in natural bijection with the Serre subcategories of
(mod-A,Ab)fp and hence also with definable subcategories of A-Mod and closed
subsets of AZg.

Theorem 4.2. [52, 4.10] A subset of ZgA is closed in the Ziegler topology iff
it has the form X ∩ ZgA for some definable subcategory X of Mod-A.
In this case X is the definable subcategory generated by the modules in X, that
is, the closure of X under products, direct limits and pure submodules.

To every module MA is associated a closed subset, supp(M), of ZgA, called
the support of M and defined by supp(M) = {N ∈ ZgA : Hom(F,N ⊗ −) =
0 for all F ∈ (A-mod,Ab)fp such that Hom(F,M⊗−) = 0}. Equivalently, N ∈
pinjA is in supp(M) iff N is in the definable subcategory of Mod-A generated
by M .

Let us now suppose, mainly for ease of statement, that A is a ring R. So we
have the distinguished object (RR,−), the forgetful functor, in (R-mod,Ab)fp.
If τ is any finite type torsion theory on (R-mod,Ab) then we may consider
the endomorphism ring, End

(
(RR,−)τ

)
, of the localisation of this functor at τ .
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Note that, since End(RR,−) ' Rop (if the action is written on the left), there
is a natural ring morphism Rop → End

(
(RR,−)τ

)
induced by the localisation

functor. If τ corresponds to the definable subcategory X of Mod-R then write
RX for the opposite of End

(
(RR,−)τ

)
and call it the ring of definable scalars

of X . Equivalently, in view of 3.6, and perhaps more naturally, we can define
RX to be the endomorphism ring of the localisation of (RR,−) at the finite
type torsion theory on (mod-R,Ab) dual to τ . If M is a right R-module which
generates the definable subcategory X , equivalently if supp(M) = X, then we
write RM and call this the ring of definable scalars of M .

The terminology, which comes from model theory, is explained as follows.
To each definable subcategory X of Mod-R there corresponds the ring, under
pointwise addition and composition, of all those additive relations which are
definable in the natural first-order language of R-modules and which well-define
a function on each member of X (equivalently, on each member of X or, in-
deed, on any generating set). Of course the action of each element r ∈ R, the
multiplication-by-r map, is definable in this sense so there is a natural morphism
of rings R→ RX . This ring is exactly the ring of definable scalars of X .

This does also make sense with a small preadditive category A in place of
the ring R, via the Yoneda embedding of A into its module category and the
further Yoneda embedding into the functor category.

Actually, the whole localised category of finitely presented functors has a
model-theoretic interpretation as the category of “pp-imaginaries” of X , see
[41].

Thus the ring of definable scalars associated to a definable subcategory/an
R-module is a kind of localisation of R, but one representation level up: it is
a localisation of the corresponding functor, rather than of the ring itself. The
resulting “localisations” do include classical localisations of R, see 4.10.

We may also obtain this ring as the biendomorphism ring of a suitably large
module.

Theorem 4.3. ([34, 4.3], see [5]) If X is a closed subset of ZgR then the
corresponding ring, RX , of definable scalars is the biendomorphism ring of any
pure-injective module N which satisfies the conditions: supp(N) = X; (N ⊗−)
cogenerates the corresponding finite type torsion theory on (R-mod,Ab); N is
cyclic over its endomorphism ring.

If M is any module then every definable scalar of M is a biendomorphism.
If M is of finite endolength, that is, of finite length over End(M), then the
rings are equal.

Proposition 4.4. ([34, A1.5], [5, 3.6]) If M is a module of finite endolength
then its ring of definable scalars coincides with its biendomorphism ring.

By way of contrast, the biendomorphism ring of the Prüfer group Zp∞ is
the ring, Z(p), of p-adic integers whereas the ring of definable scalars of Zp∞ is
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just the localisation Z(p). The same goes for Z(p) regarded as a Z(p)-module,
though, if Z(p) is regarded as a Z(p)-module, then the two rings will coincide
(more actions are (finitely) definable over Z(p) than over Z(p)).

Theorem 4.5. ([35], [34, A4.4] for the last statement) If f : R −→ S is an
epimorphism of rings then Mod-S, regarded as a subcategory of Mod-R via f , is
definable. Also ZarS may be identified with the subset Mod-S ∩ ZarR of ZarR,
and the ring of definable scalars of this Ziegler-closed closed subset is precisely
S, regarded as an R-algebra via f . Moreover, if S is regarded as an R-module
via f then the ring of definable scalars of SR is exactly S.

4.3 The sheaf of locally definable scalars

Recall that each basic open set X = [F ] of ZarR is Ziegler-closed. So we
have a presheaf on this basis which assigns to [F ] the corresponding ring of
definable scalars, R[F ]. We call this the presheaf of definable scalars of R
and denote it DefR. It follows direct from the definitions that it is a separated
presheaf, hence embeds in its sheafification, which we call the sheaf of locally
definable scalars and denote LDefR. Observe that this is just a small part of
the presheaf, FT(mod-A,Ab), of small categories, namely the thread given by
the localisations of the forgetful functor.

As remarked already, even in ‘nice’ cases, DefR will be a presheaf, rather
than a sheaf, though, in many examples, significant parts of it will have the
gluing property.

4.4 The Zariski spectrum through representations

Recall the definition of the Zariski spectrum, Spec(R), of a commutative ring
R. The points are the prime ideals of R and a basis of open sets for the topology
is given by the sets D(r) = {P ∈ Spec(R) : r /∈ P} for r ∈ R.

Assuming now that R is commutative noetherian, we recall how the spectrum
may be defined ([10]) purely in terms of the category, Mod-R, of R-modules.

Each point P ∈ Spec(R) is replaced by the injective hull, EP = E(R/P ), of
the corresponding quotient module R/P. Because P is prime EP is indecompos-
able and every indecomposable injective is isomorphic to one of this form. So,
for R commutative noetherian, we have a natural bijection Spec(R)↔ injR.

As for the topology, under this bijection D(r) corresponds to

[R/rR] = {E ∈ injR : Hom(R/rR,E) = 0}.

For, if r ∈ R \ P and if f : R/rR −→ EP then annR(f(1 + rR)) ≥ rR and
so, since P is the unique maximal annihilator, ass(EP ), of non-zero elements of
EP (see the proof of 6.2), it must be that f(1 + rR) = 0 hence f = 0. For the
converse, if r ∈ P then the canonical surjection from R/rR to R/P followed by
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inclusion is a non-zero morphism from R/rR to EP . It follows by 3.1 that this
is just the Gabriel-Zariski topology which we defined earlier.

Theorem 4.6. Let R be a commutative noetherian ring. Then Zar(Mod-R)
is naturally homeomorphic to Spec(R). The bijection is given by P 7→ E(R/P )
and E 7→ ass(E).

The above statement rather begs the question of whether it applies to ar-
bitrary commutative rings and we do consider these in Section 6, showing that
one obtains almost the same result if R is commutative and coherent.

This result also holds for FBN rings. The main difference between this and
the commutative case is that if P is a prime ideal then E(R/P ) need not be
indecomposable. It will, however, be a direct sum of finitely many copies of a
unique indecomposable injective and this is enough.

Next we check that our presheaf of definable scalars, if restricted to injR
when R is commutative noetherian, is isomorphic as a ringed space to the usual
structure sheaf OX , X = Spec(R).

That structure sheaf associates to a basic open set D(r) (r not nilpotent) of
Spec(R) the ring OXD(r) = R[r−1] - the localisation of R obtained by inverting
r ∈ R - and the restriction maps are just the canonical localisation maps. This
presheaf defined on a basis extends to a sheaf on the space, see e.g. [51, 4.2.6],
[19, Section II.2], indeed a sheaf of local rings, with the stalk at a prime P being
the localisation, R(P ), of R at P.

Recall that, given any presheaf F on a topological space T and given any
point t ∈ T the stalk of F at t is defined to be Ft = lim−→{F (U) : t ∈
U and U is open}. If U0 is a basis for the topology then clearly Ft = lim−→{F (U) :
t ∈ U ∈ U0} so it is enough to know, or to have defined, the presheaf on a basis
of open sets.

Given r ∈ R, consider the torsion theory on Mod-R cogenerated by the set
[R/rR] of indecomposable injectives. Since every hereditary torsion theory over
a (right) noetherian ring is of finite type this is the torsion theory previously
denoted by τ[R/rR] and it is easy to check that the localisation of R at this
torsion theory is precisely R[r−1], as required.

Proposition 4.7. If R is commutative noetherian then the torsion-theoretic
presheaf, FTR defined earlier coincides with the usual structure (pre)sheaf OSpec(R).
More precisely, the bijection P 7→ EP induces an isomorphism of ringed spaces(
Spec(R),OSpec(R)

)
'

(
GZSpec(R),FTR

)
.

Proposition 4.8. ([34, C1.1], see [37, 3.1]) Let A be a small preadditive cat-
egory and let E ∈ injA. Then the stalk of the presheaf, FTA at E is the local-
isation of A at the torsion theory of finite type corresponding to E. Here we
identify A with its image in Mod-A under the Yoneda embedding A 7→ (−, A).

In particular, taking A = R-mod where R is a ring, if N ∈ ZarR then the
stalk of the presheaf, DefR, of definable scalars at N is the ring of definable
scalars at N : (DefR)N = RN .
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It is the case, see [52, 5.4] or [33, 2.Z.8], that if N is any indecomposable
pure-injective then the multiplications by elements of the centre, C(R), of R,
which are not automorphisms of N form a prime ideal of C(R). So there is a
prime ideal, P = P (N), of C(R) such that N is a module over the localisation of
R obtained by inverting the elements of C(R)\P . The same applies to the stalk
RN of the presheaf of definable scalars at N , so there is the following result.

Theorem 4.9. ([34, D1.1], see [37, 6.1]) The centre of the presheaf of definable
scalars is a presheaf of commutative local rings.

The following result is [34, A1.7] and is also given a proof avoiding model
theory (but still using pp conditions) in [41]

Theorem 4.10. Let R be any ring and let τ be a torsion theory of finite type on
Mod-R. Set E = Fτ ∩ injR ⊆ ZarR to be the corresponding set of indecomposable
torsionfree injectives. Then the torsion-theoretic localisation, Rτ , of R at τ
coincides, as an R-algebra, with the ring of definable scalars, RE , of E.

This, together with the comments at the beginning of the section, shows that
if R is commutative noetherian then the embedding of injR into pinjR discussed
in Section 3.2 extends to an embedding of the usual structure sheaf into the
presheaf of definable scalars.

4.5 Lattices

We may order torsion theories by τ ≤ µ iff Tτ ⊆ Tµ. Let FTT(C) denote the set
of finite type torsion theories on C with this ordering.

Remark 4.11. If C is locally coherent then FTT(C) is a complete lattice.

The intersection of a set of Serre subcategories is Serre so this is clear since,
for any finite type torsion theory τ , the class Tτ is determined by the Serre
subcategory Tτ ∩ Cfp of Cfp. In terms of cogenerating sets of injectives; given a
set {τi}i of finite type torsion theories, let Ei denote the corresponding sets of
torsionfree indecomposable injectives; then the torsion theory cogenerated by⋂

i Eλ is the supremum of the τi. The infimum of this set is the torsion theory
cogenerated by the closure of

⋃
i Ei under taking indecomposable summands

of direct products. It is easy to find examples which show that this closure
operation on sets of indecomposable injectives may be non-trivial. For instance
take τi = cog(Ni ⊗ −) where the Ni form an infinite set of non-isomorphic
indecomposable finite-dimensional modules over a finite-dimensional algebra R.
Here the Ni⊗− are regarded as, indecomposable, injective, objects of the functor
category C = (R-Mod,Ab). The torsion theory that they generate must contain
at least one indecomposable injective of the form N ⊗− where N is an infinite-
dimensional indecomposable module. This follows since this is an infinite set of
isolated points of the Ziegler spectrum, which is compact (see [33]).
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If A ∈ Cfp then it is clear that A belongs to the torsion class generated by a
union

⋃
i Ti iff it belongs to the torsion class generated by finitely many of the Ti.

Therefore the torsion theory gen(A), which has torsion class the closure under
direct limits of the Serre subcategory generated by A, is a compact element
of the lattice FTT(C). If T is a finite type torsion class T =

∨
A∈T gen(A)

so the converse follows. That is, the (
∨

-)compact elements of FTT(C) are the
gen(A) with A ∈ Cfp. If we equip FTT(C) with the topology which has, as basic
open sets, the intervals [τ, 1], where τ is compact and where 1 is the torsion
theory with torsion class C, then the resulting locale is isomorphic to that of
the Gabriel-Zariski topology defined above. Note ([15]) that FTT is, with meet
for the multiplication, an ideal lattice in the sense of [4].

5 Examples

We describe the rep-Zariski spectrum and the presheaf of definable scalars for
various rings.

5.1 The rep-Zariski spectrum of a PI Dedekind domain

The class of Dedekind domains includes both the ring of integers Z and the
archetypal tame algebra k[X] where k is a field. What we say here extends with
essentially no extra work to those non-commutative Dedekind domains which
satisfy a polynomial identity, so we work in that generality.

First we need the points of the space: the indecomposable pure-injective
modules. For R = Z this goes back to Kaplansky [23] and the general case is
much the same (see, [52], [27], [36]).

As said already, if N is an indecomposable pure-injective R-module then the
elements of the centre, C(R), of R which do not act as automorphisms of N form
a prime ideal P = P (N), so N is a module over the corresponding localisation
of R. This allows 5.2 below to be proved by reducing to the ‘local’ case, since
there is, for such a ring, see [29, 13.7.9], a bijection between the (prime) ideals
of the centre and the (prime) ideals of the ring.
Remark 5.1. Let R be a PI Dedekind domain, with centre C(R). The bijection
P 7→ P ∩ C(R) between Spec(R) and Spec(C(R)) induces a homeomorphism
ZarR ' ZarC(R) by the comment after 4.6 and since PI implies FBN.

Theorem 5.2. ([27], [36, 1.6]) Let R be a PI Dedekind domain. The points
of ZarR are the following where in each case P ranges over the non-zero, thus
maximal, primes of R:
• the indecomposable modules, R/Pn, of finite length, for n ≥ 1;
• the completion, RP = lim←−n

R/Pn, of R in the P -adic topology; we call these
adic modules;
• the Prüfer modules RP∞ = E(R/P );
• the quotient division ring, Q = Q(R), of R.
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Since any Dedekind prime ring is Morita equivalent to a Dedekind domain
([29, 5.2.12]) this and what we say below apply equally well to such rings, since
everything involved is Morita-invariant.

Now we describe the topology on ZarR by giving a basis of open neighbour-
hoods at each point. Of course, to do this we need to know something about
the finitely presented functors. This information is in the literature, though in
most sources it is expressed in terms of ‘pp-formulas’ (we explain what these
are in Section 7).

Over these rings all finitely presented functors in (mod-R,Ab), and their
extensions

−→
F as in 3.6, are, in a sense which may be made precise (e.g. see [33,

2.Z.1] or [45, Section 2.2]), built up from annihilator and divisibility conditions.
It is easy to check that, for each element r ∈ R, both the functors given on
objects by M 7→Mr and M 7→ annM (r) are finitely presented. Note that these
are subfunctors of the forgetful functor. If L is a finitely generated (by s1, . . . , sl)
left ideal then the functor M 7→ML is finitely presented, being the sum of the
functors M 7→Msj . If I is a finitely generated (by r1, . . . , rm) right ideal then
the functor M 7→ annM (I) also is finitely presented, being the intersection of
the functors M 7→ annM (ri); since every finitely presented functor is coherent,
such an intersection will again be finitely presented. We will use a fairly obvious
notation, writing [

−→
F M ] instead of [F ], with M as a dummy variable, in referring

to such functors and their quotients.

• R/Pn: This point is isolated by the open set [MPn] ∩ [ann(P )/(MPn−1 ∩
ann(P ))]. We go through the details. The open set [MPn] contains exactly those
indecomposable pure-injectives N satisfying NPn = 0, namely R/P,R/P 2, . . . , R/Pn.
The open set [ann(P )/(MPn−1∩ann(P ))] contains exactly those N with annN (P ) ≤
NPn−1 and, on consulting the list, one sees that this defines the set {R/Pn, R/Pn+1, . . . , RP∞}.
The intersection of these two open sets is exactly {R/Pn}, as claimed. Similar
checks below are left to the reader.

• RP : First, there is a neighbourhood which excludes all points associated to
the prime P apart from RP itself, namely [ann(P )]. Then, given finitely many
non-zero primes Q1, . . . , Qk different from P there is a neighbourhood of RP

which excludes all points associated to those primes, namely
⋂k

i=1([M/MQi] ∩
[ann(Qi)]). We cannot exclude points associated to more than finitely many
primes since, otherwise, looking at the Zariski-closed=Ziegler-open set com-
plementary to such a basic neighbourhood, we could express a basic (so, 3.3,
compact) Ziegler-open set as a union of infinitely many proper open subsets,
one for each of the excluded primes. Therefore a basis consists of the sets given
by ‘finite localisation’, i.e. removing all trace of finitely many other primes, then
removing all other points associated to P .

If R has only finitely many primes then there is a minimal neighbourhood,
{RP , Q}.
•RP∞ : The comments for RP apply here also (alternatively use duality, see after
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3.8) and the sets [M/MP ]∩
⋂k

i=1([M/MQi]∩ [ann(Qi)]), where Q1, . . . , Qk are
any non-zero primes of R different from P , form a basis of open neighbourhoods.

• Q: Again, ‘finite localisation’ allows us to remove all trace of any finitely many
non-zero primes but, for the same reasons as before, no more. So, if R has only
finitely many primes then Q is an open point.

Observe that ZarR, provided R is not a division ring, is not compact: it is
the union of the sets [M/MP ], [ann(P )] and the [MPn] ∩ [ann(P )/(MPn−1 ∩
ann(P ))] for P prime and n ≥ 1 and there is no finite subcover.

With this description to hand one may check that the following is true.

Proposition 5.3. Let R be a PI Dedekind domain. The isolated points of ZarR

are precisely the points of finite length, except in the case where R has only
finitely many primes, in which case the generic point Q also is isolated. Every
point of ZarR, apart from Q, is closed.

Taking the simplest example, that of a local ring, say k[X](X) or k[[X]],
one may compare ZarR and Spec(R). The latter has two points: the maximal
ideal, which is closed, together with the generic point, which is not. In ZarR

the maximal ideal is ‘doubled’ and the ‘extra’ points in ZarR compared with
Spec(R) - the finite length modules k[X]/(Xn) - all are clopen.

As already remarked, since these rings are PI the Zariski spectrum in the
usual sense is embedded via the indecomposable injective modules.

Denote by ZarfR the open set of points of ZarR of finite length. Then if
R is a PI Dedekind domain with infinitely many primes ZarfR is Zariski-dense
in ZarR. For, from the list above, every open neighbourhood of every infinite
length point contains a point of finite length. In particular, ZarfR is exactly the
set of isolated points of ZarR.

Denote by Zar1R the set ZarR \ ZarfR of points of infinite length and endow
this with the topology inherited from ZarR. Since ZarfR coincides with the set
of all isolated points, Zar1R also equals the first Cantor-Bendixson derivative of
ZarR. From the description of open neighbourhoods we deduce that if R is a PI
Dedekind domain, with division ring of quotients Q then the non-empty Zariski-
open subsets of Zar1R are exactly the cofinite sets which contain the generic point
Q.

Now we turn to computing rings of definable scalars. The rings of definable
scalars of individual points (see 4.8) are as follows.

• The ring of definable scalars of the module R/Pn (P a non-zero prime) is
the ring R/Pn: for the module has finite endolength and hence (4.4) its ring of
definable scalars coincides with its biendomorphism ring, which is R/Pn.

• If N is the P -adic or P -Prüfer module then the ring of definable scalars RN

is the localisation, R(P ), of R at P . This follows by 4.8 for the Prüfer module
and then directly, or using duality [20, 6.2] and 3.8, for the adic case.
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• If N is the generic point, Q, then RN is the ring Q, again by 4.4 since N
has finite endolength and Biend(QR) = Q because R −→ Q is an epimorphism
of rings.

For any subset, P, of the set, maxspec(R), of maximal ideals of R, let
U(P) = {N ∈ ZarR : P (N) /∈ P}. Denote by R[P−1] the localisation of R at
maxspec(R) \ P, that is, R[S−1] where S = C(R) \ {Q ∈ maxspec(R) : Q /∈ P}
(\{0} if P = maxspec(R)). Since the canonical map R −→ R[P−1] is a ring
epimorphism, we have, see 4.5, that U(P) = ZgR[S−1] ⊆ ZgR is a Ziegler-
closed subset of ZgR. In the case that P is a finite subset of maxspec(R) then
U(P) is Zariski-open, being, in the notation introduced earlier,

⋂
P∈P([ann(P )]∩

[M/MP ]).
We compute the presheaf of definable scalars. The following result is imme-

diate from 4.10.

Corollary 5.4. Let R be a PI Dedekind domain and let P be a finite subset of
maxspec(R). Then the ring of definable scalars over the corresponding Zariski-
open subset, U(P), of ZarR is the localisation, R[P−1], of R. Furthermore, if
P ⊆ P ′, then the restriction map from RU(P) to RU(P′) is the natural embedding
between these localisations of R.

Corollary 5.4 gives all the information that we need to compute the sheafifi-
cation, LDefR, of the presheaf of definable scalars. We will describe, by way of
example, the ring of definable scalars and the ring of sections, that is, the ring
of locally definable scalars, over some basic open subsets of ZarR.

• If U = {R/Pn1
1 , . . . , R/Pnt

t } where the primes P1, . . . , Pt are all distinct,
then LDefR(U) = R/Pn1

1 × · · · ×R/Pnt
t = R/(Pn1

1 . . . Pnt
t ).

• If U = {R/Pm, R/Pn} with n ≥ m then RU = R/Pn. For by 4.4, RU

is Biend(R/Pm ⊕ R/Pn) and, noting that there is the endomorphism of this
module projecting the second component on to the first, one easily computes
that this is R/Pn. Since the set U has the discrete topology, LDefR(U) is the
direct product R/Pm×R/Pn and so we see that the presheaf of definable scalars
is not a sheaf even on those open sets where it is defined.

• RU for U an arbitrary finite set of finite length points is given by combining
the above observations.

• Let U = ZarR \ {N1, . . . , Nt} where each Ni is an adic or Prüfer module.
Then RU = RV where V is the smallest set of the form U(P) which contains
U , that is, provided at least one of the P -adic, P -Prüfer is in U then P cannot
be inverted over U . The presence in U of infinitely many finite length, hence
isolated, points means that the ring of locally definable scalars, LDefR(U), is
rather large. It makes sense, therefore, to throw away these isolated points, see
below.

• Consider the special (but illustrative) case, R = k[X], U = U(〈X〉) ∪
{R/〈X〉)}. A module with support U which, being basic Zariski-open, also is

20



Ziegler-closed, is k[X, X−1]⊕ (k[X]/〈X〉), so we have to compute the definable
scalars on this module. By 4.3 this is the biendomorphism ring of a module
of the form M ⊕M ′ where M , respectively M ′, is a ‘large enough’ module in
the definable subcategory generated by k[X, X−1], resp. by k[X]/〈X〉. Since
Hom(M,M ′) = 0 = Hom(M ′,M) the endomorphism ring of this module is just
the block-diagonal matrix ring diag(End(MR),End(M ′

R)) and hence the biendo-
morphism ring is just the block-diagonal matrix ring diag(k[X, X−1], k[X]/〈X〉)
- that is, the direct product of these rings.

Now we compute the sheaf of locally definable scalars restricted to the set,
Zar1R, obtained by throwing away the finite length points. Since Zar1R is not
Zariski-open, we need the following observations concerning restriction. Define
LDef1R to be the inverse image sheaf of LDefR under the inclusion of Zar1R
in ZarR: by definition (e.g. see [19, p. 65]) this is the sheaf associated to the
presheaf which assigns to a relatively open subset U ∩ Zar1R of Zar1R, where U
is a Zariski-open subset of ZarR, the direct limit of the rings LDefR(V ) as V
ranges over Zariski-open subsets of ZarR with V ⊇ U ∩ Zar1R. If U ∩ Zar1R =
Zar1R \ {N1, . . . , Nt} let V be the set of all points of ZarR except those which
belong to a prime P such that both the P -adic and P -Prüfer appear among
N1, . . . , Nt, that is, V is the smallest set of the form U(P) which contains U .
Then, by the computations above, this limit is already equal to RV and hence
this presheaf is already a sheaf. Thus we have the following description of LDef1.

Proposition 5.5. Let R be a PI Dedekind domain and let Zar1R be the set
of infinite-length points, regarded as a subspace of ZarR. Let LDefR denote
the sheaf of locally definable scalars over ZarR. Then the inverse image sheaf,
LDef1R, on Zar1R may be computed as follows. Given a Zariski-open subset U of
ZarR, let V be smallest set of the form U(P) which contains U . Then LDef1R(U∩
Zar1R) = LDefR(V ) = R[P−1] and the restriction maps are those of LDefR, that
is, the canonical localisation maps.

In particular, the ring of definable scalars, RZar1R
, of Zar1R is R itself.

The sheaf LDef1R is ‘unseparated’ in the sense that it contains points N ,N ′

such that U is an open neighbourhood of N iff (U \ {N}) ∪ {N ′} is an open
neighbourhood of N ′: take the Prüfer and adic associated to any maximal prime.
In order to recover the ‘classical’ situation we have to identify corresponding
adic and Prüfer points. So let α : Zar1R −→ Zar1R be the map of 3.8 which
interchanges the P -adic and P -Prüfer point for every P and which fixes the
generic point.

Corollary 5.6. The map α : Zar1R −→ Zar1R is a homeomorphism of order 2
and LDef1R ' α?LDef1R ' α?LDef1R where α?, α? denote the inverse image and
direct image sheaves respectively (see [19], [51]).

Proof. From the description of the topology it is clear that α is a homeomor-
phism. For any basic Zariski-open set, U , of Zar1R we have, again by what
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has been said above, RU ' RαU and so the isomorphisms are direct from the
definitions.

We can, therefore, form the quotient space Zar1R/α of α-orbits and the cor-
responding sheaf LDef1R/α over this space, thus obtaining a ringed space with
centre isomorphic, via the identification of Spec(R) with Spec(C(R)), to the
structure sheaf over the commutative Dedekind domain C(R).

5.2 The rep-Zariski spectrum of a PI hereditary order

A PI hereditary order is a hereditary ring which is an order in a simple
artinian ring, equivalently a PI hereditary noetherian prime ring (see [29]).
Here we note that the results of the previous section generalise to such rings.
There is little to check since, by [36, Section 3], the description of the Ziegler
spectrum, points and topology, and hence of the, dual, Zariski topology, is just
as in the case of a PI Dedekind domain. In particular to every point, N , of
ZarR is associated a prime ideal, P (N), of R. The only significant difference is
that if the ring R is not a Dedekind prime ring then the map from Spec(R) to
Spec(C(R)) given by intersecting a prime ideal with the centre is not 1-1. So
it is essential here to use Spec(R), rather than Spec(C(R)), to parametrise the
primes.

Example 5.7. Let R be the ring
(

Z 2Z
Z Z

)
- a non-maximal order in the simple

artinian ring A =
( Q Q

Q Q
)
. For each non-zero prime p ∈ Z, p 6= 2, we have

the corresponding prime ideal Pp =
( pZ 2pZ

pZ pZ
)
, and the corresponding p-adic and

p-Prüfer modules, which may be regarded as (Z̄(p), Z̄(p)) and (Zp∞ , Zp∞) respec-
tively, as well as the finite length indecomposable modules, R/Pn, associated
to P .

Corresponding to the prime p = 2, there are two prime ideals of R, P1 =(
Z 2Z
Z 2Z

)
and P2 =

(
2Z 2Z
Z Z

)
with corresponding simple modules Si = R/Pi and

with Ext(Si, S3−i) 6= 0 for i = 1, 2. The P1-adic module has a unique infinite
descending chain of submodules with simple composition factors S1,S2 alter-
nating and starting with S1. Dually the P1-Prüfer module N is the injective
module with socle S1, soc(N/S1) = S2, (N/S1)/soc(N/S1) ' N . Similarly for
P2.

First we have to compute rings of definable scalars. These are obtained for
primes P belonging to singleton cliques, in the sense of [7], by localising just as
in the Dedekind prime case. For the other primes we use universal localisation,
as in [7] (alternatively, as mentioned there, Goodearl’s localisation from [16]), to
obtain the corresponding Prüfer and adic modules. We give an example below
for illustration. Beyond this, the description of the presheaf of definable scalars
and the corresponding sheaf, both on ZarR and on Zar1R, is as before, using
the fact that if R −→ S is an epimorphism of rings then, in addition to the
induced homeomorphic embedding of ZarS into ZarR (4.5), there is induced an
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embedding of LDefS , ‘up to Morita equivalence’ into LDefR. This follows from
the argument of [37, Section 8]. Recall that every universal localisation is an
epimorphism of rings.

We continue Example 5.7, retaining the notation, and compute the various
rings of definable scalars.

Corresponding to the prime Pp there is the ring of definable scalars
( Z(p) Z(p)

Z(p) Z(p)

)
,

which is a maximal order in A.
The rings of definable scalars corresponding to P1 and P2 may be computed

using [16, first paragraphs of Section 2]. Explicitly, and adopting the notation of
that paper, we remove the simple module S1 by localising at X1 = {P2}∪ {Pp :
p 6= 2}. Let S1 be the set of essential right ideals I of R such that none of R/P2,
R/Pp (p 6= 2) occurs as a composition factor of R/I. Note that P1 ∈ S1. Let
R(1) denote the localisation of R at the torsion theory which has S1 as dense
set of right ideals. Then, [16], R(1) = {a ∈ M2(Q) : aI ≤ R for some I ∈ S1}.
One checks that R(1) =

(
Z Z
Z Z

)
. Similarly, if R(2) denotes the ring obtained by

localising away S2 then one checks that R(2) =
( Z 2Z

(1/2)Z Z
)
. Hence the ring of

definable scalars at P1 is
( Z(2) Z(2)

Z(2) Z(2)

)
and that at P2 is

( Z(2) 2Z(2)

(1/2)Z(2) Z(2)

)
. Notice

that, as rings, though not as R-algebras, these are isomorphic (by the map
taking

(
a b
c d

)
to

(
a 2b

c/2 d

)
).

One way of regarding this is that we have two epimorphisms from R to the
maximal order M2(Z). The corresponding Ziegler-closed and, one may check,
Zariski-open, sets cover ZarR. So LDefR is covered by two very much overlap-
ping copies of ‘M2(LDefZ)’.

Proposition 5.8. Let R be a hereditary order. Then the presheaf of definable
scalars over Zar1R is already a sheaf.

Proof. Take an open cover {Ui}i of Zar1R, say Ui = Zar1R \ Yi, where Yi is any
finite subset of Zar1R which does not contain the generic Q, and let elements
si ∈ Ri = RUi be such that on Ui ∩ Uj = Zar1R \ {Yi ∪ Yj} we have si = sj = s,
say. Here we identify all the rings Ri with subrings of the full, simple artinian,
quotient ring of R, so this equality makes sense. We have s ∈ Ri ∩Rj and this
equals RUi∪Uj

since a prime P satisfies P.Ri∩Rj = Ri∩Rj iff both the P -Prüfer
and P -adic modules lie in both Yi and Yj , which is so iff P.RUi∪Uj

= RUi∪Uj
.

So now taking any finite subcover, say U1, . . . , Un, we deduce that s1 = · · · =
sn = s ∈ R = RZar1R

. Thus s is a global section which restricts on each Ui to si

and is already in the presheaf. The argument for an arbitrary basic open set is
similar, indeed reduces to this case by localisation.

Proposition 5.9. Suppose that R is a hereditary order. Let SpecR denote the
space of prime ideals of R with the Zariski topology and let π : Zar1R −→ SpecR
be the map which sends N ∈ Zar1R to P (N), the prime ideal of R associated with
N . Then the direct image, π?LDef1R, of LDef1R is a sheaf on SpecR which sends
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an open set U = SpecR \ Y , where Y is a finite subset of maxspecR, to the
localisation, in the sense of [16], of R at U and π?LDef1R may be identified with
LDef1R/α where α is the homeomorphism interchanging corresponding Prüfer
and adic points.

Proof. The direct image of a sheaf is always a sheaf (e.g. [51]) and the description
of the sheaf π?LDefR1 and its identification with LDefR1/α follows from the
previous discussion.

The underlying space, SpecR, of this sheaf may also be identified with the
space SpecsR (based on the set of simple modules) from [7], via S 7→ assE(S).
The sheaf SpecsR in [7] may, therefore be identified with the centre of LDef1R/α.

5.3 The rep-Zariski spectrum of a tame hereditary artin
algebra

If R is an artin algebra then every indecomposable module of finite length
is a point of pinjR. Therefore, one should not expect to be able to give a
complete description of ZarR for algebras which are of wild representation type.
Nevertheless, one may aim to describe parts of this space and, over some tame
rings, one may hope to give a complete description of the topological space and
of the associated (pre-)sheaf of rings.

Throughout this section let R be a tame hereditary artin algebra which
is not of finite representation type. (If R is of finite representation type then the
topology is discrete and rings of definable scalars are, 4.4, just biendomorphism
rings.) Also, without loss of generality, assume that R is connected (not a
proper direct product of rings).

We recall some facts about the points of ZarR and then we recall the de-
scription of the topology from [36], [47] (refer to these for more detail). For
terms not defined here one may consult, say, [46].

Proposition 5.10. [38, 2.21] Let N be an indecomposable finitely generated
module over the artin algebra R. Then N is both open and closed in ZarR.

Proof. It is known [33, 13.1], and follows from the existence of almost split
sequences over artin algebras, that N is Ziegler-open, hence Zariski-closed.

It is also the case that, over any ring, every point of finite endolength is
Ziegler-closed (essentially this goes back to [11, Theorem 13]) so {N}c is both
Ziegler-open and Ziegler-closed, hence compact, hence, by the description of
the Ziegler topology, of the form (F ) for some F . Therefore {N} = [F ], as
required.

Indeed, the open points are exactly those of finite length. These fall into
three disjoint sets: the set, P, of preprojective points, the set, R, of regular
points, and the set, I, of preinjective points.
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The set R, regarded as part of the Auslander-Reiten quiver of R, is a disjoint
union of ‘tubes’, each containing a finite number of quasisimple modules at its
base. All but finitely many tubes are homogeneous, that is, contain just one
quasisimple. (In Example 5.7 the prime p = 2 gives, in an analogous context,
a non-homogeneous tube, with two quasisimples, S1 and S2.) We denote the
tube (regarded as a set of modules) to which the quasisimple module S belongs
by T(S). Denote the coray of epimorphisms in T(S) ending at S by E(S) and
the ray of monomorphisms in T(S) beginning with S by M(S). The terms ‘ray’
and ‘coray’ here refer to the structure of the Auslander-Reiten quiver. To each
quasisimple S is associated the S-adic module P (S) which is the inverse limit
of E(S) and the S-Prüfer module E(S) which is the direct limit of M(S).

The modules P (S) and E(S), for S a quasisimple regular module, are points
of the spectrum and the only other infinite-dimensional point is the generic
module Q. We denote by Zar1R the set or space of infinite-dimensional (=non-
isolated) points. Thus, to each point N of R ∪ Zar1R, apart from the generic
point, we have an associated quasisimple module which we denote S(N). In this
context the quasi-simples play the role that primes did in the previous examples
(this is more than an analogy, see [7]). As in those cases, the process of ‘finite
localisation’, i.e. removal of all trace of finitely many primes/quasisimples lies
behind the description of neighbourhood bases. Given a set, S, of quasisimple
modules, let U(S) denote the set consisting of the generic point and all points
of R ∪ Zar1R which are associated to some quasisimple not in S.

The papers [36], [47] describe the Ziegler, rather than the rep-Zariski, topol-
ogy but, since the latter may be defined in terms of the former (3.5), one easily
deduces the following.

Theorem 5.11. [39] Let R be a tame hereditary artin algebra. A basis of open
sets for ZarR is as follows.
As for every artin algebra, the finite-dimensional points are open.
If N is S-adic or S-Prüfer then the sets of the form {N} ∪ U(S) where S is a
finite set of quasisimples, form a basis of open neighbourhoods for N .
The sets of the form U(S) where S is a finite set of quasisimples, form a basis
of open neighbourhoods for the generic point G.

In particular, it follows that the sets P and I are Zariski-closed so do not fig-
ure in the description of neighbourhood bases of the infinite-dimensional points.

The approach of [39] is based on the following result.

Theorem 5.12. ([49], [7]) Let R be a tame hereditary artin algebra.
(a) Let S be any set of quasisimple modules. Then the universal localisation,
RS , of R at S is a hereditary PI order which is a subring of the simple artinian
ring A obtained by taking S to be the set of all quasisimple modules.
(b) The localisation R −→ RS is an epimorphism of rings, and the image of the
inclusion functor Mod-RS −→ Mod-R is the full subcategory of all modules M
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which are orthogonal to S in the sense that Ext1(S, M) = 0 = Hom(S, M) for
all S ∈ S.

We have from 4.5 that the intersection of Mod-RS with pinjR is the Ziegler-
closed subset U(S) which, if S is finite, is basic Zariski-open, being defined by
the conditions Ext1(S,−) = 0 = Hom(S,−) for S ∈ S, and the ring of definable
scalars for this Zariski-open set is just RS . Using this, we may deduce the next
result.

Corollary 5.13. Let R be a tame hereditary artin algebra. A basis for the
Zariski topology on R ∪ Zar1R is the collection of sets of the form {N} with
N ∈ R together with the sets U(S) where S ranges over those finite sets of
quasisimple modules which, without loss of generality, contain all quasisimples
from at least one tube.

The restriction DefR � (R ∪ Zar1R) of the presheaf of definable scalars is
given on this basis by sending U(S) to the localisation R −→ RS and sending
any open subset of U(S) to the ring of definable scalars of the corresponding
subset, regarded as an open subset the rep-Zariski spectrum of the hereditary PI
order RS (see Section 5.2).

In particular, the ring of definable scalars of any member N of R∪Zar1R may
be computed by choosing a set S of quasisimples which contains all quasisimples
from at least one tube and does not contain the associated quasisimple module
S(N), localising R at S to obtain the hereditary order RS which, by choosing
U to contain all but at most one quasisimple from each inhomogeneous tube,
may be assumed to be a Dedekind prime ring and then computing the ring of
definable scalars of N , regarded as an RS -module.

Now let R be the Kronecker algebra Ã1(k) - the path algebra over a field k
of the quiver 1

((
66 2 . We give a more explicit description of the sheaf LDef1R

as a sheaf of hereditary (in fact, maximal) orders.
By 5.12, the full “quotient ring” of Ã1(k) is the ring, M2(k(X)), of 2 ×

2 matrices over the function field k(X). In order to maintain the symmetry
between the arrows α and β of Ã1(k) we represent k(X) in the form k(X0, X1)0
where the subscript denotes the 0-grade part of the quotient field of the graded
ring k[X0, X1]. Then there is a natural embedding of Ã1(k) into M2(k(X0, X1)0)
which takes e1 to

(
1 0
0 0

)
, e2 to

(
0 0
0 1

)
, α to

(
0 X0
0 0

)
and β to

(
0 X1
0 0

)
and, under

this embedding, the ring A of 5.12 may be identified with M2(k(X0, X1)0).
Let S0 (respectively S1) be the quasisimple module which satisfies S0X1 = 0

(resp. S1X0 = 0). Let Ri denote the localisation of R at Si (i = 0, 1). Let
Di be the Zariski-open subset of Zar1R, D = Zar1R ∩ [M/MX1−i] ∩ [ann(X1−i)]
(notation as in Section 5.1). Then the localisation map R −→ Ri identifies Di

with Zar1Ri
and LDef1R � Di with LDef1Ri

. Each of R0,R1 is isomorphic as a ring
to the polynomial ring over k in one indeterminate and the universal localisation
R0,1 of R at {S0, S1} (which corresponds to the intersection D0 ∩D1) is a ring
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isomorphic to k[T, T−1]. It is straightforward to compute these as subalgebras
of M2(k(X0, X1)0) and one obtains:

R0 =
(

k[X0X−1
1 ] kX1⊕X0k[X−1

1 X0]

X−1
1 k[X0X−1

1 ] k[X−1
1 X0]

)
;

R1 =
(

k[X1X−1
0 ] kX0⊕X1k[X−1

0 X1]

X−1
0 k[X1X−1

0 ] k[X−1
0 X1]

)
;

R0,1 =
(

k[X0X−1
1 ,X1X−1

0 ] X1k[X−1
0 X1]⊕X0k[X−1

1 X0]

X−1
1 k[X0X−1

1 ]⊕X−1
0 k[X1X−1

0 ] k[X−1
1 X0,X−1

0 X1]

)
=

(
k(X0,X1)0 k(X0,X1)1

k(X0,X1)−1 k(X0,X1)0

)
(where subscript denotes degree in the graded ring k(X0, X1)).

5.4 Other examples

Let R be the k-path algebra of one of the quivers Λn (n ≥ 2) shown:

1
α1

66
β1

((
2

γ1 // 3
α2

88
β2

&& . . .
αn−1

11

βn−1--
2n− 2

γn−1 // 2n− 1
αn

44

βn
**
2n

with relations βiγi = 0 = γiαi+1

The Ziegler and rep-Zariski spectra of these algebras were described in [6],
with Λ2 being treated in full detail, the others more briefly. To give these details
would take some technical setting up so we refer the reader to that paper and
make only a few remarks.

Corresponding to the n subquivers isomorphic to the Kronecker quiver Ã1

there are n rep-Zariski-open subsets each homeomorphic to ZarÃ1
. In particular

there are the n corresponding generic points (and no other generic points).
There are some other, discretely parametrised, infinite-dimensional points which
‘link’ these n open subsets (in the same way that they are linked in the quiver).
After the (open and closed) finite-dimensional points are removed, all other
points are generic, ‘linking’, adic or Prüfer. All these infinite-dimensional points,
except the generics, are closed. Roughly, after removing the finite-dimensional
points, we have n double-except-for-generics copies of the projective line over k
with some N-parametrised families of points linking them into a chain.

In particular, for each of these algebras the space, Zar1, of infinite-dimensional
points is one-dimensional in an algebraic-geometric sense. It is conjectured in
that paper that for a finite-dimensional algebra of infinite representation type
the ‘algebraic-geometric’ dimension of the space Zar1 will be either 1 or ∞; the
latter in the sense that it embeds algebraic varieties of arbitrarily high dimen-
sion.

It is shown in [37, Section 9] that wild algebras do have algebraic-geometric
dimension ∞ in this sense.

We also mention the first Weyl algebra, A1(k) where k is a field of charac-
teristic zero: this is a wild algebra [1] and the comment just above applies. One
may, however, look at parts of the spectrum, as is done, among other things,
in [43], where the relative topologies on injR, on the torsionfree indecomposable
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pure-injective modules, and on closures of some tubes are described for a class
of algebras (‘generalised Weyl algebras’) which includes A1(k).

6 The spectrum of a commutative coherent ring

Throughout this section R will be a commutative ring.

In the re-interpretation in Section 4.4 of Spec(R) as a topology on the set,
injR, of indecomposable injective R-modules when R is a commutative noethe-
rian ring we used the noetherian hypothesis in the pairing up of indecomposable
injectives with prime ideals.

In the general commutative case the association P 7→ E(R/P ) gives only an
injection of Spec(R) into injR.

The first example shows that Spec(R) −→ injR need not be surjective.

Example 6.1. Let R = k[Xn(n ∈ ω)] be a polynomial ring, over a field k,
in infinitely many commuting indeterminates. It is easily checked that R is
coherent. Let I = 〈Xn+1

n : n ∈ ω〉. Clearly I is not prime but E = E(R/I) is an
indecomposable injective. To see this, it is enough to show that R/I is uniform
and this may be shown as follows. First note that a polynomial

∑
aνXν (each

multi-index ν occurring at most once) is in I iff each of its monomial factors is
in I. Let xi denote the image in R/I of Xi. Let p ∈ R\I. A short inductive (on
the number of monomials) argument shows that there is a multiple of p whose
image in R/I has the form x1x

2
2 . . . xn

n 6= 0 for some n. Hence any two non-zero
elements of R/I have a common multiple of this form so R/I is uniform and
E(R/I) is indecomposable.

On the other hand, E does not have the form E(R/P ) for any prime P .
This follows from 6.2 since it is easy to see that P (E), as defined below, is the
maximal ideal 〈Xn : n ∈ ω〉 and that E(R/〈Xn : n ∈ ω〉) has non-zero socle
whereas E(R/I) has zero socle. For if p ∈ R\I, say p ∈ k[X0, . . . , Xn], then
(p+I)Xn+1 generates a non-zero proper submodule of the submodule generated
by p + I. Hence E is not isomorphic to E(R/P (E)) so, by 6.2, E does not have
the form EP for any prime ideal P .

Let E be any indecomposable injective R-module. Set P = P (E) to be the
sum of annihilator ideals of non-zero elements of E. Since E is uniform these
ideals are closed under finite sum so the only issue is whether the sum, P (E),
of them all is itself an annihilator ideal.

As before we use the notation EP to denote E(R/P ).

Lemma 6.2. If E ∈ injR then P (E) is a prime ideal. The module E has the
form EP for some prime ideal P iff the set of annihilator ideals of non-zero
elements of E has a maximal member, namely P (E), in which case E = EP (E).

Proof. Suppose that rs ∈ P (E). Then, by definition of P (E) there is a ∈ E,
a 6= 0 such that ars = 0. Then either ar = 0, in which case r ∈ P (E), or
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ar 6= 0 and hence s ∈ P (E). This shows that P (E) is prime. So, if P (E) is an
annihilator ideal then E = EP (E).

If E = E(R/P ) then P ≤ P (E), by definition of the latter. Suppose there
were r ∈ P (E) \ P . Let b ∈ E be non-zero with br = 0 and let a ∈ E be such
that annR(a) = P . By uniformity of E there is a non-zero element c ∈ aR∩ bR,
say c = at with t ∈ R. Since cr = 0 we have atr = 0, hence tr ∈ P and hence
t ∈ P (impossible since c = at 6= 0) or r ∈ P - contradiction. So P = P (E).

Before examining the relation between E ∈ injR and EP (E) ∈ injR we address
the issue of which topology we should be using on injR.

For I an ideal of R set D(I) = {P ∈ Spec(R) : I � P} =
⋃

r∈I D(r)
- a typical Zariski-open subset of Spec(R). Also set Dm(I) = {E ∈ injR :
(R/I,E) = 0} (“m” for “morphism”). Since Dm(I) ∩ Dm(J) = Dm(I ∩ J)
(for the non-immediate direction, note that any morphism from R/(I ∩ J) to
E extends, by injectivity of E, to one from R/I ⊕ R/J) these form a basis for
a topology on injR. If R is coherent and we use only finitely generated ideals
then we obtain exactly the Gabriel-Zariski topology on injR.

The argument near the beginning of Section 4.4 shows that this topology on
injR, when restricted to Spec(R) regarded as embedded in injR, coincides with
the Zariski topology.

Corollary 6.3. For any ideal I we have Dm(I) ∩ Spec(R) = D(I).

Recall that for I any right ideal of a ring R and r ∈ R there is an isomorphism
R/(I : r) ' (rR + I)/I, where (I : r) = {s ∈ R : rs ∈ I}, induced by sending
1 + (I : r) to r + I.

Theorem 6.4. Let R be commutative coherent, let E be an indecomposable
injective module and let P (E) be the prime ideal defined before. Then E and
EP (E) are topologically indistinguishable in ZgR and hence also in ZarR.

Proof. Let I be such that E = E(R/I). For each r ∈ R \ I, by the remark just
above, the annihilator of rR + I ∈ E is (I : r) and so, by definition of P (E),
(I : r) ≤ P (E). The natural projection (rR + I)/I ' R/(I : r) −→ R/P (E)
extends to a morphism from E to EP (E) which is non-zero on r + I. Forming
the product of these morphisms as r varies over R \ I, we obtain a morphism
from E to a product of copies of EP (E) which is monic on R/I, hence is monic.
Therefore E is a direct summand of a product of copies of EP (E) and so is
in the definable subcategory generated by EP (E). Therefore E ∈ Zg-cl(EP (E))
(this conclusion required no assumption on R beyond commutativity).

For the converse, take a basic Ziegler-open neighbourhood of EP (E): by (the
proof of) 3.12 this has the form (J/I) for a pair, I < J of finitely generated
ideals of R. Now, EP (E) ∈ (J/I) means that there is a non-zero morphism
f : J/I −→ EP (E). Since R/P (E) is essential in EP (E) the image of f has non-
zero intersection with R/P (E) so there is an ideal J ′, without loss of generality
finitely generated, with I < J ′ ≤ J and such that the restriction, f ′, of f to
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J ′/I is non-zero (and contained in R/P (E)). Since R/P (E) = lim−→R/Iλ, where
Iλ ranges over the annihilators of non-zero elements of E, and since J ′/I is
finitely presented, f ′ factorises through one of the maps R/Iλ −→ R/P (E). In
particular, there is a non-zero morphism J ′/I −→ E and hence, by injectivity of
E, an extension to a morphism J/I −→ E, showing that E ∈ (J/I). Therefore
EP (E) ∈ Zg-cl(E), as required.

Corollary 6.5. Suppose that R is commutative coherent. Then the embedding
Spec(R) → injR given by P 7→ EP induces a homeomorphism at the level of
topology (i.e. between the lattices of open sets) between the Zariski topology on
Spec(R) and the Gabriel-Zariski topology on injR.

Corollary 6.6. Let R be a commutative coherent ring and let P ∈ Spec(R).
Then the closure of EP in the Gabriel-Zariski topology on injR is {E ∈ injR :
P (E) ≥ P}.

Recall that if E is an injective module then we denote by cog(E) the heredi-
tary torsionfree class cogenerated by E, that is, all those modules which embed
in a power of E. If E′ is an indecomposable injective in cog(E) then, since it
is a direct summand of a direct product of copies of E, it is in the definable
subcategory generated by E and hence is a member of supp(E) ⊆ ZgR. In par-
ticular, if E is indecomposable then E′ ∈ Zg-cl(E) and hence E ∈ Zar-cl(E′).
The first half of the proof of 6.4 shows that E ∈ Zg-cl(EP (E)) whether or not
R is coherent. It also shows the following.

Lemma 6.7. If I ≤ J are (right) ideals of an arbitrary ring R then E(R/I) ∈
cog(E(R/J)).

Corollary 6.8. If R is commutative and P,Q ∈ Spec(R) then EP ∈ cog(EQ)
iff P ≤ Q.

For the direction “⇒” note that if f : R/P → Eκ
Q is an embedding into a

power of EQ then, projecting f(1 + P ) to some component where it is non-zero
and recalling that Q is the maximal annihilator of non-zero elements of EQ, we
deduce P ≤ Q.

Proposition 6.9. Let E be an indecomposable injective module over the com-
mutative coherent ring R. Then the torsion theory cogenerated by E is of finite
type iff E = EP for some prime P .

Proof. (⇐) By 6.3, for I any ideal of R we have EP ∈ Dm(I) iff EP ∈ D(I),
that is, iff (R/I,EP ) = 0 (i.e. R/I is EP -torsion) iff I � P . This last is so iff
some finitely generated ideal I ′ ≤ I satisfies I ′ � P. So each EP -dense ideal
contains a finitely generated EP -dense ideal, as required.

(⇒) If E cogenerates a torsion theory of finite type then, by the proof of
the second half of 6.4, we have EP (E) ∈ cog(E). For there, taking J = R, it
is shown that if I is a finitely generated ideal with Hom(R/I,E) = 0, i.e. with
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R/I E-torsion, then Hom(R/I,EP (E)) = 0 hence EP (E) ∈ cog(E). Therefore
there is an embedding R/P (E) −→ Eκ for some index set κ. It follows that
annEP (E) 6= 0 and hence E ' EP (E), as required.

Thus Spec(R) may be identified within injR as those modules which cogen-
erate torsion theories of finite type.

Theorem 6.10. If R is any right coherent ring then a subset of injR is Ziegler-
closed iff it has the form F ∩ injR where F is the torsionfree class for some
torsion theory of finite type.

Proof. A torsionfree class F is a definable subcategory of Mod-R iff the corre-
sponding torsion theory is of finite type ([32], [24]) and so, by 4.2, any subset
of the form given will be Ziegler-closed.

For the converse if X ⊆ ZgR is closed then, by 4.2 it has the form X ∩ injR
for some definable subcategory, X , of Mod-R. We may replace X by its closure,
X ′, under arbitrary submodules which is, note, again a definable subcategory
and X ′ ∩ injR = X. Note that X ′ = cog(X) and so, as a definable torsionfree
class, it is of finite type by [32], [24].

Theorem 6.11. Let R be commutative coherent and let X ⊆ injR be Ziegler-
closed. Then X is irreducible in the Ziegler topology iff X = cog(EP )∩ injR for
some prime ideal, P , of R.

Proof. By 6.10 there is a torsionfree class, F , of finite type with F ∩ injR = X.
Let I be the set of annihilators of non-zero element of members of F . If {Iλ}λ
is a chain of members of I with their union=sum equal to I, say, then, since F ,
being of finite type, is closed under direct limits, there is M ∈ F and a ∈ M
with a 6= 0 and aI = 0. So by Zorn’s Lemma every I ∈ I is contained in a
maximal member of I. Denote the set of these maximal members by P. The
argument used in 6.2 shows that all ideals in P are prime.

Choose P0 ∈ P and set E0 = EP0 and E′ =
⊕
{EP : P ∈ P, P 6= P0}.

By 6.7 (and comments before that) supp(E0) ∪ supp(E′) = X (because R is
coherent the support of any injective module will consist of injective modules,
see [44, 4.4]). So, by irreducibility of X, either X = supp(E0), which equals
cog(E0) ∩ injR by 6.9 and 6.10, as required, or X = supp(E′). But, in the
latter case we would have E0 ∈ cogE′ and hence there would be an embedding
of the form f : R/P0 −→

∏
{Eκ(P )

P : P ∈ P, P 6= P0} with, say (1 + P0) −→
(eλ)λ. Some eλ would be non-zero and so P0 would be (properly!) contained in
annR(eλ) - contradicting P0 ∈ P.

Proposition 6.12. Let R be commutative coherent. A subset V of injR is
rep-Zariski-closed and irreducible iff there is a prime ideal Q of R such that
V = {E : P (E) ≥ Q}.

Proof. This is just the usual description of irreducible closed subsets of Spec(R)
combined with 6.4.
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Corollary 6.13. Let R be commutative coherent. Then there are natural bijec-
tions between the following:
(i) the set of irreducible Ziegler-closed subsets of injR;
(ii) the set of irreducible Zariski-closed subsets of Spec(R);
(ii) the points of Spec(R);
(iii) the set of irreducible rep-Zariski-closed subsets of injR;
given by {E : P (E) ≤ Q} ∼ {P : P ≥ Q} ∼ Q ∼ {E : P (E) ≥ Q}.

7 Appendix: pp conditions

Many of the references use terminology derived from model theory: here we
explain, briefly, the main item of terminology, namely “pp formula”. In the
context of this paper, it is most convenient to think of this as meaning simply
a finitely generatead subfunctor of the forgetful functor or of one of its finite
powers.

Every finitely generated subfunctor of the n-th power, (Rn,−), of the for-
getful functor from mod-R to Ab has the following form. Fix a homogeneous
R-linear system of equations with m ≥ n indeterminates: to every module M
we may associate the solution set in M of this system - this will be a subgroup
of Mm; consider the image of this solution set under the projection of Mm onto
the first n coordinates - this image is a subgroup of Mn. That’s how the func-
tor works on objects and the action on morphisms is the obvious one. That’s
all. A pp formula is basically such a system of equations, together with the
specification of projecting on to (say) the first n coordinates.

Every finitely presented functor in (mod-R,Ab) is a quotient, F/F ′, of two
such subfunctors of some power of the forgetful functor: the model-theoretic
terminology corresponding to such a quotient is “pp-pair”.

The functorial terminology is better in some regards: a formula is really
a presentation rather than the functor being presented and for theorems (as
opposed to calculations) one does not usually need to refer to presentations.

For more explanation, or for other terms, see the introductions to various of
the references or, e.g. the expository paper [40]. A book, [41], on all this, and
more, is in preparation but, for a fast introduction (as opposed to a comprehen-
sive treatment), the existing literature is better.

I finish by mentioning some relevant papers in connection with derived and
triangulated categories, namely [3] where the rep-Zariski spectrum appears in
connection with the spectrum of the cohomology ring of the group algebra of
a finite group, [26] where the Ziegler spectrum (and hence, implicitly the rep-
Zariski spectrum) for compactly generated triangulated categories is defined and
[13] and its successors [14], [15], [12], where the relation between the rep-Zariski
and Ziegler spectra is exploited (in particular 6.4 is used).
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