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The term “inverse problems” is itself a curious one as it does not have a tight
mathematical definition. Nevertheless a very large class of what are generally
agreed to be inverse problems involves going the opposite way to nature. We
think of a “forward problem” as being a mathematical model for a problem
solved naturally in the physical world. Given a body with a specified spatially
varying conductivity one can apply a current density at the boundary and the
resulting potential can be found by solving a Neumann problem for an elliptic
partial differential equation. This problem is “solved” in the physical world and
the voltage is well defined (up to a constant) and depends in a stable way on
the conductivity and current. As our Neumann problem for an elliptic partial
differential equation is a good model for the physical situation it shares these
properties of existence, uniqueness and stability of solution. An example of an
inverse problem would be to take measurements of the voltage at the boundary
arising from the application of a number of patterns of current density on the
boundary and attempt to deduce the conductivity in the interior. This problem
often called Electrical Impedance Tomography (EIT: see Box) has application
in medical diagnosis, industrial process monitoring and geophysical exploration.

Another archetypal inverse problem concerns solving the heat equation back-
wards in time. There the temperature u(x, t) satisfies the heat equation

∂u

∂t
= k∇2u

on some domain Ω and we suppose it to be specified on the boundary of some
domain, say u = 0 on ∂Ω, and the temperature in the domain is known at some
specif time T , u(x, T ) = f(x). One then seeks to deduce the temperature u(x, 0)
in the domain at time zero. As time increases solutions of the heat equation
become spatially smoother, and it is not surprising that solving backwards in
time is unstable. The problem is closely related to de-blurring a blurred optical
image, such as an out of focus photograph.
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Box 1: Electrical Impedance Tomography

In electrical impedance tomography a domain Ω in two or three dimensional
space has a (possibly complex) conductivity σ with Re(σ) > C > 0. In an
idealized case one can apply any current density j on the boundary ∂Ω and
measure the potential φ|∂Ω where
∇ · σ∇φ = 0
with the boundary conditions σ∂φ/∂n = j and

∫
∂Ω

φ = 0. Here n is
the outward unit normal to ∂Ω. The data can be considered as the
Neumann-to-Dirichlet map Rσ : j 7→ φ|∂Ω. The Forward Problem is then
σ 7→ Rσ, and the inverse problem to recover (information about) σ from (a
sampled version of) of Rσ).

Alberto Calderón. 1920-1998

In mathematics it is often called
‘the Calderón problem’ after Alberto
Calderón one of the major figures in
analysis of PDEs in the 20th century.
A conference paper in Brazil, for him
a small side issue to his main work,
prompted a large body of work on
uniqueness of solution of this problem
reviewed in [1] and still with interest-
ing open problems. The importance
of the mathematical theory underpin-
ning practical applied problems can-
not be underestimated. Also practi-
cal problems give rise to deep theo-
retical challenges and it is of note that
Calderón, a key figure in mathemati-
cal analysis in the last century, origi-
nally trained as an engineer.

When talking to practically oriented engineers and experimental scientists
they are inclined to think that questions of existence and uniqueness of solu-
tion, for example for boundary value problems for partial differential equations,
are a somewhat esoteric pass-time of pure mathematicians. They know that
physically there is a solution, and they can observe that it depends stably on
parameters that they can vary. Of course there are some exceptions, such as
chaotic dynamical systems, but they stand out as exceptions to a general rule.
Hadamard declared[2] that a well posed problem should have a solution, that
solution should be unique and solution should depend continuously on the pa-
rameters or coefficients. From the view point of a practical person considering
a forward problem a failure of any of Hadamard’s three conditions would mean
that the model was incorrect. But the inverse problem is typically of human
construction. We have chosen to try to find the conductivity from a knowledge
of certain boundary data. The questions of existence of solution is then, given
that our model is correct, is simply the same as asking if there is a conductivity
consistent with our data. If there is not it is an indication of the inaccuracy
of our data. The question of uniqueness of solution put another way is to ask
if we have gathered sufficient data to be able to determine our unknowns un-
ambiguously. Stability of solution is a serious issue, and many inverse problem
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http://badmanstropicalfish.com/abc/range6.html

Figure 1: Peter’s Elephantnose fish (Gnathonemus petersii) a weakly electric
fish that locates its prey using its own natural EIT system. (Copyrighted image
not in e-print version see for example link above)

arising in applications are unstable. Often the underlying cause is that the
forward problem is governed by a compact operator (also called completely con-
tinuous) between function spaces. The inverse of such an operator, if it exists,
is unbounded. A consequence of this fact of functional analysis is that the art of
solving inverse problems in industrial or other practical situations often involves
a close collaboration between that mathematician and the people who presented
the problem. One has to initiate a dialogue to establish what is already known
that can safely be included as an a priori assumption, details of the accuracy of
the measurements made, and importantly what is actually required (as this is
often less than they initially ask for). On this last point an example in practice
might be that a physician asks for a detailed picture of the internal organs of
the thorax, not possible from electrical measurements from a few electrodes, but
actually they might be happy with a few useful parameters indicating the vol-
ume of air in a small number of regions of the lung, which is much more feasible.
For details of medical EIT see [3]. Typical industrial applications of EIT and
its close relatives include monitoring flow in pipes, mixing of fluids in process
vessels and precipitate in large filter. Again in these cases what is required is
less than an accurate image, but might be an identification of the flow regimes,
the uniformity of the mixture or the distribution and depth of the precipitate.
For up-to-date details of process tomography see the proceedings [4].

I have given the impression that EIT is a human invention but as an aside
I would like to point out that something very similar is done by weakly electric
fish in the murkey waters of the Amazon and Zambezi rivers. They use a so-
phisticated electrical sensing system to locate their prey and to avoid predators.
One widely studied example is the Peter’s Elephantnose fish (Gnathonemus pe-
tersii see figure), which is sufficiently common an aquarium fish that you might
easily be able to visit one in captivity. The fish has an a dipole current source
in its body and hundreds of voltage sensors on its surface. The prey has a
conductivity different to the water and the fish essentially does EIT, except
that instead of multiple current sources it swims around using its single dipole
source[5]. It would be interesting to understand how their brain processes the
electrical data to solve the inverse problem, and indeed what assumptions about
their surroundings are implicitly used.

Although many inverse problems arising in practical situations are non-
linear, often a linear approximation is at least a good start and in many cases
adequate. Frequently the linear problem is equivalent to the solution of a first
kind integral equation of the form

g(x) =

b∫
a

k(x, y)f(y) dy

where some discrete sampled version of g is measured and we are to deduce
information about f . For a continuous kernel function k the integral operator
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will be a compact operator on L2(a, b) and so if it has an inverse that inverse
will be unbounded. This is one of the common ways in which an inverse problem
violates Hadamard’s third condition. After discretization, for example using a
quadrature rule, one obtains linear system

g = Kf

where now g, f are vectors and K a matrix. The illposed nature of the continuum
version of the inverse problem reveals itself in its discrete counterpart in the
illconditioning of the matrix K. It is interesting that we generally teach our
engineering and science undergraduates to invert square matrices when in so
many practical situations the need arises to deduce some parameters of a system
from some measurements that are linear combinations of those parameters. All
experimentalists are well aware that it would not be a good idea to attempt to
deduce one parameter from only one measurement so almost instinctively would
take several measurements. When faced with a system of equations the common
case then is that it is overdetermined as more measurements have been made
than there are parameters to be identified. The over determined, and hence in
the presence of errors in the measurement, inconsistent case is therefore very
commonly encountered so there is a very good case for educating engineers and
scientists in the treatment of such problems. The simplest approach of course
is to find the least squares solution, that is the f that minimizes

||Kf − g||2

which is in the case of K an m× n matrix of rank n, m ≥ n, is given by(
KT K

)−1
KT g.

Ideally the problem of estimating f from noisy g should be treated statistically,
but it is easy to justify the least squares solution as a maximum likelihood
estimate assuming identically distributed, zero mean, Gaussian noise in the
components of the data vector gi. While this technique is not generally taught
to engineers, and I argue that it should be, along with some elements of the
statistics of dealing with multivariate data. Fortunately many engineers are
familiar with programs such as MATLAB with a built in least squares solver
that is easy to use. So now the case where K is illconditioned the simplest
thing to is to replace the least squares minimization by the minimization of the
function

||Kf − g||2 + α2||Lf ||2

where the matrix L controls the smoothness of the solution (for example a
first order difference operator) and the regularization parameter α controls the
trade-off between fitting the data and having a wildly oscillating or unbounded
solution. This idea is sufficiently simple that it often reinvented, but in the
mathematical literature it is known as Tikhonov-Phillips regularization, and in
the statistical literature as Ridge Regression. Many practical inverse problems
that arise in industry can be satisfactorily solved by this simple method, which
has an explicit solution given by(

KT K + α2LT L
)−1

KT g.
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Regularization methods such as this appear rather ad-hoc. A more rigorous
approach is probabilistic. The error in the data is treated as a random variable,
and the a priori knowledge about the unknown vector is also represented by a
probability distribution (the prior distribution). Bayes’ theorem is then used to
calculate the posterior distribution, the probability distribution of the solution
given the prior and the data. In a simple case in which the prior is multivariate
Gaussian with a covariance matrix proportional to (LT L)−1 and the errors are
Gaussian with covariance a scalar multiple of the identity matrix, the Tikhonov
regularized solution is then the maximum of the posterior distribution. The
probabilistic approach gives much more as one can assign probabilities to sets
of solutions, and can then assign probabilities to answers to important questions
such as “does this person have breast cancer” or “is there a foreign body in this
food”. The book of Tarantola[6] gives an excellent introduction to regularization
and the probabilistic approach to inverse problems.

Box 2: A.N. Tikhonov

A.N. Tikhonov, 1906-1993

While the famous Russian mathe-
matician A.N. Tikhonov is perhaps
best known for his contribution to
functional analysis and in inverse
problems for his eponymous regular-
ization method it is much less well
known that also worked directly on in-
dustrial problems, including electrical
prospecting a precursor of geophysical
EIT. He contributed to the location of
a large copper ore deposit in the So-
viet Union.

Other examples of industrial inverse problems that I have been involved with
include the determination of the depth dependence of the director field in a liq-
uid crystal cell from polarized light measurements [7], capacitance tomography
for monitoring flow in pipes [9], and a problem in which the ocean current is es-
timated from the position of a cable towed behind a geophysical survey ship [8].
In all three cases Tikhonov-Phillips regularization played an important part in
their solution.

For a mathematician working with industry often a little help, such as teach-
ing engineers to do basic regularization methods, goes a long way. Indeed it is
often the case that it helps early on in ones relationship with an industrial
partner to give them something that results in a noticeable improvement in
what they aim to do. This builds trust and mutual respect often leading to a
collaboration that reveals some more difficult, and to the mathematician more
interesting, problems. Unfortunately many people from outside mathematics,
be they from industry, academic science or medicine rather expect that if they
go to a mathematician with their problem they (1) will be humiliated for not
knowing the problem is trivial (2) will explain the problem to the mathemati-
cian who will then go on to solve another more “interesting” problem or (3)
will explain the problem and the mathematician will solve it, but the solution
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will be unintelligible. One suspects that these fears are not entirely the result
of prejudice. Successful partnerships with industry and indeed with other ap-
plication communities are founded on a dialogue between the mathematician
and the owner of the problem in which the mathematical formulation of the
problem is refined and the solution communicated in an accessible form. This
takes time and effort and is not what all mathematicians want to do. But the
rewards in the end include the satisfaction of solving a problem that makes a
practical difference.
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