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The H-norm calculation for large sparse systems®

Y. Chahlaoui* K. A. Gallivan* P. Van Dooren'

Abstract

In this paper, we describe an algorithm for estimating the H..-norm of a large linear time
invariant dynamical system described by a discrete time state-space model. The algorithm is
designed to be efficient for state-space models defined by {4, B, C, D} where A is a large sparse
matrix of order n which is assumed very large relative to the input and output dimensions of
the system.

Keywords: H.,-norm calculation, Chandrasekhar equations.

1 Introduction

In this paper, we consider the computation of the Hy,-norm of a p x m real rational transfer function
G(z):=C(zl, — A)~'B+D (1.1)

where A € R™" B € R™™ (C € RP*" and D € RP*P, with n > m,p. The algorithm is
restricted to discrete-time systems and makes use of the associated Chandrasekhar equations. It
can be adapted for use with continuous-time systems. Its main advantage over other methods for
approximating the H,-norm is that it is designed to be efficient for systems where A is a large
sparse matrix.

The Hoo-norm of a rational transfer function G(z), v* := ||G(2)||s is bounded if and only if
it is stable [9]. We therefore assume that the given quadruple {4, B,C, D} is a real and minimal
realization of a stable transfer function G(z). The stability of G(z) implies that all of the eigenvalues
of A are strictly inside the unit circle, and hence that p(A) < 1, where p(A) is the spectral radius
of A. An important result upon which we rely is the bounded real lemma that states v > [|G(2)]|o0
if and only if there exists a solution P > 0 to the linear matrix inequality (LMI) [3] :

P—-ATpA—-CTC —-ATpB—-C'D

HP):=| " _prpa_prc 21, BTPB—D'D

= 0. (1.2)
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This suggests that 7* could be calculated by starting with an initial large value v > ~* for
which the LMI has a solution and iterate by decreasing v until the LMI does not have a solution.
Unfortunately, even if A is sparse, P is dense and this approach has a complexity that is more than
cubic in n and therefore unacceptable for large sparse systems.

A second approach is to use the link with the zeros of the para-hermitian transfer function
., (2) = 2Ly — Gu(2) G(2), where Gi(2):= DT + BT (1 — 2AT)CT. (1.3)

It is well-known that
Y>> = D(2) -0 Y|z =1, (1.4)

which implies that @, (z) has no zeros on the unit circle [9]. These zeros can also be shown to be
the generalized eigenvalues of the (symplectic) pencil:

0 A — zI, B _
AT 1, —CTC } - { —¢TD ] (+*Im = D'D)"' [ zB" -D'C'] (15)

and which must appear as pairs that are mirror images with respect to the unit circle, i.e., (z;,1/%;).

Several methods with linear [5], quadratic [2] and even quartic convergence [8] have been based
on the calculation of these zeros. The latter are the so-called level set methods that are probably
the method of choice for dense problems of small to moderate order. The order is restricted by that
fact that these methods all rely on the accurate calculation of the generalized eigenvalues of (1.5)
on the unit circle. Since these eigenvalues are not necessarily the largest or smallest eigenvalues,
this typically requires transformation-based techniques and hence a complexity of O(n®) which is
unacceptable for large systems.

In this paper, we therefore follow a third approach that involves the solution of a discrete-time
algebraic Riccati equation (DARE) :

P=ATPA+CTC -~ (ATPB+C"D)BTPB+ DD —~%1,)"Y(BT"PA + DTC). (1.6)

Since we are interested in solutions where 7 is large, the matrix R := BT PB+ DT D —~21,,, will be
negative definite, which is a non-standard discrete-time Riccati equation. This equation is linked
to the LMI (1.2). Note that as Hao(P) = —R is positive definite and the Schur complement of
H(P) with respect to Ha(P) must be non-negative definite. It is easily verified that this amounts
to the so-called Riccati matrix inequality introduced in [15] :

I, — B"PB—-D"D >0, (1.7)
P—ATPA-CTC+ (ATPB+ CTD)(BYPB + D'D —4*1,,) H(BTPA+ DTC) = 0. (1.8)

If rank Hyo(P) = rank H(P) for an appropriate choice of P, then it follows that the Schur
complement of Hao(P) in H(P) must be zero. This is precisely the left hand side of (1.8), which
then becomes an equality known as the Discrete Time Riccati Equation (DARE). Its solution P
can be obtained from the calculation of an appropriate eigenspace of the symplectic pencil (1.5).
However, in order to exploit the sparsity of the matrix A to yield an efficient algorithm for large
systems, we solve (1.8) using an iterative scheme known as the Chandrasekhar equations.




The remainder of this paper is organized as follows. The relationship between the system
zeros and the symplectic eigenvalues is presented in Section 2 and used to the describe the basic
idea of level set methods in Section 3. The use of the Chandrasekhar equations to solve the DARE
parameterized by v is then discussed in Section 4 including relevant complexity results. In Section 5,
details of crucial convergence issues are given. Section 6 contains a brief description of techniques to
adapt vy in the search for v* and the behavior of two of these approaches is illustrated on an example
in Section 7 and compared to a level set method. Conclusions and future work are discussed in
Section 8.

2 Realizations and system zeros

Every rational transfer matrix G(z) of dimension p x m is known from realization theory to admit
a generalized state-space model [12] of the form

G(2) :=(C = 2F)(A—z2E)"'B+ D, (2.1)
which is the Schur complement of the so-called system matrix S(z) of dimension (n + p) X (n+m)

s =l o)

with respect to its top left block entry. This special case of the state-space models were e.g. studied
in [14]. When they have minimal dimension, they possess the nice property that all structural prop-
erties of the transfer function can be recovered from the solution of a generalized eigenstructure
problem, for which there are numerically reliable algorithms available [12] : the minimum dimen-
sion n of the invertible pencil (A — zE) is the McMillan degree of G(z) [12], and the generalized
eigenvalues of A — zE are then the poles of G(z) [12]. A test for the minimality of the realization
S(z) is the following set of conditions :

(2:2)

A—2zFE
C —zF

(ii) rank [ E B]:rank[?]:n;

(i) rank[ A—zE B]:rank[ ]:n, Vz| < oo

(2.3)

If these conditions are not all satisfied, then the system matrix (2.2) is not minimal and the state
space dimension can always be reduced so as to achieve minimality [12].

When D is invertible, the zeros of G(z) can also be computed as generalized eigenvalues of a
smaller pencil, derived from S(z). Clearly the Schur complement

(A—zE)— BD Y(C — zF) (2.4)

has the same generalized eigenvalues as S(z), except for infinity (see [14] for a more elaborate

discussion on this).

One easily verifies that the system matrix S(z) of the transfer function ®(z) (1.3) is given by :

0 A—zI, B
S(z)=| zAT -1, -CTC -CT'D . (2.5)
2BT -pT'c ~%I,-D'D

The zeros of the transfer function are the eigenvalues of (1.5) which are also the finite eigenvalues
of (2.5). The eigenvalues are mirror images with respect to the unit circle (i.e. they come in pairs
zi,1/%;). This eigenvalue characterization leads to a straightforward but powerful method for the
computation of the Ho, norm discussed in Section 3.

3 Level set methods

The basic idea of level set methods is related to the unit circle zeros of ®,(z). If we define
®(z) := G4(2)G(z), then both matrix functions ®,(z) and ®(z) are para-hermitian which implies
they are hermitian for every point z = e/*, i.e.,

(e )T = @(e), w e [, 4] (3.1)
If we define the extremal eigenvalues of ®(¢/“) on w € [—m, +7] as

Ay =  min )\min@(ej“’), A=  max /\maztl)(ej“’) (3.2)
we[—m,+]| wE[—m,+7]|

and let 7. = /A, and v* = V/A* then we have that ®(¢/*) is non-negative on w € [, +7] if and

only if 42 > \* and thus the H., norm of G(z) equals v*.

It is shown in [10] that a hermitian matrix ®(e/*) of a real variable w has real analytic eigenvalues
as a function of w, if ®(e*) is itself analytic in w. Since we consider here rational functions of e/*
— where the “frequency” w is real — this is certainly the case. In Figure 1, we show these functions
zi(w) for a 2 x 2 matrix ®(e/*). We also indicate a level \g for which we want to check if there is
any eigenvalue z;(w) = Ag. Clearly these z; are the intersections of the level Ao with the eigenvalues
of ®(e/*). Assume that these intersections occur at frequencies w;. Since

det(MgIy — ®(e7“)) =0

each frequency w; is an imaginary axis zero of the shifted transfer function A\gl,, — ®(z). These
can be computed as the eigenvalues of the corresponding zero pencil (2.5) or the corresponding
symplectic pencil (1.5), that are located on the e/* axis. Note that if there are no imaginary axis
eigenvalues, then the level Ay does not intersect the eigenvalue plots and hence

Ao < Ax or )\0>)\*.

In order to find a value Ay for which there are eigenvalue crossings one can, e.g., choose \g =
OmazP(e740) for an arbitrary value wy.

Using these ingredients, a bisection-based algorithm to find A4, is easily derived: each interval
must contain an upper bound Ay, and a lower bound Ay, for e and the bisection method checks
whether there are eigenvalues on the e/* axis equal to the new level (Aj,+Ayp)/2 [5]. This algorithm
has linear convergence.

A method with more rapid convergence can be obtained by using information on the eigenvalue
functions (see [4, 8]). Start from a point A,q which intersects the eigenvalues of ®(e’“) as in Figure
1, and obtain from this the intervals for which z,0.(w) > Agq (these are called the level sets for




25

-
o
T
I

Singular values

N
S)
T
I

Frequency
Figure 1: Level set iterations

Aotd)- In Figure 1 these are the intervals [wi,ws] and [ws,ws] (in this context we need to define
Zmaz(w) as the piecewise analytic function that is maximal at each frequency w). In [8] it is shown
how to use the information of the derivative of z,4.(w) at each point in order to determine the
relevant “level sets”. It is also shown how to obtain these derivatives at little extra cost from
the eigenvalue problem of the underlying zero pencil. Using these level sets and the derivative of
Zmaz(w) at their endpoints, one then constructs a new frequency wye,, that is a good estimate of
an extremal frequency wyaq :

Amaz = Zmaz|®(74men)] = max eman[® ().

It is shown in [8] that such a scheme has global linear convergence and at least cubic asymptotic
convergence. Each step requires the calculation of the largest eigenvalue ey of ®(e“mew) and the
eigenvalues and eigenvectors of the zero pencil defining the zeros of \ey [ — ®(2). The complexity
of each iteration is thus cubic in the dimensions of the system matrix of ®(z).

4 Chandrasekhar equations

Efficient algorithms to solve the DARE have been proposed in the literature [9]. The so-called
Chandrasekhar equations amount to calculating the solution of the discrete-time Riccati difference
equation

Py =ATPA+CTC — (ATP,B+CTD)BTPB+ D'D —+°1,,) " Y(BTPA+ DTC) (4.1)

in an efficient manner. Defining the matrices

K;:=B"PA+DTC, R;:=B'PB+D'D—~%I,, (4.2)
this becomes
P = ATPA+CTO — KT R7K;. (4.3)
Clearly the difference matrices
§P;:= Piy1 — P, (4.4)
satisfy
6P = AT6PA - KT R\ K + KT RVK;. (4.5)
Using (4.2-4.5), one obtains the following identity :
Rit1 Kt BTSP.B+ R, BTSPA+K;
T T p-1 = T T T T p—1 ) (4.6)
Ki 0P+ Ki R Kiv AYSPB+ K] AYWPA+ K/ R K;

and the Schur complement with respect to the (2,2) block is equal to 0 P;41.

Assume now that for each step i we define the matrices L;, S; and G; according to d P; = LzTEgLi,
R; = S?lei and K; = S?ElGi. This, of course, implies that the signature of the matrices R;
and 0F; remains constant for all 4. It is shown in [9] that this condition is in fact necessary and
sufficient for the Riccati difference equation (4.1) to converge. An obvious choice is to take Py = 0,
which yields
6Py=P =CTC - Cc"D(D"D —~%1,)"'DTC.

It also follows from the LMI (1.2) that we must take 'yZIm — DTD » 0, which implies 6Py =
CT[I + D(v*I,, — DTD)~'DT]|C = 0. We thus have that ¥y = —1I,,, and ¥y = I,, with a < p.

Under these conditions the above matrix may be factored as

[ Rip Kiv ] _ { Sy 0 } { 0 } { Sit1 Gin } (4.7)
KL, 6P+ KL RN K Gl Lin 0 % 0 Lin

One also easily checks the identity

{ BYsPB+ R, BTSPA+K; ]

o SLT BTL? 21 0 Sz GZ (4 8)
ATsPB+ K AT6PA+ KIR7'K; T

*{GZ ATLE || 0 % || LiB LiA

It follows from the comparison of (4.7) and (4.8) that there exists a pseudo-orthogonal transforma-
tion @ satisfying

21 0 Tvy Si G | | Siy1 Gigr
E'_[O 22]’ Q@rR=7, Q[LiB LiA]_{ 0 Li+1}'
Notice that as the matrix R; is nonsingular and so is S;, we have a simple expression for the
feedback matrix F; := S;lGi which yields the closed loop matrix A — BF; = A — BR;lKi whose
spectral radius p; := p(A — BF;) determines essentially the convergence of the Riccati difference
equation (4.1). So if v is overestimated then p; will be smaller than 1, while if y is underestimated,
and especially v, < v < v*, p; will become larger or equal to 1, i.e., p; > 1, and eventually the




signature ¥ will not be constant, since the DARE does not have a symmetric steady state solution.
Since A — BF; is stable and converges to A — BF', one can track the spectral radius p, e.g., by the
power method applied to A — BF; or by monitoring [|0F;||2 = || L;||2 since X9 = I,,,. We discuss in
more details the convergence of the Chandrasekhar equations in Section 5. Note finally that the
complexity is acceptable for large sparse systems since the transformation @ € R™+e>X™m+a and any
use of A or AT involves a matrix times a number of columns, k, where n > k.

5 Convergence of Chandrasekhar equations

The convergence of the Riccati difference equation (4.1) depends on whether or not the signature
of ¥ is constant. Indeed, for v < /A, or v > V/A* this is the case and the Riccati difference
equation will converge. In the level set plot, these values correspond to the levels where there are
no imaginary axis eigenvalues. Notice also that the resulting feedback for the case v < /A, does
not stabilize the system.

The Riccati difference equation (4.1) has many formulations. One useful formulation results
from the two-point boundary value problem (see [6] and the references in). For our case, we have
the following result.

Lemma 5.1. The Riccati difference equation (4.1) can be rewritten as follows, under condition
that R.Y := DTD —~21,,, is nonsingular :

A-BR'D'C oH I }:[1 BR;'BT H

I
7 A1 T P S
—CTC+CTDRI'DTC 1 || Py 0 AT - CTDR;'B? ;

P } (A-BF). (5.1)

My Mo

Proof. The result is very similar to Lemma 1 in [6]. We have to show the two identities
A—BR;'DTC = A- BF, + BR;*BTP,(A - BF)),
P41 —CTC+ CTDR;'D"C = (A" - C"DR;'B")P,(A - BF)),
which follow from the definitions of K, Rw and of the Riccati difference equation (4.1). O

Note that the condition of non-singularity of E;, is generically true (i.e., it is singular on a set
of measure 0). For v > ~* the matrix R, is nonsingular since it must satisfy the first condition of
the Riccati matrix inequality (1.7) and hence R, — BT P,B = 0.

The lemma above plays an important role in analyzing the convergence of (4.1). It is clear that
the convergence to a (unique) stabilizing solution requires the pair (A4, B) to be stabilizable, i.e.,
there exists a feedback F such that A — BF has eigenvalues in the open unit disc. It then follows
that the pencil AM; — My (or the matrix M, 1A12) has no eigenvalues on the unit circle. This is
used in [6] to prove convergence of (4.1) when (A, B) is stabilizable.

Now let us assume v > ~* and that P is the steady state solution of (4.1) for that v. Then

I o0 I 0o][Ar X
wlp v)wlp )T )

where X := P71((A - BR;IDTC)’T — A}T) and Ap := A — BF. Equivalently we have

I 07, I 0] [Ar X
[ s £ 8- (% )

Also, as P; converges to P we can suppose that A; := P — P; is small. Using

H”:H?Hi?] (5.3)

and the block Schur form (5.2), we have the following result.

Lemma 5.2. When the Riccati difference equation (4.1) converges, each iteration corresponds to
an approximate Schur decomposition

I 0], 0., [T 0] [4n X
[ r Pl 3] ]

where
By i= AjAp — AZTA; — A XA, Ap, = A— BF;.

Proof. If one combines (5.2) and (5.3) we obtain
I 0], 0] _ I 0][Ar X I 0
R N P Ik B
X

Ap — XA
NiAp — AFTA - N XA; AT AKX |

(5.4)

If A; is small, the above form is indeed an approximate block Schur decomposition. It follows
from (5.1) that Ap, = Ap — XA,; and it also follows from the symplectic structure of (5.4) that
A;lT = A" + A;X. The off-diagonal block then equals

By = NAp — ARTA; — AiXA; = NAp, — AT A+ A XA, (5.5)

O

(S

It was shown in [13] that when there exists a positive definite solution P to the DARE (4.1)
then upon convergence we have
6P ~ AL P A,

and hence
[Lisall2 ~ |1 LiAF 2. (5.6)

This implies that A; can be approximated by the correction dP;. Therefore, using the previous
lemma, the matrix Ey; can be estimated using the computed quantities 6 P; and Ap,.

It is also important to note that if v > +* then Ap is stable and since A — BF; =~ Ap we can
estimate p(Ap) using subspace iteration on A — BFj, i.e.,

QiRi = (A— BF)Qi-1, QIQ;i=1I,




started with an arbitrary k-dimensional orthogonal basis ()g. This can be performed at low cost
since A is sparse and BFj is relatively low rank. Moreover, even if v < v* and Ap is unstable, the
eigenvalues of Q1" (A— BF;)Q;—1 will be close to the dominant spectrum of A— BF; and according
to Lemma 5.2 this will be close to k eigenvalues of the symplectic pencil as long as A; is small.

Figure 2 describes the convergence properties of the Riccati difference equation and the Hy,
approximation algorithm in terms of the spectral radius p(Ap) as a function of 4. One can define a
region of acceptance for the approximation of v* and the width of this region will depend mainly of
a tolerance value associated with the convergence/divergence decision. As long as the §P; remain
reasonably small, so will Fo; and the spectrum of Ap, then gives a reasonable approximation of
half of the spectrum of the symplectic pencil. This can be used to detect the symplectic eigenvalues
closest to or on the unit circle.

A
p(A— BF) Acceptance
region
Divergence

1+7
1

1-7

Convergence
0
t >
B AR 5

Figure 2: Evolution of ¢(v) := p(A — BF) as a function of v

Clearly, the convergence/divergence decision plays a crucial role in the choice of the direction
of the adaptation of 7. Recall that for a given initial condition Py, the solution of the discrete-time
Riccati equation is given at each instant i by

i—1
P, =P+ Z 5P,
k=1

For a given tolerance 7, we will say that the discrete-time Riccati equation diverges, if one of the
following is true:
e the spectral radius p(A — BF;) (estimated by subspace iteration) is larger than 1 + 7

o the ratio ||6Piy1|l2/[|0Pi|l2 = || Li+1]|3/] Li|3 is larger than (1+7)2. Notice that this is similar
to the previous as one has the relation ||L;11||2/||Lill2 = p(A — BE;),

o the inequality (1.7) does not hold, i.e., v*I,,, — BTPB — DD =< 0.

By monitoring the convergence using one of these criteria, one can decide if at the steady state
we have relative convergence or not and adapt « in the appropriate direction using one of the
approaches discussed in Section 6.

6 Adapting v

In order for the algorithm to approximate v* to work efficiently there must be an effective method
to adapt the value of 7 given the observed behavior of the Riccati difference equation. The simplest
method is the combination of the Chandrasekhar equations with a bisection method to estimate
7*. A lower bound for v* = ||G( . )|l is easily obtained from 7, := G(e/*w) for any frequency
wye, as pointed out in Section 3. The idea for estimating v* is to run the Chandrasekhar equations
for a given v > v, and check whether or not it converges. If it converges, then v,, := v is an
overestimate for v* and we repeat the process for a new value of v (say (Vi +7Yup)/2) in the interval
[V10> Yup) Which is known to contain v*. If divergence is observed then 7, := 7 before choosing the
next value of .

Another general strategy, and one that is preferred in practice, is to start from an overestimate
Yup and let it decrease until convergence of the Chandrasekhar equation fails. There are several
possible avenues to consider to get an effective strategy to update v to approach v* from above.
All share the need to model, based on data observed while executing the algorithm, how ¢(v) :=
p(A — BF) evolves with v where F, is the steady state feedback matrix obtained from the DARE.
Essentially, this is an attempt to determine the function in Figure 2 for v > ~v*. We have found
that for each value of v, p(A— BF,) can be estimated reasonably well with a few subspace iteration
steps. We can therefore estimate the value of the function ¢(v) for several values of v which can
be used to produce a v > ~* closer to v* via inverse interpolation.

We are also investigating an approach that uses the estimate of ¢(y) and estimates of left and
right eigenvectors associated with the dominant eigenspaces of A — BF,, to estimate the derivative
of ¢(7) to produce a new value of v [7]. Finally, the relationship given by Lemma 5.1 between the
eigenvalues of A — BF; and eigenvalues on the unit circle of the associated symplectic pencil can
be used to estimate a subset of the unit circle eigenvalues when v < v*. These estimates could be
used to develop an update strategy similar to that used in the level set method [8].

For any of these strategies, once y,i4 — Ynew wWe must make a choice as to how to proceed with
the Chandrasekhar iteration. The simplest approach is to simply restart the iteration with Py = 0
and monitor convergence/divergence in preparation for the next update of . A more efficient way
is to consider the time varying coefficient equation

P =ATPA+CTC - (ATPB+ CTD)BTPB+ D'D —~21,,) Y(BTPA+ DTC), (6.1)

where v; # 741 is modified only when it is obvious from the evolution of the Chandrasekhar
recurrence that it converges.

Suppose we have modified v; such that n? := ~2 77;2“. ‘We can derive a modified update step of
the Chandrasekhar equations that corresponds to solve the time varying difference equation. The

10




equation (4.6) becomes

Rit1 Kip _ [ BY$P,B+ R; +1*I,, BT6PA+K;
KL, 0P+ KL RAK | = | AToRB + KT AT6PA+ KTR'K; |

and the Schur complement with respect to the (2,2) block is still equal to dPi1;. Reasoning in
much the same way as before we find that the square root updating for those steps where n # 0
requires an additional correction

r[2 0 [x o0 S 1 s
A C S B R
7 Numerical examples

In this section, we present numerical results for two sets of numerical experiments based on sta-
ble minimal discrete time systems with randomly generated coefficient matrices. In the first set
of examples we empirically assess the convergence behavior of the Chandrasekhar iteration as a
function of v and its relationship to 7*. The second set compares the bisection-based level set
algorithm estimate of ||G(z)||« to that produced by the bisection-based adaptation of v and the
Chandrasekhar iteration.

The data for the first set of experiments are shown in Figures 3 and 4. For a given stable
discrete-time system, we computed its Ho-norm ~* using a set level method of Section 3 and
tracked ||0P;||2 = ||Li|2 and || Lit1|l2/]|Li]|2 &~ p; in order to decide when convergence occurs (see
also [11] for a discussion on convergence of Riccati difference equations and stopping criteria). The
values of ||0P;||2 = || Li||2, and ||Lit1||2/||Li||2 ~ pi for different values of ~ are displayed in Figures
3 and 4.

When v > ~* there exists a symmetric solution P and ||Li1|2/||Lil|2 &~ pi < 1 according to
(5.6). The norm [|0P;||2 decreases faster as the ratio /4" increases. As we decrease v we obtain
a ratio || Lit1]2/||Lill2 = p; that approaches 1. For 4, < v < ~* there is no symmetric solution
Py and the Chandrasekhar iteration does not converge and we observe the expected behavior that
the smaller v, the faster the divergence. Even in the case of divergence the dominant eigenspace of
A — BF; will yield an eigenspace of the symplectic pencil for its unit circle eigenvalues (or those of
interest outside the circle) that could be used to estimate the intersection of singular value plots
of ®(e*) with the y level of Section 3 and thereby update ~. Finally, when < 7. we observe the
convergence of the Chandrasekhar iteration.
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Figure 3: Behavior of ||[0P;||2 = ||L;||2 for different values of v (v* + ).

pi .

—0.1

—0.001
100000

50000005000900900
T T T T T T T T IEE T Fo LT T AT r e ]

07 L L L L L
0 20 40 60 80 100 120

Figure 4: Behavior of || Liy1||2/||Li||2 = p; for the values of v (v* + €)used in Figure 3.

The second set of experimental results are also made using stable discrete time systems based
on randomly generated coefficient matrices. These matrices are scaled in such a way that the
Hoo norm of each system is equal to 0.9, i.e., v* = 0.9. Each system is a SISO system of order
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400. We approximate v* using a level set method (we denote this approximation by ~;), and a
Chandrasekhar based method combined with a bisection method (we denote this approximation by
~Yep). The convergence/divergence decision for the Chandrasekhar iteration is based an estimate
spectral radius of ¢(y) = p(A — BF,) using a subspace iteration that is easily incorporated into
the Chandrasekhar iteration.

Table 1 contains the estimates of ||G(z)]|o for each problem and method. The level set method
is used here to indicate the best one could expect via an iterative approximation approach.

In order to interpret these results we also show in Figure 5 the behavior of the spectral radius
of A — BF as function of v for each of the systems. Note that the acceptance region flattens
significantly as the spectral radius p(A) approaches 1. This indicates that for a fixed tolerance
T an increasingly wide interval on the v axis will be considered an acceptable approximation to
¥, i.e., the problem is becoming ill-conditioned. The numerical results in Table 1 are consistent
with this observation. The quality of the approximation depends of the spectral radius of A
and, as expected, the Chandrasekhar approach is more sensitive to this parameter than the level
set method. This is due to the heavy dependence on the convergence/divergence decision in the
Chandrasekhar approach and the fact that the convergence of the Chandrasekhar iteration is very
slow. Fortunately, the quality of the approximation is very good for all but system 1 with the
extreme value of p(A) = 0.99.

The level set method is, of course, a method based on dense matrix methods and is therefore
not viable for large problems. The Chandrasekhar iteration with bisection exploits sparse matrix
kernels and low order dense matrices to achieve efficiency for large problems. For the experiments
presented here, MATLAB implementations of the Chandrasekhar iteration without substantial
performance tuning was at least five time faster than the level set method.

system 1 | system 2 | system 3 | system 4 | system 5
p(A) 0.99 0.9 0.8 0.7 0.5
Vs 0.901185 | 0.900330 | 0.900205 | 0.900018 | 0.900337
Yeu | 0.789265 | 0.898865 | 0.899783 | 0.899920 | 0.900303

d(yep) | 0.999999 | 1.000000 | 0.999999 | 1.000000 | 0.999999

Table 1: Approximations for v* = 0.9.
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Figure 5: Behavior of ¢(v) in function of « for different systems.
LEGEND: — system 1, — — system 2, --- system 3, —-— system 4, — system 5.

8 Conclusion

We have presented an algorithm based on the Chandrasekhar iteration and initial empirical evidence
that it can be used to estimate efficiently ||G(2)|« for large discrete time linear time invariant
dynamical systems. Of course, much remains to do in order to develop a reliable and efficient
method. We are currently investigating the influence of the structure of the spectrum of A on the
behavior of the algorithm particularly relative to the convergence/divergence decision. We are also
investigating the design and behavior of the time-varying coefficient version of the Chandrasekhar
iteration and the associated strategies for adapting . The algorithm is easily adapted to estimate
the Hoo norm of a continuous time system.
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