
The PlayStation 3 for High Performance
Scientific Computing

Kurzak, Jakub and Buttari, Alfredo and Luszczek,
Piotr and Dongarra, Jack

2008

MIMS EPrint: 2008.7

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


The PlayStation 3 for High Performance Scientific Computing

Jakub Kurzak
Department of Computer Science, University of Tennessee

Alfredo Buttari
French National Institute for Research in Computer Science and Control (INRIA)

Piotr Luszczek
MathWorks, Inc.

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, University of Manchester

The heart of the Sony PlayStation 3, the
STI CELL processor, was not originally in-
tended for scientific number crunching, and the
PlayStation 3 itself was not meant primarily to
serve such purposes. Yet, both these items may
impact the High Performance Computing world.
This introductory article takes a closer look at
the cause of this potential disturbance.

The Multi-Core Revolution

In 1965 Gordon E. Moore, a co-founder of Intel made
the empirical observation that the number of tran-
sistors on an integrated circuit for minimum compo-
nent cost doubles every 24 months [1, 2], a state-
ment known as Moore’s Law. Basically, since its
conception Moore’s Law has been subject to predic-
tions of its demise. Today, 42 years later, a Google
search for the phrase ”Moore’s Law demise” returns
an equal number of links to articles confirming and
denying the demise of Moore’s Law. On the other
hand, Rock’s Law, named for Arthur Rock, states
that the cost of a semiconductor chip fabrication
plant doubles every four years, which questions the
purpose of seeking performance increases purely in

technological advances.
Aside from the laws of exponential growth, a

fundamental result in Very Large Scale Integration
(VLSI) complexity theory states that, for certain tran-
sitive computations (in which any output may depend
on any input), the time required to perform the com-
putation is reciprocal to the square root of the chip
area. To decrease the time, the cross section must
be increased by the same factor, and hence the total
area must be increased by the square of that fac-
tor [3]. What this means is that instead of build-
ing a chip of area A, four chips can be built of area
A/4, each of them delivering half the performance,
resulting in a doubling of the overall performance.
Not to be taken literally, this rule means that, never-
theless, nec Hercules contra plures - many smaller
chips have more power than a big one, and multipro-
cessing is the answer no matter how many transis-
tors can be crammed into a given area.

On the other hand, the famous quote attributed to
Seymour Cray states: ”If you were plowing a field,
which would you rather use: two strong oxen or 1024
chickens?”, which basically points out that solving
problems in parallel on multiprocessors is non-trivial;
a statement not to be argued. Parallel program-
ming of small size, shared memory systems can be

1



done using a handful of POSIX functions (POSIX
threads), yet it can also be a headache, with noth-
ing to save the programmer from the traps of dead-
locks [4]. The predominant model for programming
large systems these days is message-passing and
the predominant Application Programming Interface
(API) is the Message Passing Interface (MPI) [5], a
library of over 100 functions in the initial MPI-1 stan-
dard [6] and 300 functions in the current MPI-2 stan-
dard [7]. The real difficulty, of course, is not a given
programming model or an API, but the algorithmic
difficulty of splitting the job among many workers.
Here Amdahl’s Law, by a famous computer archi-
tect Gene M. Amdahl, comes into play [8], which
basically concludes that you can only parallelize so
much, and the inherently sequential part of the al-
gorithm will prevent you from getting speedup be-
yond a certain number of processing elements. (Al-
though, it is worth mentioning that Amdahl’s Law has
its counterpart in Gustafson’s Law, which states that
any sufficiently large problem can be efficiently par-
allelized [9].)

Nevertheless, for both technical and economic
reasons, the industry is aggressively moving towards
designs with multiple processing units in a single
chip. The CELL processor, primarily intended for
the Sony PlayStation 3, was a bold step in this direc-
tion, with as many as nine processing units in one,
relatively small, by today’s standards, chip. (234 M
transistors versus 800 M transistors of POWER6 and
1700 M transistors of dual-core Itanium 2). Unlike
the competition, however, the CELL design did not
simply replicate existing CPUs in one piece of sili-
con. Although the CELL processor was not designed
completely from scratch, it introduced many revolu-
tionary ideas.

Keep It Simple - Execution

Throughout the history of computers, the proces-
sor design has been driven mainly by the desire to
speed up execution of a single thread of control. The
goal has been pursued by technological means - by
increasing the clock frequency, and by architectural
means - by exploiting Instruction Level Parallelism

(ILP). The main mechanism of achieving both goals
is pipelining, which allows for execution of multiple
instructions in parallel, and also allows for driving the
clock speed up by chopping the execution into a big-
ger number of smaller stages, which propagate the
information faster.

The main obstacles in performance of pipelined
execution are data hazards, which prevent simul-
taneous execution of instructions with dependen-
cies between their arguments, and control haz-
ards, which result from branches and other instruc-
tions changing the Program Counter (PC). Elabo-
rate mechanisms of out-of-order execution, specu-
lation and branch prediction have been developed
over the years to address these problems. Unfortu-
nately, the mechanisms consume a lot of silicon real
estate, and a point has been reached at which they
deliver diminishing returns in performance. It seems
that short pipelines with in-order execution are the
most economic solution along with short vector Sin-
gle Instruction Multiple Data (SIMD) capabilities.

Shallow Pipelines and SIMD

... shallower pipelines with in-order execution have
proven to be the most area and energy efficient.
Given these physical and microarchitectural consid-
erations, we believe the efficient building blocks of
future architectures are likely to be simple, modestly
pipelined (5-9 stages) processors, floating point
units, vector, and SIMD processing elements. Note
that these constraints fly in the face of the conven-
tional wisdom of simplifying parallel programming
by using the largest processors available.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer,
David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, Katherine A. Yelick,
”The Landscape of Parallel Computing Research: A View
from Berkeley”,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.pdf

Superscalar processors, with multiple functional
units can potentially schedule multiple independent
instructions at the same time. It is up to the hard-
ware, however, to figure out which instructions are

2



independent, and the appropriate logic costs pre-
cious transistors and corresponding space. Also,
there are limits to what can be accomplished in hard-
ware and, for the technology to perform well, appro-
priate cooperation is required from the compiler side,
as well as the programmer’s side. Short vector SIMD
processing provides the capability of executing the
same operation in parallel on many data elements,
and relies on the programmer and/or the compiler
to extract the parallelism from the application. By
the same token, it shifts the emphasis from extract-
ing ILP in the hardware to extracting data parallelism
in the code, which simplifies the hardware and puts
more explicit control in the hands of the programmer.
Obviously, not all problems SIMD’ize well, but most
can benefit from it in one way or another.

SIMD Extensions

Most CPUs today are augmented with some kind of
short vector SIMD extensions. Examples include:

• x86 Streaming SIMD Extensions (SSE),

• PowerPC Velocity Engine / AltiVec / VMX,

• Sparc Visual Instruction Set (VIS),

• Alpha Motion Video Instructions (MVI),

• PA-RISC Multimedia Acceleration eXtensions
(MAX),

• MIPS-3D Application Specific Extensions
(ASP) and Digital Media Extensions (MDMX),

• ARM NEON.

Keep It Simple - Memory

When incurring a cache miss, a modern processor
can stall for as many as 1000 cycles. Sometimes
the request has to ripple through as many as three
levels of caches to finally make it to the utterly slow
main memory. When that task completes, there is lit-
tle guarantee that the next reference does not miss
again. Also, it is quite a remarkable fact that, while
the gap between the cycle time and the memory ac-
cess rate kept growing in the past two decades, the

size of the register file basically did not change from
the original 32, since the conception of Reduced In-
struction Set (RISC) processors in the late 70’s.

Since the cache mechanisms are automatic, the
programmers have no explicit control over their func-
tioning and as a result frequently reverse-engineer
the memory hierarchy in order to extract the perfor-
mance. One way or another, it is a guessing game,
which gives no guarantees, and there is little that can
be done when the miss happens other than waiting.
Attempts to improve the situation use prefetching
queues to fill the caches ahead of time, which some-
what improves the situation. Nevertheless, modern
processors deliver memory performance nowhere
close to their theoretical memory bandwidth, even
for codes with ideal memory access pattern.

The Bucket Brigade

When a sequential program on a conventional
architecture performs a load instruction that misses
in the caches, program execution now comes to a
halt for several hundred cycles. [...] Even with deep
and costly speculation, conventional processors
manage to get at best a handful of independent
memory accesses in flight. The result can be
compared to a bucket brigade in which a hundred
people are required to cover the distance to the
water needed to put the fire out, but only a few
buckets are available.

H. Peter Hofstee,
”Cell Broadband Engine Architecture from 20,000 feet”,
http://www-128.ibm.com/developerworks/power/library/
pa-cbea.html

The situation only gets worse when these limited
resources become shared by multiple processing
units put together in a single chip. Now, the limited
bandwidth to the main memory becomes a scarce
resource, and in addition processors evict data from
each other’s caches, not to mention phenomena like
false sharing, where mutual evictions result from ac-
cesses to disjoint memory locations. At this point,
reverse-engineering the memory hierarchy becomes
a tricky wizardry. The concept of a virtual memory
system adds to the complexity of memory circuitry

3



and introduces the concept of a Translation Look-
Aside Buffer (TLB) miss, which is in general much
more catastrophic than a cache miss, since it trans-
fers the control to the operating system.

If only the memory could have flat address space
with flat and fast access rate and be under explicit
control of the program...

The CELL in a Nutshell

The main control unit of the CELL processor is the
POWER Processing Element (PPE). The PPE is a
64-bit, 2-way Simultaneous Multi-Threading (SMT)
processor binary compliant with the PowerPC 970
architecture. The PPE consists of the POWER Pro-
cessing Unit (PPU), 32 KB L1 cache and 512 KB L2
cache. Although the PPU uses the PowerPC 970 in-
struction set, it has a relatively simple architecture
with in-order execution, which results in a consider-
ably smaller amount of circuitry than its out-of-order
execution counterparts and lower energy consump-
tion. The high clock rate, high memory band-
width and dual threading capabilities should make
up for the potential performance deficiencies stem-
ming from its in-order execution architecture. The
SMT feature, which comes at a small 5 percent in-
crease in the cost of the hardware can potentially
deliver from a 10 to 30 percent increase in perfor-
mance [10]. The PPU also includes a short vector
SIMD engine, VMX, an incarnation of the PowerPC
Velocity Engine or AltiVec.

The real power of the CELL processor lies in eight
Synergistic Processing Elements (SPEs) accompa-
nying the PPE. The SPE consists of the Synergistic
Processing Unit (SPU), 256 KB of private memory
referred to as the Local Store (LS) and the Mem-
ory Flow Controller (MFC) delivering powerful Di-
rect Memory Access (DMA) capabilities to the SPU.
The SPEs are short vector SIMD workhorses of
the CELL. They possess a large 128-entry, 128-bit
vector register file, and a range of SIMD instruc-
tions that can operate simultaneously on two dou-
ble precision values, four single precision values,
eight 16-bit integers or 16 8-bit characters. Most
instructions are pipelined and can complete one

vector operation in each clock cycle. This in-
cludes fused multiplication-addition in single preci-
sion, which means that two floating point operations
can be accomplished on four values in each clock
cycle. This translates to the peak of 2×4×3.2 GHz =
25.6 Gflop/s for each SPE and adds up to the stag-
gering peak of 8×25.6 Gflop/s = 204.8 Gflop/s for
the entire chip.

All components of the CELL processor, including
the PPE, the SPEs, the main memory and the I/O
system are interconnected with the Element Inter-
connection Bus (EIB). The EIB is built of four uni-
directional rings, two in each direction, and a token
based arbitration mechanism playing the role of traf-
fic light. Each participant is hooked up to the bus
with the bandwidth of 25.6 GB/s, and the bus has in-
ternal bandwidth of 204.8 GB/s, which means that,
for all practical purposes, one should not be able to
saturate the bus.

The CELL chip draws its power from the fact that
it is a parallel machine including eight small, yet
fast, specialized, number crunching, processing el-

4



ements. The SPEs, in turn, rely on a simple design
with short pipelines, a huge register file and a pow-
erful SIMD instruction set.

Also, the CELL is a distributed memory system
on a chip, where each SPE possesses its pri-
vate memory stripped out of any indirection mecha-
nisms, which makes it fast. This puts explicit control
over data motion in the hands of the programmer,
who has to employ techniques closely resembling
message-passing, a model that may be perceived
as challenging, but the only one known to be scal-
able today.

Actually, the communication mechanisms on the
CELL are much more powerful compared to those
of the MPI standard. Owing to the global address-
ing scheme, true one-sided communication can be
utilized. At the same time, by its nature, the DMA
transactions are non-blocking, what facilitates real
communication and computation overlapping, often
an illusion in MPI environments.

CELL Vocabulary

• PPE - Power Processing Element

– PPU - Power Processing Unit

• SPE - Synergistic Processing Element

– SPU - Synergistic Processing Unit

– LS - Local Store

– MFC - Memory Flow Controller

• MIB - Element Interconnection Bus

• XDR - eXtreme Data Rate (RAM)

For those reasons the CELL is sometimes referred
to as the supercomputer of the 80’s. Not surprisingly,
in some situations, in order to achieve the highest
performance, one has to reach for the forgotten tech-
niques of out-of-core programming, where the Local
Store is the RAM and the main memory is the disk.

The difficulty of programming the CELL is often
argued. Yet, the CELL gives a simple recipe for per-
formance - parallelize, vectorize, overlap; parallelize
the code among the SPEs, vectorize the SPE code,
and overlap communication with computation. Yes,

those steps can be difficult. But if you follow them,
performance is almost guaranteed.

The PlayStation 3

The PlayStation 3 is probably the cheapest
CELL-based system on the market containing the
CELL processor, with the number of SPEs reduced
to six, 256 MB of main memory, an NVIDIA graphics
card with 256 MB of its own memory and a Gigabit
Ethernet (GigE) network card.

Sony made convenient provisions for installing
Linux on the PlayStation 3 in a dual-boot setup. In-
stallation instructions are plentiful on the Web [11].
The Linux kernel is separated from the hardware by
a virtualization layer, the hypervisor. Devices and
other system resources are virtualized, and Linux
device drivers work with virtualized devices.

The CELL processor in the PlayStation 3 is iden-
tical to the one you can find in the high end IBM or
Mercury blade severs, with the exception that two
SPEs are not available. One SPE is disabled for
chip yield reasons. A CELL with one defective SPE
passes as a good chip for the PlayStation 3. If all
SPEs are non-defective, a good one is disabled. An-
other SPE is hijacked by the hypervisor.

The PlayStation 3 possesses a powerful NVIDIA
Graphics Processing Unit (GPU), which could poten-
tially be used for numerical computing along with the
CELL processor. Using GPUs for such purposes is

5



rapidly gaining popularity. Unfortunately, the hyper-
visor does not provide access to the PlayStation’s
GPU at this time.

The GigE card is accessible to the Linux kernel
through the hypervisor, which makes it possible to
turn the PlayStation 3 into a networked workstation,
and facilitates building of PlayStation 3 clusters us-
ing network switches and programming such instal-
lations using message-passing with MPI. The net-
work card has a DMA unit, which can be set up us-
ing dedicated hypervisor calls that make it possible
to make transfers without the main processor’s inter-
vention. Unfortunately, the fact that the communica-
tion traverses the hypervisor layer, in addition to the
TCP/IP stack, contributes to a very high message
latency.

Programming

All Linux distributions for the PlayStation 3 come with
the standard GNU compiler suite including C (GCC),
C++ (G++) and Fortran 95 (GFORTRAN), which now
also provides support for OpenMP [12] through the
GNU GOMP library. The feature can be used to take
advantage of the SMT capabilities of the PPE. IBM’s
Software Development Kit (SDK) for the CELL de-
livers a similar set of GNU tools, along with an IBM
compiler suite including C/C++ (XLC), and more re-
cently also Fortran (XLF) with support for Fortran 95
and partial support for Fortran 2003. The SDK is
available for installation on a CELL-based system,
as well as an x86-based system, where code can be
compiled and built in a cross-compilation mode, a
method often preferred by the experts. These tools
practically guarantee compilation of any existing C,
C++ or Fortran code on the CELL processor, which
makes the initial port of any existing software basi-
cally effortless.

At the moment, there is no compiler available, ei-
ther freely or as a commercial product, that will auto-
matically parallelize existing C, C++ or Fortran code
for execution on the SPEs. Although such projects
exist, they are at the research stage. The code for
the SPEs has to be written separately and compiled
with SPE-specific compilers. The CELL SDK con-

tains a suite of SPE compilers including GCC and
XLC. The programmer has to take care of SIMD vec-
torization using either assembly or C language ex-
tensions (intrinsics) and has to also parallelize the al-
gorithm and implement the communication using the
MFC DMA capabilities though calls to appropriate li-
brary routines. This is the part that most program-
mers will find most difficult, since it requires at least
some familiarity with the basic concepts of parallel
programming and short vector SIMD programming,
as well as some insight into the low level hardware
details of the chip.

A number of programming models/environments
have emerged for programming the CELL proces-
sor. The CELL processor seems to ignite similar en-
thusiasm in both the HPC/scientific community, the
DSP/embedded community, and the GPU/graphics
community. Owing to that, the world of program-
ming techniques proposed for the CELL is as di-
verse as the involved communities and includes
shared-memory models, distributed memory mod-
els, and stream processing models, and represents
both data-parallel approaches and task-parallel ap-
proaches [13–19].

Programming Environments

Origin Available Free
CELL Barcelona X X
SuperScalar Supercomp.

Center
Sequoia Stanford X X

University
Accelerated IBM X X
Library
Framework
CorePy Indiana X X

University
Multi-Core Mercury X
Framework Computer

Systems
Gedae Gedae X
RapidMind RapidMind X
Octopiler IBM
MPI Microtask IBM

6



A separate problem is the one of programming
for a cluster of PlayStation 3s. A PlayStation 3
cluster is a distributed-memory machine, and prac-
tically there is no alternative to programming such
a system with message-passing. Although MPI is
not the only message-passing API in existence, it
is the predominant one for numerical applications.
A number of freely available implementations exist,
with the most popular being MPICH2 [20] from Ar-
gonne National Laboratory and OpenMPI [21–23],
an open-source project being actively developed by
a team of 19 organizations including universities, na-
tional laboratories, companies and private individ-
uals. Due to the compliance of the PPE with the
PowerPC architecture, any of these libraries can be
compiled for execution on the CELL, practically out-
of-the-box. The good news is that using MPI on a
PlayStation 3 cluster is not any different than on any

other distributed-memory system. The bad news is
that using MPI is not trivial, and proficiency takes
experience. Fortunately, the MPI standard has been
around for more than a decade and a vast amount
of literature is available in print and online, including
manuals, reference guides and tutorials.

Overlapping communication and computation is
often referred to as the Holy Grail of parallel com-
puting. Although the MPI standard is crafted with
such overlapping in mind, due to a number of rea-
sons it is often not accomplished on commodity com-
puting clusters. It is, however, greatly facilitated by
the hybrid nature of the CELL processor. Since the
PPE is not meant for heavy number crunching, it is-
sues computational tasks to the SPEs. While these
tasks are in progress, the PPE is basically idle and
can issue communication tasks in the meantime.
In principle, the role of the PPE is to issue both
computational tasks as well as communication tasks
in a non-blocking fashion and check their comple-
tion, which means that perfect overlapping can be
achieved. Even if the message exchange involves
the PPE to some extent, it should not disturb the
SPEs proceeding with the calculations.

Scientific Computing

The PlayStation 3 has severe limitations for scientific
computing. The astounding peak of 153.6 Gflop/s
can only be achieved for compute-intensive tasks in
single precision arithmetic, which besides delivering
less precision, is also not compliant with the IEEE
floating point standard. Only truncation rounding
is implemented, denormalized numbers are flushed
to zero and NaNs are treated like normal numbers.
At the same time, double precision peak is less
than 11 Gflop/s. Also, memory-bound problems are
limited by the bandwidth of the main memory of
25.6 GB/s. It is a very respectable value even when
compared to cutting-edge heavy-iron processors,
but it does set the upper limit of memory-intensive
single precision calculations to 12.8 Gflop/s and dou-
ble precision calculation to 6.4 Gflop/s, assuming
two operations are performed on one data element.

However, the largest disproportion in performance

7



of the PlayStation 3 is between the speed of the
CELL processor and the speed of the Gigabit Ether-
net interconnection. Gigabit Ethernet is not crafted
for performance and, in practice, only about 65 per-
cent of the peak bandwidth can be achieved for MPI
communication. Also, due to the extra layer of indi-
rection between the OS and the hardware (the hy-
pervisor) the incurred latency is as big as 200 µs,
which is at least an order of magnitude below to-
day’s standards for high performance interconnec-
tions. Even if the latency could be brought down
and a larger fraction of the peak bandwidth could be
achieved, the communication capacity of 1 GB/s is
way too small to keep the CELL processor busy. A
common remedy for slow interconnections is running
larger problems. Here, however, the small size of the
main memory of 256 MB turns out to be the limit-
ing factor. All together, even such simple examples
of compute-intensive workloads as matrix multiplica-
tion cannot benefit from running in parallel on more
than two PlayStation 3s [24].

Only extremely compute-intensive, embarrass-
ingly parallel problems have a fair chance of suc-
cess in scaling to PlayStation 3 clusters. Such dis-
tributed computing problems, often referred to as
screen-saver computing, have gained popularity in
recent years. The trend initiated by the SETI@Home
project had many followers including the very suc-
cessful Folding@Home project.

As far as single CELL processor is concerned,
there is a number of algorithms where the float-
ing point shortcomings can be alleviated. Some
of the best examples can be found in dense lin-
ear algebra for fundamental problems such as solv-
ing dense systems of linear equations. If certain
conditions are met, the bulk of the work can be
performed in single precision and exploit the sin-
gle precision speed of the CELL. Double precision
is only needed in the final stage of the algorithm,
where the solution is corrected to double preci-
sion accuracy. Results are available for the gen-
eral, non-symmetric, case where LU factorization
is used [25] and for the symmetric positive definite
case, where the Cholesky factorization is used [26].
Performance above 100 Gflop/s has been reported
for the latter case on a single PlayStation 3.

Mixed-Precision Algorithms

A(32), b(32) ← A, b

L(32), L
T
(32) ←Cholesky(A(32))

x(1)
(32) ←back solve(L(32), L

T
(32), b(32))

x(1) ← x(1)
(32)

repeat
r(i) ← b−Ax(i)

r(i)
(32) ← r(i)

z(i)
(32) ←back solve(L(32), L

T
(32), r

(i)
(32))

z(i) ← z(i)
(32)

x(i+1) ← x(i) + z(i)

until x(i) is accurate enough

A - most computationally intensive single precision
operation (complexity O(N3))

A - most computationally intensive double preci-
sion operation (complexity O(N2))

Mixed-precision algorithm for solving a system of lin-
ear equations using Cholesky factorization in single
precision and iterative refinement of the solution in
order to achieve full double precision accuracy.

0 500 1000 1500 2000
0

40

80

120

Problem Size

G
flo

p/
s

double precision peak

single precision algorithm
(single precision results)

mixed precision algorithm
(double precision results)

Performance of the mixed precision algorithm
compared to the single precision algorithm and
double precision peak on a Sony PlayStation 3.

8



In cases where single precision accuracy is ac-
ceptable, like signal processing, algorithms like fast
Fourier transform perform exceptionally well. Im-
plementations of two different fixed-size transforms
have been reported so far [27, 28], with one ap-
proaching the speed of 100 Gflop/s [28, 29].

Future

One of the major shortcomings of the current CELL
processor for numerical applications is the relatively
slow speed of double precision arithmetic. The next
incarnation of the CELL processor is going to in-
clude a fully-pipelined double precision unit, which
will deliver the speed of 12.8 Gflop/s from a single
SPE clocked at 3.2 GHz, and 102.4 Gflop/s from an
8-SPE system, which is going to make the chip a
very serious competitor in the world of scientific and
engineering computing.

Although in agony, Moore’s Law is still alive, and
we are entering the era of billion-transistor proces-
sors. Given that, the current CELL processor em-
ploys a rather modest number of transistors of 234
million. It is not hard to envision a CELL processor
with more than one PPE and many more SPEs, per-
haps exceeding the performance of one TeraFlop/s
for a single chip.

Conclusions

The idea of many-core processors reaching hun-
dreds, if not thousands, of processing elements per
chip is emerging, and some voices speak of dis-
tributed memory systems on a chip, an inherently
more scalable solution than shared memory se-
tups. Owing to this, the technology delivered by the
PlayStation 3 through its CELL processor provides a
unique opportunity to gain experience, which is likely
to be priceless in the near future.

References

[1] G. E. Moore. Cramming more components onto
integrated circuits. Electronics, 38(8), 1965.

[2] Excerpts from a conversation with Gordon
Moore: Moore’s Law. Intel Corporation, 2005.

[3] I. Foster. Designing and Building Parallel Pro-
grams: Concepts and Tools for Parallel Soft-
ware Engineering. Addison Wesley, 1995.

[4] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[5] M. Snir, S. W. Otto, S. Huss-Lederman, D. W.
Walker, and J. J. Dongarra. MPI: The Complete
Reference. MIT Press, 1996.

[6] Message Passing Interface Forum. MPI:
A Message-Passing Interface Standard, June
1995.

[7] Message Passing Interface Forum. MPI-2:
Extensions to the Message-Passing Interface,
July 1997.

[8] G.M. Amdahl. Validity of the single proces-
sor approach to achieving large-scale comput-
ing capabilities. In Proceedings of the AFIPS
Conference, pages 483–485, 1967.

[9] J. L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5):532–533,
1988.

[10] IBM. Cell Broadband Engine Programming
Handbook, Version 1.0, April 2006.

[11] A. Buttari, P. Luszczek, J. Kurzak, J. J. Don-
garra, and G. Bosilca. SCOP3: A Rough Guide
to Scientific Computing On the PlayStation 3,
Version 1.0. Innovative Computing Laboratory,
Computer Science Department, University of
Tennessee, May 2007.

[12] OpenMP Architecture Review Board. OpenMP
Application Program Interface, Version 2.5, May
2005.

9



[13] P. Bellens, J. M. Perez, R. M. Badia, and
J. Labarta. CellSs: a programming model for
the Cell BE architecture. In Proceedings of the
2006 ACM/IEEE SC’06 Conference, 2006.

[14] K. Fatahalian et al. Sequoia: Programming the
memory hierarchy. In Proceedings of the 2006
ACM/IEEE SC’06 Conference, 2006.

[15] IBM. Software Development Kit 2.1 Acceler-
ated Library Framework Programmer’s Guide
and API Reference, Version 1.1, March 2007.

[16] M. Pepe. Multi-Core Framework (MCF), Ver-
sion 0.4.4. Mercury Computer Systems, Octo-
ber 2006.

[17] M. McCool. Data-parallel programming on the
Cell BE and the GPU using the RapidMind de-
velopment platform. In GSPx Multicore Appli-
cations Conference, 2006.

[18] A. J. Eichenberger et al. Using advanced com-
piler technology to exploit the performance of
the Cell Broadband Engine architecture. IBM
Sys. J., 45(1):59–84, 2006.

[19] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and
T. Nakatani. MPI microtask for programming the
Cell Broadband Engine processor. IBM Sys. J.,
45(1):85–102, 2006.

[20] Mathematics and Computer Science Division,
Argonne National Laboratory. MPICH2 User’s
Guide, Version 1.0.5, December 2006.

[21] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun,
J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S.
Woodall. Open MPI: Goals, concept, and de-
sign of a next generation MPI implementation.
In Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Septem-
ber 2004.

[22] R. L. Graham, T. S. Woodall, and J. M. Squyres.
Open MPI: A flexible high performance MPI.
In Proceedings of the 6th Annual International

Conference on Parallel Processing and Applied
Mathematics, September 2005.

[23] R. L. Graham, G. M. Shipman, B. W. Bar-
rett, R. H. Castain, G. Bosilca, and A. Lums-
daine. Open MPI: A high-performance, hetero-
geneous MPI. In Proceedings of the Fifth Inter-
national Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous
Networks, September 2006.

[24] A. Buttari, J. Kurzak, and J. J. Dongarra. La-
pack working note 185: Limitations of the
PlayStation 3 for high performance cluster com-
puting. Technical Report CS-07-597, Computer
Science Department, University of Tennessee,
2007.

[25] J Kurzak and J. J. Dongarra. Implementation
of mixed precision in solving systems of lin-
ear equations on the CELL processor. Concur-
rency Computat.: Pract. Exper., 2007. in press,
DOI: 10.1002/cpe.1164.

[26] J. Kurzak and J. J. Dongarra. LAPACK working
note 184: Solving systems of linear equation
on the CELL processor using Cholesky factor-
ization. Technical Report CS-07-596, Computer
Science Department, University of Tennessee,
2007.

[27] A. C. Chowg, G. C. Fossum, and D. A. Broken-
shire. A programming example: Large FFT on
the Cell Broadband Engine, 2005.

[28] J. Greene and R. Cooper. A parallel 64K com-
plex FFT algorithm for the IBM/Sony/Toshiba
Cell Broadband Engine processor, September
2005.

[29] J. Greene, M. Pepe, and R. Cooper. A
parallel 64K complex FFT algorithm for the
IBM/Sony/Toshiba Cell Broadband Engine pro-
cessor. In Summit on Software and Algorithms
for the Cell Processor. Innovative Computing
Laboratory, University of Tennessee, October
2006.

10


