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PREFACE 

This book is concerned with the latent rootst and latent vectors of matrices 
whose elements are real. Its main purpose is to discuss some of the methods 
available for kding latent roots and vectors. The methods presented include 
not only those that are the most useful in practice, but some chosen because 
of the interesting ideas they present and the help they give to a general 
understanding of the latent root and vector problem. I have attempted 
throughout to introduce the material in as uncomplicated a manner as 
possible. 

One of the reasons for the book is the importance of latent roots in a wide 
field of applications, for example, nuclear and atomic physics, statistical 
analysis, aeronautics, structural analysis, design of control systems, vibration 
theory, and the convergence and stability of various numerical methods. I 
hope this book may be of use to people working in such areas. 

I have assumed a knowledge of elementary matrix and determinant theory. 
The first chapter gives many of the theorems required in the later chapters. 
Schur's theorem, that every matrix is similar to a triangular matrix, is 
given early on in the belief that this has often not been used to its full 
potential. It is also of great practical importance since the triangular form 
can be obtained by stable methods such as the Q-R algorithm, in contrast to 
forms such as the Jordan canonical form which can only be obtained by 
unstable methods. The second chapter presents just four of the many uses of 
latent roots and vectors and these reflect only my o m  interest in the subject. 
The remainder of the book is devoted to methods of finding latent roots and 
vectors. 

I have attempted to illustrate all the methods with simple examples that 
can be easily followed and understood. In many cases, for the purpose of 
illustration, the examples and exercises are so constructed that exact 
arithmetic is possible. Obviously this is not the case in practical examples, 
so it must be borne in mind that these particular examples may not reflect 
the numerical problems that can arise. In practice a knowledge of the 
condition of a problem with respect to its solution is desirable. By condition 
I mean a measure of the sensitivity of a solution with respect to changes in 
the original data. This measure is clearly important since we are unlikely to 
have exact data and also we shall have to introduce rounding errors in 
computing a solution. A method which leads to an ill-conditioned problem is 
unstable, and of the methods discussed those of Danilevsky, Krylov and 
Lanczos can be said to be unstable since they are either directly or indirectly 
connected with the Frobenius form which can be extremely ill-conditioned 
with respect to its latent roots. For a full discussion of this type of problem 
and for a detailed error analysis of most of the methods the reader can but be 
referred to J. H. Wilkinson's The Algebraic Eigenvalue Problem. 

t Often referred to as eigenvalues, characteristic values, characteristic roots and proper 
values. 
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NOTATION 

Upper case letters have been used almost exclusively for matrices and 
vectors, and lower case and Greek letters for scalars. X has been used only to 
represent a latent root. The matrix A is generally the matrix of prime 
interest, and, unless otherwise specified, is an n x n matrix containing only 
real elements. 

1 A 1 Determinant of the matrix A. 
A-l Inverse of the matrix A. 
AT Transpose of the matrix A. 
A* Matrix whose elements are the complex conjugate of AT. 
1 a 1 Modulus of a. No confusion should arise with I A 1. 

I The unit matrix. 





Chapter 1 

LATENTROOTS ANDLATENTVECTORS 

A latent root of a square matrix A is a number, A, that satisfies the equation, 

where X is a column vector and is known as a latent vector of A. 
The values of A that satisfy equation (1.1) when X # 0 are given by solving 

the determinantal equation, called the characteristic equation of A, 

since (1.1) may be mitten as 

and since, if / A - XI I # 0, then (A - a)-l exists, it follows that 

The solution of equation (1.2) as it stands involves the evaluation of an 
n x n determinant and the extraction of n roots from the resulting polynomial 
in A. If the latent vectors are also required, we shall have to solve the n 
equations of (1.1) for each value of A. Since the determinant of (1.2) is not 
wholly arithmetic, its evaluation will involve of the order of n! calculations. 
The general solution of the problem in this form is clearly impracticable. 

Nence 

So the latent roots of A are A, = 5 and A, = 2. From AX = AX we get 
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When h = 5, 

3x+y = 5x 

Hence 

When h = 2, 

Hence 

The latent vectors of A are any vectors of the form 

1 
X l = k ( i )  and X a = k ( - l )  

Geometrically, we have found those vectors which remain unaltered in 
direction when they are transformed by the matrix A. The latent root 
measures the change in magnitude of the latent vector. See Fig. 1. 

Various results and theorems that will be needed in later work are now 
given. 
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Similar matrices and similarity transformations will play an important 
role in much of the work in this book. 

Two matrices A and B are said to be similar if there exists a matrix C 
such that 

B = C-I AC 

The transformation from A to B is called a similarity transfmation. If 
C is a matrix such that 

CT = C-1 

it is called an orthogonal matrix, and the similarity transformation is said 
to be an orthogonal transformation. An important orthogonal matrix is given 
by 

C O S ~  -sine 

sin8 cos8 

which has the effect of rotating the x and y axes through an angle - 8 into 
new axes X and Y for 

cos8 -sin8 

sin0 cos 8 
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gives 
X = cos0.x-sin0.y 

which can be shown by elementary algebra to give the required transforma- 
tion. 

Theorem 1.1 
Similar matrices have the same characteristic equation. 

Proof 
B = C-I AC 

Hence 
( B - X I =  16-'AC-Mj = [C-lAC-XC-lICI 

Theorem 1.2 
If B = C-1AC and X and Y are the respective latent vectors of A and 13 

corresponding to the latent root A, then, 

Proof 

Hence 

But 

CY = x 

BY = AY 

CBY = ACY 

CB = AC 
so that 

ACY = hCY 
which gives 

CY = X 

Theorem 1.3 
Every matrix is similar to a triangular matrix, i.e. a matrix having zero 

in each position either above or below its leading diagonal. 
Before proving this important theorem, we need some intermediate results. 
We denote by C* the matrix whose elements are the complex conjugate 

of CT. If C is such that 
c* = c-1 



Lateat Roots and Latent Vectors 5 

it is called a zc~itary matrix, If the elements of C are all real, then, of course, 
it is orthogonal. 

Theorem 1.4 
The elements on the leading diagonal of a triangular matrix are its latent 

roots. 

Proof 
Let 

The case of an upper triangular matrix is equally simple. 
We now restate theorem 1.3 more strongly and prove it by induction. 

Theorem 1.5 (Schar's theorem) 
For every matrix A, there exists a unitary matrix C such that 

B = C-lAC 
where B is triangular. 

Proof 
When A, = (al,) the theorem is clearly true. 
Suppose that the theorem is true when An is an n x n matrix. 
Let the latent roots of An+, be A,, A,, . . ., A,+,, and X, be the latent vector 

corresponding to X, normalized so that 

&*x,=l 

Further, let us choose a matrix C, having X1 as its f is t  column and with 
its remaining columns such that Cl is unitary. Then we find that, since C, is 
unitary, 
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where A, is an n x n matrix. The characteristic equation of B, is given by  

IBl-XI[= (Al-A)(A,-MI = 0 

and hence the latent roots of A, are A,, A,, . . . , &+,. Our inductive hypothesis 
asserts that we can find a unitary matrix C, such that 

A, dl, 4, .. . dl, 

We now find that 

A1 C12 C13 ... Cl,n+l 

O ' 2  -.' c~,ffl+l 

0 0 0 ,.. An+, 

Putting C = C ,  C,,,, the theorem is proved.? 

1.3 THEOREMS CONCERN IN^ LATENT ROOTS 

Theorem 1.6 
If A and X are a corresponding latent root and vector of A, then Am and 

X are a corresponding latent root and vector of Am, m being an integer. 
(The case of negative m is valid, of course, only if A-l exists.) 

Proof 
We have 

A X = =  

t Working through exercise 2.13(i) may help to follow the proof. 



Latent Boots and Latent Vectors 7 

and, if A-1 exists, 
X = AA-lX 

Assume that the theorem holds for m = r so that 
AYX = XrX 

which gives 
Ar+l X = Ar AX = Xr+1 X 

Also, when A-l exists, 
AY-I X = Ar A-1 X = Ar-1 X 

Hence by induction the theorem is proved. 

Theorem 1.7 
Am+O as m+co if and only if ! A /  < 1 for all A. 

Proof 
First assume that Am -+ 0 as m --t co. 
From theorem 1.6 we have 

AnaX = AmX 
so that, if AM+ 0 as m + co, AmX + 0. Hence hMX -t 0, which means that 
I A l < l .  

Now suppose that 1 A 1 < 1 for all A. 
We saw in theorem 1.5 that we can put 

A = CB, C-I 
where B, is triangular. It is easy to show by induction that we have 

Am = CBy C-l 

Now, By is triangular and has A?, Ar, . . ., A; as the elements on its leading 
diagonal, so that in the limit as m+w, we get 

but it is clear that Bm = 0 = Lim Byn = Lirn By. Hence we must have 
m+w m-tw 

B = 0 andBp+O as m-tco. 
Since 

Am = CB? C 
Am+O asm-+w 

which is the required result. 
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Theorem 1.8 (Cagley-Hamiltm theorem) 
A matrix satisfies its own characteristic equation, i.e. if the characteristic 

equation of A is 

An-plAn-l-p2hn-2- ...-pn- ,A-pn = O 
then 

An-plAn-l-p2An-2- . . . - P ~ - ~ A - ~ ~ I  = O 

Proof 
Consider the matrix B, which is the adjoint of the matrix (A - XI). That is, 

B(A-XI) = IA-X1.I (1.3) 

Each element of B is a co-factor of the determinant I A-XI(, and hence 
is a polynomial in h of degree not greater than n - 1. This means that we can 
find matrices B,, B,, . . . , Bn independent of X such that 

B = BlXn-l+B2Xn-2+ ... +B,-lA+B, 

Hence (1.3) becomes 

(BlAn-1+B2An-a+ ... +Bn-lh+B,) (A-XI) = (An-plhn-f - ... -pn-lX-pn) . I  

and equating coeBcients of X we get 

Bn A = - pnI 
Bn-l A-Bn = -pn-$I 

B,A -B, = - pl I  

- B 1 = I  

Post-multiplying the first of these by I, the second by A, the third by 
A2, . . ., the nth by An-1, the (n + l) th by An and adding we get 

as required. 

Theorem 1.9 
The latent roots of the trampose of A are the same as those of A. 

Proof 
The latent roots of A are given by 

/A-XI1 = O  
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Sinoe I A - AI I is formed by subtracting only from the leading diagonal of 
A we have 

\AT-X/ =)A-XIT = /A-XI\ = 0 

and the theorem is proved. 

Theorem 1.10 (Gerschgorin's theorem) 
The modulus of any latent root of a matrix does not exceed the largest 

sum of the moduli of the elements of any one row or column. 

Proof 
Let the components of the latent vector X of A be x,, x,, . . . , x,. 
Then, since 

AX = hX 
we have 

allxl+al,x,+ ... +al,x, = Ax1 

a,,x,+a,,x,+ ...+ a,,x, =Ax, 

Let I x, 1 2 1 xt 1 for all i, then selecting the rth equation above we get 

so that 

IXI~IariI+IaraI+...+IavnI 
because I xi/x, 1 < 1 for all i. 

The column case follows from theorem 1.9. 

Theorem 1.11 
The sum of the latent roots of A is equal to its trace. 

Proof 
The latent roots of A are given by 

IA-XI = 0 

or 
all-X a,, . .. 

a,, a,-X ... azm 
= 0 
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which gives, say, 
An-plAn-l- ... -pn-,A-p, = 0 

and if the theorem is true we must have 

pl = - (al1 + a,, + . . . + a,,) 
We see that, if A, = [a,,], the theorem is true. Assume that the theorem is 
true for an ( n  - 1 )  x (n - 1 )  matrix. 

Then, if we expand the above determinant by its last row, (a,, - A) is the 
only element to contribute to the coeBcient of An-,, so that if our inductive 
hypothesis holds, this element times its co-factor yields 

(ann - A) (An-, - (a,, +a,, + . . . + An--, - . . . -pk) 
which gives as the ooefEcient of An-l 

p1 = -(a,,+a,,+... +a,,) 
(The above gives -p,  but also -An, and since we equate the characteristic 
equation to zero we are justified in changing the sign.) So by induction the 
theorem is proved. 

Theorem 1.12 
The product of the latent roots of A is equal to I A 1, 

Proof 
From theorem 1.5 we can express A as 

A = CBC-I 
where B is triangular. Hence 

IAI = ICI IBI IC-ll = / C I  IC-ll IBI = IBI = X I A  2...An 
as required. 

Theorem 1.13 
If A is a latent root of A, and f (A)  is a polynomial in A, then f(A) is a 

latent root of f(A). 

Proof 

Let f (A)  = a,An+an-,An-l+ ... +alA+aoI. 
Then 

f (A)X = anAnX+a,-,An-lX+ ... +alAX+aoX 

so that if X is a latent vector of A, from theorem 1.3 we get 
f ( A ) S  = a,I\"X+a,-,An-lX+ ... +alXX+aoX 

= (a,hn+a,-lhn-l+ ... +a,h+a,)S 

= f(4 X 
as required. 
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Theorem 1 .I4 

If A = - - , Dl and D, being square, (:'I;) 
then, 

/A-MI = ID1-XI ID,-XI[ 

Proof 
Clearly it suffices to show that I A 1 = / Dl I I D, I .  Firstly we see that if Dl 

contains just one element, say a, then expanding IAl by the first column 
we get 

IAl=  alD,I = ID11 ID31 
Assume that the theorem is true when Dl is an (n- 1) x (n- 1) matrix. 

Now let 

a,, a,, . .. a,, c21 1 :  : ; - -  " I  

Expanding I A [ by the fist column we get 

where Mif is the minor of a8j with respect to Dl. But Mii is an (n - 1) x (n - 1) 
group of elements, hence by our inductive assumption 

IAI = a l l ~ l ~ I D , I  -azlMzlID~I+.*.f (-l)n+lan~RI,lID,I 

= [allM~l-a~l~~l+.-.+(-l)~+~an~Mn~I ID31 = ID11 ID31 
and so by induction the theorem is proved. 

Theorem 1.15 
If A has r distinct latent roots, then it has at least r linearly independent 

latent vectors. 
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Proof 
From theorem 1.5 we can put A = CBC-1, where B is triangular. From the 

construction of that theorem it is clear that the latent roots of A can be made 
to appear in any order on the leading diagonal of B. Suppose that the r 
distinct latent roots A,, A,, . . ., A,. appear in the first r positions. Then, if Y is a 
latent vector of B having elements y,, y2, . . . , yn, from BY = XY we get 

Suppose that h = A,, where p < r, and we put y,,, = y,,, = . . . = y P = 0. 
We then get the equations 

Since the last equation is 0 = 0, we are left with p - 1 equations in p 
unknowns. If we fix y, # 0, we then have p - 1 equations in p - 1 unknowns 
and since none of the values A,, A,, ...,&, are equal to A,, the rank of the 
equations is p - 1 so that we can solve uniquely for y,, y,, . . ., 9,-,. We have 
now clearly found cs particular solution to the original set of equations, so 
that the r latent vectors of B corresponding to A,, A,, . . . , ;\, are respectively 
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where y, $0, y, $ 0, ,. . . , y, .f 0. The&? r vectors are obviously linearly indepen- 
dent. Let H = [YIP, ... YT] so that the rank of H is r. Then, 

CII = [CYl CY, . . . CYT] = [XI X, .. . &I = G 

where XI, X,, ..., X, are the latent vectors of A corresponding to hl,X,, ..., &. 
Since C-l exists, the rank of G is r and the theorem is now proved. 

Theorem 1.16 
If the latent roots of A are all distinct, then the n latent vectors are all 

linearly independent. 

P~oof 
This follows immediately from theorem 1.15. 

Theorem 1.17 
If A has n linearly independent latent vectors then it is similar to rt 

diagonal matrix. 

Proof 
Consider a matrix C whose columns are the latent vectors of A. Then 

AC = A(Xl Xz . . . X,) = (XI XI h, X2 . . . A, X,) 

where B is diagonal. Since all the latent vectors XI, X,, . . . , X, are linearly 
independent, C-1 must exist. Hence 

B = C-I AC 

and the theorem is proved. 

Theorem 1.18 
If Xi and Xj are distinct latent roots of A with 

A X = h , X  and ATY=;tjY 

then XTY = 0, i.e. X and Y are bi-orthogonal. 
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Proof 
From AX = X,X we get 

XiYTX = YTAX = (ATY)TX = (XfY)TX = )SYTX 

Since Xi # Xi it must be that YT X = 0, and hence XT Y = 0. 

Theorem 1.19 
If X is a latent vector of A corresponding to the latent root a + bi, then P 

is the latent vector corresponding to the latent root a - bi, where the elements 
of Y are the complex conjugates of those of X. 

Proof 
Let us write X = Xl + iX, and Y = X, - iX,. We have 

A(X, + iX,) = (a + bi) (X, + iX,) 
so that 

AX, + iAX, = ax, - bX, + iaX, + ibX, 

Equating real and imaginary parts this gives 

AX1 = ax, - bX, 
and 

AX, = ax, + bX, 

Multiplying (1.5) by ( - i) and adding to (1.4) we get 

AX, - iAX, = ax1 - bX, - iaX, - ibX, 
so that 

A(X1 - iX,) = ax, - iaX, - ibX, - bX, 

= (a - bi) (X, - iX,) 
or 

AY = (a- bi) Y 
as required. 

Theorem 1.20 
The latent roots and vectors of a real symmetric matrix are all mal. 

Proof 
From theorem 1.5 we can put 

B = C-lAC 

where B is triangular and C is unitary, that is C* = C-1. Hence 

B* = (C-1 AC)" =;: (C* AC)" = C* A* C = C-1 AC = B 
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But we can only have B* = B if B has real diagonal elements and since the 
diagonal elements of B are the latent roots of A, these roots must be real. 
It follows that the latent vectors of A must also be real. 

Theorem 1.2 1 
Every symmetric matrix is similar to a diagonal matrix. 

Proof 
From the above theorem we had B* = B. Since B is triangular it must 

also be diagonal. 

Theorem 1.22 
A symmetric matrix has n linearly independent and orthogonal latent 

vectors. 

Proof 
From theorem 1.21 we can put 

If the columns of C are XI, X,, ..., X,, this gives 

AC = A(Xl X2 . . . X,) = (AX1 AX2 . . . AX,) 
= CB = (A, X, A, X, . . . A, X,) 

and it follows that XI, X,, . . ., X, are all latent vectors of A. Since C-1 exists 
they must all be linearly independent. 

Furthermore, since from theorem 1.20 the latent roots and hence the 
latent vectors of A are real we have 

C-l= C* =. CT 

so that 
(X,X, ... X,)* (X1X2 ... X,) = I 

which means that 
Xr X3 = 0 whenever i # j 

This completes the proof of the theorem. 
Further results and theorems will be given as and when they are required. 
In  the next section just a few of the applications of latent roots and 

vectors are briefly discussed. 
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1.6 EXERCISES 

Section 1.1 
1 . l .  Find the latent roots and vectors of the following matrices 

1.2. Show that all vectors are latent vectors of the unit matrix. 

Xection 1.2 
1.3. Show that the matrix R of $1.2 has the effect of rotating the x, y-axes 

through an angle - 8. (Alternatively we can think of R as rotating a point through 
an angle 8.) 

1.4. Use the matrix of rotation R to show that 

sin b+B) = ~inacos8+cosolsin8 
Show that 

Show also that R i~1 isomorphic to the complex number eos 8 + i sin 8. Hence prove 
De Hoivre's theorem. 

1.5. Show that the matrix 
cosh 8 sinh 8 .-( 
sinh 8 cosh 8 

has the effect of rotating a point (x, y) on the hyperbola xa- y2 = f l  through a 
'hyperbolic angle' 8. Hence prove that 

sinh (a + 8) = sinh a cosh 8 + cosh a sinh 8 

1.6. If Xf  0 is a latent root of AB, show that i t  is also a latent root of BA. 
What is the connection between their corresponding latent vectors ? Deduce that 
if AB = BA then A and B have a common latent vector. 

1.7. Show that a matrix A# I cannot be similar to I. Hence give an example of 
two matrices with the same characteristic equation that are not similar. 

1.8. Show that a unitary matrix G can be found with a given first column X 
such that X*X = 1. 

1.9. If A-1 and B-1 both exist show that (AB)-I = B-1 A-1. 
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Section 1.3 

1.10. If A is unitary show that / A !  = 1 for all A. 
1.11. By finding the latent roots of the matrix R of question 1.4 give an alterna- 

tive proof for De Moivre's theorem when n is an integer. 
1.12. Prove that Am remains finite as m-tco if, and only if, I A 1 < l for all A. 
1.13. The minimal polynomial of a matrix A is defined to be the polynomial 

h(X) of least degree such that h(A) = 0. Show that h(A) is a factor of the character- 
istic equation of A. Show also that any latent root of A is a root of h(X). 

1.14. Prove that every latent root of A lies on or inside at least one of the circles. 

This is known as Brauer's theorem. 

Section 1.4 
1.15. Prove that if A is similar to a diagonal matrix then it has n linearly inde- 

pendent latent vectors. 

Section 1.5 
1.16. Show that (AB)* = B*A*. 
1.17. A matrix such that A = A* is caJlled Hermitian. Prove that the latent 

roots of a Hermitian matrix are all real. Also prove that a Eermitian matrix is 
similar to a diagonal matrix. 

Miscellaneozcs 
1.18. Find the latent roots of the magic squares 

(A is magic if the elements in each row, column and the two main diagonals add 
up to the same number, this number being called the magic number.) 

Show that one latent root of a magic square is the magic number. 
1.19. Show that the characteristic equation of the n x n matrix, 
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is given by 

An - "-lC1 + "-2c A"" - n-sC An-6 + . . . + ( - 1)n/2 = 0, n even 2 3 
- + n - 1 ~  hn-2 - 1 2 - 2 ~  ha-4 + 1 2 - 3 ~  + . . . 1 2 3 + (- l)crr+1)/2 [(n+ 1)/2] h = 0, n odd 

show that the characteristic equation of A is 

where n is the order of the matrix A. Find the latent vectors of A. 
1.21. If 

show that the only latent roots of A are 

n 
X = O  and X - x a :  

a = i  
1.22. If 

0 0 0 ... 0 a, 

0 0 0 ... 0 a, 
. . . . . .  A =  . . . 
0 0 0 ... 0 am-l 

b1 bz b3 ... bn-i anb, 

show that the characteristic equation of A is 

( - ~ ) n - ~ ( @ - a " b ~ ~ -  i--1 
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1.23. If A is the circulant given by 

a, a, as ... 
a, al a, ... an-, 

am-l a, a, ... an-, . . . . . . 
a, as a* ... a, 

show that a: 1 
I A - I = f (eo)f (%If (ez) . . . f (en-,) 

where 
f(x) = ~ + a , ~ + ~ x ~ + . . . + a ~ x ~ - ~ - X  

and 
ek =. e(!4nkln) 

That is, e,, el, ..., e,-, are the n roots of m,/l. 
1.24. A symmetric matrix A is said to be positive definite if XTAX> 0 for 

every non-zero real vector X. Show that A is positive definite if all its latent 
roots are positive. 

1.25. A matrix is said to be normal if AA* = A*A. Prove that 
(i) The latent vectors corresponding to distinct latent roots of a normal matrix 

are orthogonal. 
(ii) If A is normal then A and A* have the same latent vectors. 
1.26. If Ap = 0 for some positive integer r then A is said to be nilpotent.'l?rove 

that the latent roots of a nilpotent matrix are all zero. 
1.27. If A2 = A then A is said to be idempotent. Show that the latent roots of 

an idempotent matrix are all zero or unity. 
1.28. Show that AB and BA have the same characteristic equation. (Question 

1.6 had the restriction that A# 0.) 



Chapter 2 

APPLICATIONS O F  LATENT ROOTS 
AND LATENT VECTORS 

The f is t  application given is useful in that it helps give a geometrie 
understanding to the latent root and vector problem. 

2.1 AXES O F  SYMMETRY OF A CONIC SECTION 

The general two-dimensional conic whose centre is at the origin is given by 

f (x, y) = ax2 + 2 h q  + by2 = 1 

We can write this in matrix form as 

The slope of the normal a t  a point P(xl, yl) on the curve is given by 

The normal will be an axis of symmetry of the conic if its slope is equal to 
the slope of the line OP, 0 being the origin. If this is the case, 

This will be true if there exists h such that 

and 

that is, if 
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Clearly any vector, X, satisfying this equation will be an axis of symmetry. 
of the conic. Prom theorem 1.22 we know that there will be two such vectors 
X, and X,, and that XTX, = 0. 

Furthermore, if X is a latent vector of A, from equation (2.2) we get 

but 

where r is the distance of P from the origin. Bence, 

This also helps us to rotate the conic so that its axes lie along the x, y-axes. 
We wish to rotate the axes of symmetry, say x' and y', through an angle - 8 
so that they lie along the x, y-axes. To achieve this we put (see $1.2), 

cos8 -sin8 

sin8 cos 0 
(2.3) 

which also gives 

Now notice that the point P is given by 

x, = r cos 8 and y, = r sin 8 

and if Q is the point (x,, y,) lying on the intersection of the curve and the 
other latent vector, then clearly 

x2=-r 'sin8 and y2=r1cos8 

and hence the columns of R are latent vectors of A. So substituting (2.3) 
and (2.4) into (2.1) we get 

XT AX = YTR-1 ARY = YTBY 

where, from theorems 1.22 and 1.23, B is diagonal with the latent roots of 
A as its leading diagonal. 

Hence the equation of the conic becomes 
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We can see that a knowledge of the latent roots and vectors of A is 

extremely useful for investigating the conic section. These results are 
easily extended to higher dimensions and to conics whose centres are not 
at the origin. 

Example 2.1 
Take as an example the ellipse given by 

8x2- 4x9 + 5y2 = 1 (See Fig. 3.) 

I 
Wa. 3 

In matrix form the equation of the ellipse is 
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The characteristic equation of A is 

which gives 

or 

so that 

As- 13h+ 36 = 0 

(A- 9 )  (A-4) = 0 

h, = 9 and h2 = 4 

Using AX = AX we have 
8 x - 2 y  = ax 

and 
- 2 x + 5 y  = hy 

When h = 9, 
- x  = 2y 

so that 

When h = 4, 

so that 

The major axis of the ellipse is the line y = 2x, and its length is r = l l JAz  = 4. 
The minor axis of the ellipse is the line y  = -+x, and its length is 
r' = I/JXr = 9. If we rotate the ellipse so that its axes lie along the x  and y  
axes we get the equation 

4x2 + 9y2 = 1  

Two important iterative methods of solving a set of simultaneous linear 
equations are the Jaeobi and the Gauss-Seidel methods. Latent roots play 
an. important role here in determining the convergence of these methods. 

We shall first outline the two methods. We wish to solve the equations 
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or as a matrix equation 
A X = B  (2.5) 

Assuming a$, # 0, we rewrite the equations as 

X ,  = l/ann( - anl x1 - anZ x2 - . . . f bnlann 
In  the Jacobi method we take an initial approximation to the solution of 

the equations and substitute this into the right-hand side of the above 
equations to produce an improved solution. We then substitute this impro~ed 
solution in the right-hand side of the equakions, and so on. 

If we denote xi, as the rth approximation to xi we can represent this 
process as 

or in matrix form as 
Xv+1= PXr + Q 

where 

and 
& = D-1B 

The Gauss-Seidel method varies from Jacobi in that as soon as an approxi- 
mation to x, is found, it is used in all the remaining equations. We represent 
this as 

Xl,r+l = l/a11( - a12 X Z ~  - -. - - aln ~ n r )  + b1/a11 

X2,r+1 = l /a2~ ( -a,  x ~ , r + ~  - . . - a2n xnr) + b2la22 
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or ilz matrix fom as 
D-1(L + D) Xel = - D-' UX, + & 

where L is a lower triangular matrix with zeros in each position of its leading 
diagonal (hence @-l(L + D))-1 exists) and U an upper triangular matrix 
with zeros in each position of its leading diagonal, and 

D + L + U  = A (2.8) 

Since @-l(L + D))-1 exists, we have 

which is of the same form as equation (2.6). For this reason we need only 
investigate an equation of the form 

X,,, = MXr + Y 
which gives 

X, = Mxo+Y 

X2 = MXl+Y = M(MXo+Y)+Y = M2X0+MY+Y 

X3 = MX2+Y = M(M2&+MP+Y)+Y = M3Xo+M2Y+MY+Y 

and it is a simple matter to show by induction that 

X, = MrXo+Mr-lY+Mr-2Y+.. .+MY+Y 

Premultiplying by M gives 

MX, = MT+lXo+MrY +MT-lY + ... +M2Y +MY 

and subtracting the &st of these from the second we get 

HXr-X, = M"+lXo-MrXo+MrY-Y 
so that 

(M-I)X, = M"(M-I)Xo+(Mr-I)Y 

Providing that IM does not have a latent root equal to unity (M -I)-l exists. 
So making this assumption 

X, = (M - I)-l M"(M - I)  X, + (M - I)-l (Mr - I )  Y 

As r -t co we obviously require Xr to converge to a finite limit independent of 
our initial value X,. This will be true if Mr-+O as r - fm.  If this is true 

LimX, = X = (M-1)-l(-I)Y 
7-+m 

which gives 
(M-1)X = -1Y 

or 
X = M X + Y  

which clearly satisfies our initial equations. 
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From theorem 1.7, LimMr = 0 if and only if 1 a 1 < 1 for all a, where a is 
r 4  m 

a latent root of M. (If this is the case the above assumption that there is no 
a = 1 is justified.) Let us try to translate this result back to the original 
problems. 

We take first the Jacobi method. From equation (2.7) we see that 

so that if the method is to converge we require I 1 - h 1 < 1 for all A, where X 
is a latent root of D-I A. 

From the form of I - D-I A and using Gerschgorin's theorem (theorem 1.10) 
we get as a sutKcient condition for convergence of the Jacobi method that 

n 
xlaiil<21addl foral l i  
9-1 

Taking the Gauss-Seidel method we have from equation (2.9) that 

-(L+D)-lU = -(L+D)-l(A-L-D) = (L+D)-1(L+3)-A) 

= I-(L+D)-1A 

which gives that the necessary condition for the process to converge is given 
by 1 1 -8 1 < 1 for all ,8, where ,8 is a latent root of (L + D)-1 A. 

It can be shown that a sufficient condition for the Gauss-Seidel method 
to converge is the same as the condition given above for the Jacobi meth0d.t 

Since (2.10) gives a sufficient condition for the convergence of both the 
dacobi and the Gauss-Seidel methods, we can see why it is generally recom- 
mended that we arrange our set of equations in order that they have a strong 
leading diagonal. $ 

Although the given sufficient conditions are the same for both methods, 
i t  is clear that the necessary conditions are not the same. See exercise 2.7 
for examples of each of the cases where one method converges and the other 
diverges. Varga has discussed the rate of convergence of the two methods.$ 

2.3 STABILITY O F  T H E  NUMERICAL SOLUTION 0%' PABTIAL 
DIFFERENTIAL EQUATIONS 

In  stability we are concerned with the propagation of errors in the numerical 
solution of a problem. If the errors decay as we proceed the method is said 
to  be stable, otherwise it is unstable. Instability is usually caused by the 
growth of rounding errors or by the presence of an unwanted (parasitic) 

t See reference 1, p. 73. 
$ See reference 2, p. 73. 
tj See reference 1. 
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solution. An investigation of the stability of a method can often involve the 
finding of the latent roots of a matrix. We take as an example the solution of 
the parabolic partial differential equation given by 

We wish to h d  values of u(z , t )  for given values of x and t (Fig. 4). 

Suppose that we know the value of u(i, j) = u,~. Then by Taylor's series 
we have 

Adding equations (2.12) and (2.13) and ignoring terms in h4 and higher we 
get 

so that 
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From equation (2.14) if we ignore terms in k2 and higher we get 

so that 

From equation (2.1 1) we can equate equations (2.15) and (2.16) to give 
a finite-difference approximation to the problem. I intend to look instead 
at the more interesting case of the Crank-Nicolson method. They replaced 
equation (2.15) by 

which is the mean of (2.15) as it stands and (2.15) with j+ 1 instead of j. 
So equating this to equation (2.16) and putting r = klh2 we get 

"i,j+l- U.lj = r/2(ui-l,j - 2uij f ui+l,j + Ui-l,j+l- 2~i,j+l + ui+ld+l) 

which gives 

- rui-l,j+l + (2 + 2r) u4,j+1 - = ru4-ld + (2 - 2r) uij + rus+l,j (2.17) 

If we know the initial and boundary values for j = 0 and i = 1,2, ..., n, 
then from equation (2.17) we can obtain n simultaneous linear equations for 
the n values when j = 1. Having found the values for j = 1 we can then 
repeat the process to find the n values when j = 2, and so 0n.t The equations 
arising from equation (2.17) for i = 1,2, . . . , n can be written in matrix form, 
assuming uOd = u ~ , ~ + ~  = u,+~,~ = u , + ~ , ~ + ~  = 0: 

t See reference 4, p. 18, for s worked exsmple. 
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or 
BU,j+l (41 - B) U,j 

which gives 
Ui+, = (4B-I - I) Uj = lQUi (2.18) 

If our starting vector is Uo we have 

U1 = AUo 

U, = AUl = A2Uo 

Urn = AUm-, = AmUo 

Suppose that instead of starting with the exact vector Uo we start with a 
vector Vo, because our initial data have been rounded or have experimental 
errors, then instead of finding Urn we get Vm, where 

Vm = AmVo 

If we define E6 as the error vector due to rounding errors by 

E, = U, - V, 
we get 

Em = Um - Vm = Am Uo - Am Vo = Am(Uo - Vo) = Am Eo 

If the method is to be stable we wish the rounding error to decay as we 
proceed, that is, 

From theorem 1.7 this will be true if I A 1 < 1 for a11 A where h is a latent root 
of A. Equation (2.18) gives 

A = 4B-l-I 

so that using theorem 1.13 we get 

where IS is a latent root of B. Hence, we require 

Now B is a common tridiagonal matrix so that its latent roots are given by t 

f See Appendix I. 
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Since 1 cos 8 / < 1 we clearly have 

2 </3 guarantees the satisfaction of condition (2.19). We reach the interesting 
conclusion that the Crank-Nicolson method is stable for any choice of r > 0. 

It is hoped that this example has demonstrated the importance of latent 
roots in this field. 

Latent roots and vectors play an extremely important part in the solution 
of simultaneous differential equations. Only an elementary introduction to 
the ease of first-order linear equations with constant coeeeients is given here. 

The single first-order equation 

ax - - 
at - ax 

has the general solution 
x = ked 

where k is a constant. Suppose that we have the equations 

ax 2- & - CXl + ax, 

These can be written as 

Suppose that the solution is of the form 

From equation (2.20) this gives 

d X  - = A x = X X  
dd 
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wllich is nov in the form of 8 latent root problem, We know that in general 
a two by two matrix has two latent roots and two linearly independent 
latent vectors, so that in this case the general solution is 

X = eAl8 Xl -+ ekt X, 

where Xl and A, are the latent roots of A, and Xl and X, are the corresponding 
latent vectors. 

Example 2.2 

hence 

When A = 2, 
A2=/2 and A , = - ]  

hence 

When X = - 1, 

hence 

so that 
2 

and X , = X , ( 5 )  

and the general solution is 

If the matrix A has equal roots then it may not have n linearly independent 
latent vectors and the solution is not quite so straightforward. We can 
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approach the problem by using theorem 1.5. We wish to solve the equation 

Let C be a unitary matrix suoh that B = C-1 AC where B is triangular. Then 
put 

Y = C - l X  or X = C Y  

so that the equation becomes 

CdU -- 
at - ACY 

which gives 
dY - = C-PACU = BY 
at 

Since B is triangular this equation may easily be solved for Y .  An alternative 
approach is to use the Jordan cononical form which is not dealt with in this 
book.? 

Example 2.3 

When A = 2, 
14x1 - 9x2 = 2x1 

16x1- lox ,  = 2x2 
Hence 

4x1 = 3x2 

and A has only one linearly independent latent vector. Using theorem 1.5 
we get 

so that 

t See reference 7, Chapter 1, $8 8, 28 and 29 or reference 19, Chapter 5. 
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Putting X = CY the original equations become 

The solution to the second of these is 

yz = kZezt 
and hence the first equation becomes 

which has the solution 
y, = kl eZt - 25kz te2t 

Hence 
k1 - 25k2 t 

e2t 

and since X = CY, 
kz 

Clearly these methods are easily extended to deal with more than t.wo 
equations. Equations of the form 

may also be easily solved in the same way. Equations of the form 

need slightly more sophisticated methods.? Note that the equation, 

t See reference 7, Chapter 1, $ 30. 
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can be transformed into standard form by putting 

A = B-16 

providing that  B-I exists. If  B is singular the equations may be reduced to  
a smaller set. 

2.5 EXERCISES 
Xection 2.1 

2.1. Find the axes of symmetry of the hyperbola 

31x2+48xy+ 17y2 = 1 

Find also the distances from the origin to the intersections of these axes and the 
hyperbola. 

2.2. Find the axes of symmetry of the ellipsoid 

8 9  + 29y2 + 29z2 + 28xy + 28x2 + 56yz = 1 

Find also the distances from the origin to the intersections of these axes and the 
ellipsoid. 

2.3. Show that if the axes of the general conic 

ax2+2hxy+by2+2fx+2gy+c = 0 

are rotated to lie parallel with the x, y-axes, the equation takes the form 

Ald+A2y2+pz+qy+e = 0 

where Al and 4 are the latent roots of the matrix 

Give conditions for A, and & that determine whether the conic is an ellipse or a 
circle or a hyperbola or a parabola. 

2.4. Determine the nature of the following conic sections 

(i) d+4xy-2y2+6x-8y = 1 

(ii) 4x2+12xy+9y2-x+2y= 1 

2.5. Extend the results of exercise 2.3 to three-dimensional conics. 

Section. 2.2 
2.6. Solve the following equations by both the Jacobi and the Gauss-Seidel 

methods taking xl = x2 = xB = x4 = 0 as the initial approximation. 

2 x ~  $ 3xB+ 3x4 = 3.0 
- 2 ~ ~ -  x,+ 0.1xB+ 0 . 1 ~ ~  = -7.0 

40x1 + 20x2 - 2 0 0 ~ ~  + 2x4 = 39.0 

2 b 1  + 102, - xB + 1 0 0 ~ ~  = 19.5 
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2.7. Determine whether or not the Jacobi and Gauss-Seidel method8 will 
converge for the following matrices of coefficients 

and use the appropriate method to solve the equations, 

(iii) x+ y+ z =  3 (iv) x + z = 2 

2x+ y+ z =  4 82x+y+ z = 8 4  

- 3992 + 1999 + 1002 = - 100 80x+y+10z = 91 

2.8. If XTAX>O for every non-zero real vector X then A is said to be positive 
definite. 

Prove that if A is a symmetric positive definite matrix then the Gauss-Seidel 
method converges. 

(This type of matrix often occurs in practical examples. One such case is the 
normal matrix of coefficients obtained in the method of least squares regression.) 

Section 2.3 
2.9. Use the Crank-Nicolson method to obtain a numerical solution when 

x = 0,0~1,0~2,0~3,0~4,0~5 and t = 0.01 and 0-02 to the equation 

with the initial condition 

u=coslr(x+$) whent=O 

and the boundary conditions 

u = O  whenx=Oor l  andt>O 

Compare the numerical solution a t  these points with the analytical solution 

(There is clearly no advantage in obtaining a numerical solution in this particular 
example, but many partial differential equations have no known analytic solution 
and many others have extremely cumbersome analytic so1utions.f) 

2.10. Show that the finite difference approximation to 

given by equations (2.15) and (2.16) is stable when 

t See for example reference 4, p. 3. 
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2.1 1. Show that both the Jacobi and Gauss-Seidel methods wil l  converge when 

applied to the equations obtained by the Crank-Nicolson method for all values of r. 

Section 2.4 
2.12. Solve the equations 

given that x1 = 5 
and x, = 17 when t = 0. 

(vii) 

d.1 (iv) - = x1 - 2x2 
dt 

dx, -- 
dt 

- 8x1 - 72 ,  

given that xl = x, = sinrrl4 
when t = 0. 

3dx1 dx, 
(vi) - + - = 5x1 + xB 

dt dt 

4dxl -+= 2% - - 
+ 4x2 dt 

2.13. (i) Show that the oharaoteristic equation of 
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is a latent vector. 

Show that 

is an orthogonal matrix. (XI is the first column and the remaining two columns 
are orthogonal to X, and to each other.) Show also that 

i 
2 -1 -7 

A, = CilAC, = 0 37 27 

0 -48 -35 
Put 

What are the latent roots of A,? E n d  the latent vector of A,. Hence find an 
orthogonal matrix, Cz, such that 

B=C;lA,C,= 0 1 75 i:: :I 
(See theorem 1.5 and compare the proof with the finding of B here.) Notice that 
B = C;l Cil ACl C, = (6, C,)-1 A(Cl C,). 

(ii) Solve the equations dX/dt = AX for the matrix A of (if. 
(iii) Solve the equations 

2.14. There are n particles, each of mass m, a t  equal distances I along a light 
elastic string of length (nf 1) 1 whose ends are fixed. Show that if the particles 

4 
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execute small transverse vibrations under no external forces then the equations 
of motion of the system are given by 

where x3 is the displacement of the ith particle after time t and T is the tension 
in the string. Hence show that the frequency of vibration of the system is 

and the mode of vibration is given by the ratios 

where A iB a latent root, and yi is the ith element of the corresponding latent vector 
of the n x n matrix 

2 -1 0 ... 0 
- 1  2 -1 ... 0 

0 - 1  2 ... 0 

0 0 0 ... 2 

F'ind the latent roots and vectors of A . t  The theory of vibration is one of the 
important applications of simultaneous differential equations.$ 

2.15. Show that the general solution of the simultaneous linear difference 
equations 

%+1= =, 
is given by 

X, = X;Yl+h',Y,+ ...+ AkYn 

where Ai is the ith latent root of A and U,: is the corresponding latent vector and 
A has n distinct latent roots. 

2.16. Solve the equations 
ti) xn+l= 5% + 2 ~ n  

(ii) xn+1= xn - 2y ,  

Yn+r = 2xn - 3yn 
given that xl = 0 and yl = 1. 

$ See Appendix 1. 
$ See reference 20. 
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THE METHOD OF DANILEVSKS 

The method of Danilevsky finds the characteristic equation of a matrix by 
attempting to reduce it, using similarity transformations, to a Robenius 
matrix which is now defined. 

3.1 FROBENIUS MATRIX 

A Frobenius matrix is a matrix of the form 

B has the important property that the elements in its first row are the 
coefficients of its characteristic equation, because 

and expanding along the first row we get 

I B - XI 1 = (b ,  - A )  ( -A)"-' - b 2 ( l )  ( - -t b3(1)2 ( - . . . 
+ ( - 1)" bn-,(l)n-2 ( - A )  $ ( - l)n+l bn(l)n-l 

= (- l)n(An-blAn-1-b2An-2- . . . -bn- lA-bn)  = 0 

Eenee the characteristic equation of B is 

An-blAn-1-b2;\l"-2- ... -b,-,A-bn = 0 

B is said to be the companion matrix of any matrix to which it is similar. 
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3.2 METHOD O F  DAWILEVSKY 
We wish to reduce A given by 

a l l  a12 a ~ n  

a21 a22 ,.. a2n 

an1 an2 ... ann 

panion matrix by means of similarity transformations. 
We first reduce the nth row to the required form by defining a matrix 

Cn-,, assuming initially that an,,-, # 0: 

0 0 

0 0 

1 ann - -- 
a n -  a , , - ~  

0 1 

which means that 

1 0 ... 0 0 

0 1 ... 0 0 

C;L1 = 

an1 an2 an,%-, ann 

0 0 ... 0 1 

Now, ACn-, is a matrix of the form 

b11 b12 b1,n-1 bnn 

621 bp.2 h,n-1 b2n 

ACn-, = 

- 1 ,  bn-2,~ . . bn-I,*-I bn-l,n 

0 0 ... 1 0 

where 

and 



This gives C;Eill ACn-, a8 a matrix of the form 
1 1  1 1 b1n 

1 2 2  - 1  bzn 

ACn-, = A, = 

Cn-1 Cn 

0 0 ... 1 0 
where 

n-1 

ci = 2 an, . bii for all j # n - 1 
$4 

and 
n-1 

Cn-1 = I= ani .bi,n-1 ann 
i= l  

We have now found a matrix A, which is similar to A and has the nth row 
in the required form. To reduce the (n - 1)th row of A, to the required form 
we define a matrix Cn-z, assuming c ~ - ~  f: 0 : 

which means that 

cn-1 -- 
cn-z 

1 

0 

0 

0 

cn -- 
cn-z 

0 
1 
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where 

cij = b$j - & for all i<n-2 ,  j f n - 2  
cn-2 

and 

so that 

Cll C12 a * .  C l , n - ~  Cl.n-l Cln 

C21 C22 -.. C2,n-2 %,n-1 C2n 

C;Lz A1 Cn-, = Az = 
dl dz ... dnm2 n -  dn 
0 0 ... 1 0 0 

0 0 ... 0 1 0 
where 

and 
n-2 

d j =  Ec6.cii+cj f o r j = n - 2 , n - 1  
i=l 

It is important to notice that in forming A, we have not altered the 
nth row of A1. 

We proceed in this manner until we achieve the Probenius matrix B. 

Example 3.1 

Then 

Hence 
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so 
14 6 -23 

which gives 

and 
1 4 9  

Therefore the characteristic equation of A is 

h3-7h2+15X-9 = 0 
which has roots 

hl = 1, A, = h3 = 3 

In  the above section we made the assumption that the element we wished 
to divide by was non-zero. This, of course, is not in general true. 

Suppose that in the Danilevsky process we reach the matrix An, given by 
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Here the element we wish to divide by in forming Cr-, is zero. Suppose 

that arj # 0 for some j < r - 1, then we define a similarity transformation 
that will interchange a,,-, and a,*. 

In  order to do this we define a matrix S that will interchange the 
and jth columns of A,-, when we form A,-, S. This means that S is given by 

1 0  ... o . . . o . . . o o  
0 1  ... o . . . o . . . o o  
. . . .  : . . . . . .  . .  . .  . .  . .  
0 0  ... o . . .  1 ... 0 0  

. .. . . . . . . . .. . . . . . 
0 0  ... 1 ... o . . .  0 0  
. . .. : . . -  . . .  . . . . .  . . . .  
0 0  ... 0 . . . 0 . . .  1 0  

0 0  ... O . . . O . . . O l  

jth (r  - 1)th 
column column 

It is easy to see that S-l= S and hence S-I A,-, S = SA,-, S will have the 
effect of interchanging the jth and (r - 1)th rows of A,-, S. This, of course, 
means that given A,-, we can write down S-lA,-, S without actually having 
to perform the matrix multiplications. Furthermore, i t  is clear that this 
process does not alter the (r + l)th, (r + 2)th, . . ., nth rows of A,-, as we 
naturally require. For this reason we cannot choose j > r - 1. 

Example 3.2 

We cannot directly form C, because a,, = 0, but since aal#O we can 
interchange these two elements. So 
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We can see that, as mentioned above, we could quite easily have written 
this new matrix straight down. Now 

1 0  

0 0 1  
which gives 

9 3 -z 

A,=C;lAC,= 

0 1 0  

Hence 

which gives 
6 -11 6 

0 1 0  

Therefore the characteristic equation of A is 

h3-6h2+llh-6 = 0 
which has roots 

h l = l ,  X2=2, X,=3 

If in the matrix A,-, of the previous section there does not exist an element 
arf f: 0 for some j < r - 1 then we cannot effect an interchange, but in this 
case we see that A,-, is a matrix of the form 
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where D, is in Frobenius form. Then from theorem 1.14 we have 

Since D, is in Frobenius form we can write its characteristic equation straighf 
down. To find the characteristic equation of Dl we use Danilevsky's method 
to reduce it to Frobenius form. 

Example 3.3 

1 -1 3 4 

4 1 2 1  
A =  

4  2  1 - 1  

0  -1 1 0  
Then 

1 0 0 0  1 0  0 0  

0 1 0 0  
C, = and Cg1= 0 1 0 0  

0 1 1 0  0 - 1 1 0  

0 0 0 1  0  0  0 1  
which gives 

1 2  3  4 

4 3  2  1 
Cgl AC, = = A, 

0  0  - 1  -2 

0 0  1 0 
so that 

which has as its characteristic equation h2 + h + 2  = 0, and 

We put 
4  3 

El=(: 1'1 and $ 1 = ( 0  1 )  

giving 
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ao that the ohikracterietic squ~tion of Dl is h2--eh-8 = 0, IIence the 
characteristic equation of A is given by 

(h2+X+2)(Az-4X-5) = 0 
which has roots 

h l = - l ,  h,=5, A ,=+(- I+iJ7) ,  A,=+(-1-iJ7)  

We can see that this condition considerably reduces the work involved. 

3.5 LATENT VECTORS A N D  DANILEVSKY'S METEOD 

If P is a latent vector of the Frobenius matrix, we have 

which yields the set of equations 

Yn-1-X~n = 0 

The last (n - 1) of these equations gives 

Yn-I= X Y ~  

Yn-2 = hyn-l= X 2  Ym 

y1 = Xy2 = An-lyn 

and substituting in the f is t  equation in these gives 

(bl-X)hn-1yn+b2hn-2yn+b3hn-3yn+ ...+ bnyn = 0 
or 

(An - bl h n-1- b 2 An-2 - b 3 Am-3 - . . . - bn) ym = 0 
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which holds for any value of yn. If we choose yn = 1 we conveniently get 

Y, = 1 

Yn-1 = A 

yn-2 = X2 

y1 = A"-1 

Using theorem 1.2 we also have 

1y 

which enables us to find the latent vectors of A. 

Example 3.4 
Take the matrix A of example 3.1 which had latent roots X, = 1, A 
When X = 1 we take U as 

Hence 

When A = 3 we get 

Note that A has only two linearly independent latent vectors. 
If we have had to interchange elements in reducing A to Frobenius form 

(see $3.3) we must, of course, take this into account in the above process. 
The case of $ 3.4 is not quite so simple. If the latent wokors are required, 

having reached the stage of 
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in8i~itct of ju& r~dueiug Dl to Frobenius form, it ia perhaps worth extending 
this reduction over the whole of A,-, so that we finish up with a matrix 
of the form 

from which it is fairly easy to determine the latent vectors of B. 

Example 3.5 
We take the matrix A, of example 3.3 given by 

but we now take 

1 -8 - 4  
4 4 3 2 1  

0 1 0 0  
C, = and Cil = 

0 0  1 0  0 0 1 0  

0 0  0 1 0 0 0 1  

which gives 
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so that 

which gives the equations 

9 1 = AY, 

-93 -294 =A93 

93 = AY, 
The last two equations allow us to determine y, and y,, which then allows 

us to find y, and y, from the first two equations. 
We have 

93 = A94 
so that 

- Ay4 - 2y4 = A2 y4 
or 

(A2+ h + 2 ) y 4  = 0 

which means that, if A is a latent root of D3,  y, is arbitrary, otherwise iL 
(and y3) must be zero. 

We also have 

91 = AYZ 
so that 

4Ay, + 5y2 + 99, + 1 l y 4  = /A2 9, 
or 

(A2-4h-5)y2 = 9y3+ 119, 

which means that if A is a latent root of D,, y, is arbitrary, otherwise it is 
determined by the above equahion. 

Taking A, = - 1 we get 

Y3 = Y4 = 0 

and taking y, = I we get y ,  = - I so that 



Hence 

Taking A, = 5 we get 
9 3  = 9 4  = 0 

and taking y, = 1  this gives y, = 5 so that 

Taking )I, = *( - 1  + i 47) and putting y, = 1  we get 

y3 = + ( - 1 + i , / 7 )  
so that 

( $ ( - l + i ~ 7 ) 2 - 2 ( - 1 + i  J7)-5)y2 = $ ( - l + i j 7 ) + 1 1  
or 

- 2 7 - i j 7  
Y z =  16 

and 
( - l + i J 7 )  ( - 2 7 - i J 7 )  17-13iJ7 

1 = 2 . 16 - 
- 16 

so that 
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Using theorem 1.19 we get 

and we have now found all the latent vectors of A. 
It is hoped that this example is sufficient to demonstrate how we may 

proceed in general. 

3.6 IMPROVING T H E  ACCURACY O F  DANILEVSKY'S METHOD 

At each stage of the Danilevsky process we are dividing all the elements in 
the pivot row by the pivot element. If the pivot element is small this can 
obviously lead to  bad rounding errors and inaccurate division. To try to 
avoid this it is advisable to select the largest element as the pivot. We can 
do this using the method described in $3.3. 

Our choice of pivot is nevertheless limited. For example, in the matrix 
A,-, of 5 3.3 we saw that we could only select as a pivot an element aTi for 
some j < r - 1. This means, of course, that division of the elements arj with 
j > r- 1 could still lead to inaccuracies, and hence, as is pointed out by 
Wilkinson,-f the second half of the Danilevsky method is basically unstable. 
(That is the elements arising from these possible inaccuracies.) 

eeva,$ suggests that a comparison of bl with the trace of the original 
(see theorem 1.11) is made as a guide to the accuracy. This does 
to be very useful since it is the element least likely to  reflect the 

acies. A much better guide would be to compare b, with IAl (see 
1.12), providing, of course, that this can be done accurately. 

ote that selection of the largest pivot does not involve any additional 
computation. 

3.7 NUMBER O F  CALCULATIONS REQUIRED B Y  

DANILEVSKY'S METHOD 

To form the matrix C,-, requires n divisions. Then to get AC,, requires 
n(n- 1) multiplications. C;kl can be written straight down without any 

t See reference 7, p. 409. 
$ See reference 6, p. 173; also reference 8, Vol. 2, p. 212. 
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oamputativxr and to find Ci:l AC,,l requirea %(n, - l) multipG~&tions, So, in 
all, to obtain Al requires 

n + n(n - 1 )  f n(n - 1 )  = n(2n - 1) calculations 

Similarly to find A, requires 

n + n(n - 2 )  + n(n - 2) = n(2n - 3 )  calculations 

Continuing this process we find that the number of calculations required 
to obtain the characteristic equation is given by 

8, = n(2n-l)+n(2n-3)+n(2n-5)+ ... +En+ 3n 

= n(3+5+ ...+( 2n-5)+(2n-3)+(2n-1)) 

= n(n-1)(n+1) = n(n2-1) 

See Table 3.1. 

Obviously we cannot give the number of calculations required for solving 
the characteristic equation since this will depend on such factors as the 
method chosen, the number of iterations needed, whether or not complex 
or multiple roots are present, and the condition of the polynomial. 

To find a latent vector of B requires n - 2 multiplications (powers of A). 
To calculate the latent vector of A from this vector requires n(n - 1 )  multi- 
plications. So, in all, each latent vector of A requires 

(n - 2) + n(n - 1 )  = n2 - 2 calculations (see Table 3.2) 

The calculations required in the modified methods are of the same order 
as those given above. 

3.8 FURTHER COMMENTS O N  DANILEVSKY'S METHOD 

Danilevsky's method is an excellent method of finding the characteristic 
equation by hand computation providing care is taken not to lose significant 

5 
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accuracy, especially when dealing with small pivot elements.? The instability 
of the method reduces its effectiveness as a computer method. 

The number of calculations required by the method compares favourably 
with other methods, especially when the generality of the method is considered. 

3.1. Use the method of Danilevsky to h d  the latent roots and vectors of the 
following matrices : 

3.2. Using Danilevsky's method with exact arithmetic shows that the character- 
istic equation of the matrix 

99 700 -70 

is 
ha-6h2-h+6 = (A-6) (h-1) (X+1)  = 0  

Repeat the calculations using arithmetic that is correct to four significant 
figures (i.e. make each individual multiplication or addition correct to four 
significant figures) to show that this yields the equation 

and find the roots of this equation correct to two decimal places. (Note: The 
matrix multiplication should be performed in the same order as suggested in the 
text to yield this result.) 

3.3. Show how the latent vectors of AT may be found after Danilevsky's method 
has been applied. Find the latent vectors of AT for exercise 3.1 (ii). 

t See exeroise 3.2. 



Chapter 4 

T H E  METHOD O F  KRYLOV 

The method of Krylov constructs a set of simultaneous linear equations, the 
solution of which gives the coefficients of a polynomial which will be either 
the characteristic equation or a factor of the characteristic equation. 

4.1 THE METHOD O F  KRYLOV 

In the method of Krylov we take an arbitrary initial column vector Yo + 0, 
and construct a sequence of column vectors using the recurrence relation 

Pi+, = AYi 

This gives 

Y, = AY, 

Y2 = AY1 = A2Yo 

Suppose that the first r vectors of this sequence are linearly independent 
but that Y, is linearly dependent on the preceding vectors. This must of 
course be true for some r <n. IEence we can express Y, as 

This defines n simultaneous linear equations in the r unknowns a,, a,, . . ., a, 
and we can select the first r equations to solve for these. The relevance of 
this will become apparent shortly. 

Theorem 4.1 
If U, is linearly dependent on the vectors Yo, Y,, . . . , Y,-,, then all successive 

vectors in the sequence will also be linearly dependent on these vectors. 
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which, from equation (4.2), gives 

YT+, = a, AYT-, +a, AYT-, + . . . + aT-, AY, +a, AY, 

= a1Yr+a2Y,-,+ ... +a,-,Y,+a,Y, 

= al(a1YT~,+a,Yr~,+ ...+ a,~,Y,+a,Y0)+a,Yr~,+... +a,-,Y2+a,Y, 

so that ST+, is linearly dependent upon Yo, Y,, . . ., Yr-,. Now assume that the 
theorem is true for all vectors in the sequence up to Y,, where p x,> r. Hence 
we can express Y p  as 

Y p  = blYr-1+b2Yr1,_2+...+brYo 
and we can clearly use the same argument as above to show that Y,+, is 
linearly dependent on the vectors Yo, Y,, . . . , Yr-,. Hence b y  induction the 
theorem is proved. 

From equation (4.2) we get 

ATYo = alAr-1YO+a,AT-2YO+ ... +ar-,AYo+a,Y0 
or 

(Ar-a,A*-1-a2AT-2- ... -aT-,A-arI)Yo = 0 

which we can write as 

g(A) yo = 0 
where 

g()o = k - a, AT-, - a, AT-, - . . . - a,-, A - a, 

Now g(X) is called the minimal polynomial of Yo with respect to the matrix A, 
and r is called the grade of Yo with respect to A. 

We shall now show that g(X)  is a factor of the minimal polynomial of A, 
which in turn is a factor of the characteristic equation of A. 

Theorem 4.2 
If h(X) is the minimal polynomial of A, that is h(X) is the polynomial of 

least degree such that h(A) = 0, then there exists a polynomial q(h) such that 

h(X) = ~ ( 4  q(X) 

Proof 
We &st note that since h(A) = 0 obviously h(A)ISo = 0. By the division 

algorithm for polynomials there exist unique polynomials q(X) and s(h) such 
that 

h(X) = g(X) q ( 4  4- 4) 
where s(X) is of lesser degree than g(h). But h(A)Y, = 0 and g(A)Yo = 0, 
hence s(A) Yo = 0. This means that s(A) must be null for otherwise g(A) 
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is not the &nianzcl polynomial of Yo with respect to A, Hence s(h) is null 
and 

= g ( 4  
as required. 

It is of course possible to have h(X) = g(h). 

Theorem 4.3 
If h(h) is the minimal polynomial of A and f (X)  is the characteristic 

equation of A, then there exists a polynomial q(h) such that 

f ( A )  = h(X) q(4  

Proof 
By the division algorithm for polynomials there exist unique polynomials 

q(X) and s(X) such that 

f (4 = h(X) q(X) + s(X) 
where s(X) is of degree less than that of h(X). But f(A) = 0 and h(A) = 0, 
hence $(A) = 0. This means that s(A) must be null for otherwise h(A) would 
not be the minimal polynomial of A. Hence s(X) is null and 

f (4 = h(4 q(X) 
as required. 

It is of course possible to have f ( X )  = h(X). 
We can now see that by solving equation (4.2) we find the coefficients 

of the minimal polynomial of Yo with respect to A. If we solve this polynomial 
we find some, or all, of the latent roots of A. The main difficulty in the method 
is that we are unlikely to know in advance the grade of the vector Yo. Note 
that any latent vector of A has grade 1. A good computing scheme for 
Krylov is given by both Berezin and Zhidkov,"fnd by GantmacherS which 
deals well with the above mentioned difficulty. Gantmacher gives a full 
discussion of Krylov's method. The scheme proposed by Fadeeve5 is 
inefficient by comparison because, even if r < n, we have to find n vectors 
before determining the value of r, whereas in the above-mentioned scheme 
we only have to determine r vectors. The execution of Krylov's method is 
not discussed here because, as we shall see, it is effectively the same as 
Danilevsky's method, but whereas Danilevsky's method always allows us 
to find the characteristic equation, in the case when r < n Krylov's method 
does not yield the characteristic equation. 

7 See reference 8, p. 190. 
2 See reference 10, Vol. 1, pp. 202-214. 

See reference 6, p. 158. 
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4.2 RELATIONSHIP BETWEEN THE KRYLOV AND 

DANIZEVSKY METHODS 

Let F be the Frobenius matrix given by 

Although this is of slightly different form to the Frobenius matrix considered 
in 5 3.1, it still retains the important property that the characteristic equation 
of F is given by 

hr-alhr-1-a2hr-2- ... -ar-,A-a, = 0 

and for this reason is also called a fiobenius matrix. We also let P be the 
matrix whose columns are the vectors Yo,Yl, ..., Y,-, and yii be the jth 
component of Y,. We shall now show that 

A Y = T I F  
Firstly, 

A P  = AIYo Yl . . . = LAYo AY, . . . AY,-l] 

but from equation (4.1) this gives 

AY = [Ply2  ... Y,] 
Also 

901 21.1 Y21 Y7-2,1 Yr-,,I 0 0 0 .,. 0 a, 

Yoz Yxz Yzz Yr-2,s YT-1.2 1 0 0 ... 0 a,-, 

Yo3 Y13 Y23 Yr-2,3 Y~-1,3 0 1 0  ... 0 u,.-~ . . .  . . .  . . .  . . . . . . . .  . . .  . . . . 
Yon. Y l n  Y2n YT-2,n YT-1,n 0 0 0 ... 1 a ,  

Y I I  Y21 Y31 Yr-l,l (%yo1 +%--I Y11 +EC,-zY21 f 0 . .  +"I ~9--1,1) 

Yl2 Y22 Y32 . " Yr-1.2 ( a r ~ O Z  f ar-l y12 + y22 + f YT-1.2) 
Y13 Y23 Y33 . '. YT-1,3 Y 03 + a,-l Y13 + %-2 y23 + . . + YV-1.3) . . . . . . . . . 

Y l n  Y2n Ysn . Y V - I , ~  (a, yon + ar-1 Y I R  + a,-2 Y2n + - * * + ax Y Y - I , ~ )  

From equation (4.2) the last column is Yr so that 

YF = [Y,Y2 ... Y,] = AY 
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in  t he  special cam r = a, Y-I exiata ao that 
F = Y-1 AY 

which is of course the similarity transformation produced by Danilevsky's 
method. 

So we can see that Krylov's method is also indirectly attempting to find 
the companion matrix of A. Whereas Danilevsky's method always allows 
us to find the characteristic equation, when r<lz Krylov's method only 
yields a factor of the characteristic equation.? 

Example 4.1 
Here we take the matrix A of example 3.1, that is 

and also we put Yo = 

- 1  - 2  6 
so that 

Here it is easily seen that Yo, Y, and Y, are linearly independent so that 
the minimal polynomial of Yo with respect to A is in fact the characteristic 
equation of A. Prom 

Y8 = alY,+a,Y,+a3Y,, 
we get the equations 

which have the solution 

so that the characteristic equation of A is 

Krylov's method, in this example, has given the characteristic equation of A. 
We note that Danilevsky's method gave the complete Frobenius form. 

t Theorem 4.1 shows that we can only find r coefficients. 
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Example 4.2 

Here we take the matrix A of example 3.3, so that 

and put 

so that 

It is easily verified that 
Y2 = 4u1 + 5Yo 

so that the grade of Yo with respect to A is only 2 and Kqlov's method 
only yields the equation 

X2-4X-5 = 0 

We note that this is the characteristic equation of the matrix Dl of 
Danilevsky's method. 

This example is of some interest, for being non-derogatory, A is similar 
to its companion matrix? and yet neither Danilevsky's method nor Krylov's 
method with this starting vector yields this. 

Example 4.2 illustrates well the shortcomings of Krylov's method, for not 
only have we not found the full characteristic equation, but we have not 
even found all the distinct latent roots of A. In certain cases a different 
starting vector may yield the characteristic equation,$ but the uncertainty 
makes the method of little practical value. Furthermore, if r <n it is not 
easy to find the latent vector by Krylov's method. 

f See reference 7, p. 13. 
$ See exercise 4.2. 
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4.1. Apply Krylov's method to the matrices of exercises 3.1 (i) and (ii). 
4.2. Apply Krylov's method to the matrix A of example 4.2 taking 

4.3. Show how the latent vectors may be found in the case where Krylov's 
method has given the characteristic equation. Why cannot this method be used 
when r < n ?  

4.4. If A is tridiagonal (see $5.3) and Y#' = ( 1 0 0 . .. 0 ), show that the 
matrix Y of $4.2 is upper triangular. Hence show that Krylov's method gives the 
characteristic equation if, and only if, the elements on the diagonal below 
the leading diagonal are non-zero. 
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F I N D I N G  THE LATENT ROOTS O F  A 
TRIDIAGONAL MATRIX 

One important group of methods of finding the latent roots of a matrix, A, 
involves obtaining a tridiagonal matrix which is similar to A. The latent 
roots of many tridiagonal matrices, in particular symmetric ones, can be 
located using the properties of a Sturm series. For this reason we shall first 
outline the theory for Sturm sequences. 

If we have a sequence of polynomials, 

fn(x),fn-l(x)t ...,fi(x),fo(x) 
which satisfy the following three (suEficient) conditions,? then the sequence 
is called a Sturm series for fn(x). 

1. When x increases through a real root of fn(x), the product fn(x) .fn-,(x) 
changes sign, either always from + to - , or always from - to + . 

2. If when s = a, f,(a) = 0, then f,+,(a) and f,-,(a) have opposite signs. 
(Hence neither is zero.) 

3. fo(x) does not have real roots. 
The sequence is called a Sturm series for the polynomial fn(x) in (a, b) if 

the above three properties hold in this interval. 

Theorem 5.1 (Sturm's theorem) 
If we have a Sturm series for fn(x) in (a, b), a and b not being roots of fn(x), 

then the number of distinct real roots of the polynomial fn(x) in (a, b) is 
given by I S(a) - S(b) 1, where S(a) is the number of changes of sign in the 
sequence fn(a),fn-l(a), . . . ,fl(a);f~(a). 

Proof 
As x increases through a root of f,(x), where 1 < r < n - 1, then by condition 

(2) the value of S(x) does not alter. By (3) this is also true when r = 0. On 
the other hand, as x increases through a root offn(x), then by (1) S(x) either 
always increases by one or always decreases by one. The theorem now follows. 

f Many variations are to be found. This seems to have arisen because Sturm's theorem was 
originally proved with only a particular sequenoe in mind. As far as I know necessary conditions 
have not been proposed. 
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Suppose we havo a polynomial f (x) = 0 having distinct roots. We form the 
following equations 

fm(x) = f (XI, fn-l(x> = f '(x) 
and 

fn(x) = fn-~(x) ql(x) -fn-z(x) 

fi(x) = $I(%) qn-l(x) - fo(x) 

where f,(x) is of lower degree than f,+,(x). The sequence of polynomials 
fn(x), fn-l(x), . .., fo(x) can easily be shown to satisfy the conditions of a Sturm 
series.? The above is the classical construction of the Sturm series, and it is 
perhaps a misnomer to call other sequences Sturm series. 

Example 5.1 
To locate the root in ( -  1, l )  of the polynomial, 

Using the above construction we get 

f3(x) = f '(x) = 4x3 - 9x2 - 2% + 8 

f2(x) = &(35x2 - 90x + 40) = -fg(7x2 - 18x + 8) 

f1(x) = &(lSOx - 320) = *(x - 2) 

f O ( 4  = 0 

X f 4  f3 f 2  fi f o  s(x) Comment 
-1 -. - f - 2 

1 + + - -  1 Onerootin(-1,1) 

0 + + -  2 One root in (Q,1) 

0.5 - + + - 2 One root in (0.5,1) 

0-75 + + - - 1 One root in (0.5,0.75) 

Clearly we may continue this process to achieve any desired accuracy. 

7 See reference 11, p. 199. 
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5.3 STURM'S THEOREM A N D  THE LATENT ROOTS OF A 

TRIDIAGONAL MATRIX 

We wish to find the latent roots of the matrix 

We have to solve the determinantal equation 

Let f,(A) be the determinant formed by the first r rows and columns of 
f,(A) so that 

Expanding f,(h) by the last row we get 

where f,(X) = 1 and f,(A) = a, - A. 
We shall show that the sequence fn(A), f,-,(A), ..., f,(A) is a Sturm series 

in f,(A), the characteristic equation of A, providing that for all r we have 
b,c, > 0. In  particular this is true when A is symmetric with b, # 0 for all r. 

In order to obtain this important result we require some preliminary 
theorems. 

Theorem 5.2 
The tridiagonal matrix A with b,cr > 0 for all r, is similar to a symmetric 

tridiagonal matrix having non-zero superdiagonal elements. 

Proof 
We prove the theorem by showing that there exists a diagonal matrix D 

such that B = DAD-,, where B is the required symmetric matrix. Let 
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If B is to be symmetric it is clear that we require 

Since brcr > 0, we have that br/cr > 0 and hence we are able to select the 
dr's so that B is symmetric with non-zero superdiagonal elements, as re- 
quired. This proves the theorem. 



66 L a t e ~ t  Root8 and Latent Vectors 
Theorem 5.3 

No two neighbouring polynomials in the sequence fn(A), fn-,(I), ...,f,(A) 
can have a root in common if b, c, > 0 for all r. 

Proof 
First we note that f,(A) and f,(I) do not have a common root. 
Assume that f,,(A) and f,,(A) do not have a common root. Now equation 

(5.1) is 

from which we see that, if our inductive hypothesis holds, f,(h)+O when 
fr-,(A) = 0, for this would mean otherwise that fr-,(A) = 0 also because 
b, c, # 0. Hence by induction the theorem is proved. 

Theorem 5.4 

If B is a symmetric tridiagonal matrix such that none of its superdiagonal 
elements is zero, then between any two roots of fn(A) there is a root of fn-,(A). 

Proof 

fl(4 = a,- 
which has the root A = a, 

f 2 ( 4  = (a, - (a, - A )  - 
when A = a,, 

!,(A) = - bg < O 
whenA= -co, 

&(I)  > 0 
and when A = co, 

f 2 0 )  > 0 

Hence f,(A) has one root less than a, and one root greater than a,. 
Now assume that fn-,(A) has n - 1 distinct roots and that between each of 

these there is a root of ,f,-,(A). - - -  

Suppose that two neighbouring roots of fn-,(A) are A, and I,, with A, < A,. 
Now, 

and 
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But by the above assumption fn-z(X) changes sign in (hl,Xz) and hence 
f,(A) must also change sign. It follows that between any two roots of fn-,(A) 
there is a root of f,(A). 

By considering the limit as A +  - co, it is easy to show that f,(A) > 0 for 
all r and hence fn(A) has a root less than the smallest root of f,-,(A). Its 
remaining root can only be larger than the largest root offn-,(A). By induction 
the theorem is now proved. 

Notice that we have also established that the roots of fn(X) are all distinct. 

Theorem 5.5 
If A is a tridiagonal matrix with b,c, > 0 for all r, then between any two 

roots of fn(A) there is a root of fn-,(A). 

Proof 
In  theorem 5.2 we can clearly choose D so that the principal submatrix 

of A is similar to the principal submatrix of B. The result now follows from 
theorem 5.3. 

We are now in a position to prove our main results. 

Theorem 5.6 
The sequence fn(A), fn-,(A), ..., fo(X) is a Sturm series in fn(A) providing that 

b, c, > 0 for all r. 

Proof 
We now refer to the conditions of 3 5.1. Condition (1) follows immediately 

from theorem 5.4, condition (2) from theorem 5.2 and equation (5.1) since 
b,c, > 0, and condition (3) is satisfied since fo(A) = 1. Hence the sequence is 
a Sturm series and the theorem is proved. 

This, of course, gives us a powerful method for locating the latent roots 
of this type of tridiagonal matrix. We shall now show that this particular 
sequence is even more convenient than the general Sturm series. 

Theorem 5.7 
For the above Sturm series, if a is not a root of fn(A), then S(a) is the number 

of roots of $,(A) less than a. 

Proof 
When X = - a ,  $,(A) is positive for all r, hence S( -a) = 0. So by Sturm's 

theorem the number of roots in the interval ( -  oo, a) is given by 

IS(a)-S(-CO)~ = S(a) 

and the theorem is proved. 
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We note that having located a root using Sturm's theorem we are likely 
to obtain much better convergence using a method such as Newton's 
approximation. Equation (5.1) gives us a useful relationship for applying 
Newton's approximation since from 

f r ( 4  = (% - X)f,-l(X) - b, c,f,-2(4 
we get 

f 24 = (a, - 4f :-,(A) -fF-l(A) - b, c,f :-,(A) (53) 

where f&(;\) = 0 and f :(A) = - 1. 

Example 5.2 
To find the middle latent root of 

By Gerschgorin's theorem all the latent roots of A are in the interval 
( - 5,5). NOW, 

fo(h) = 1 

fdh) = (3 - h)f2(4 - 2fl(h) 

X f  f f f S(x) Comment 

-5 + l  +6  + 41 + 0 No roots < - 5 (as expected) 

5 +1 -4 + 11 - 3 3 roots in ( - 5'5) (also as expected) 

0 + I  +1 + 1 + 0 3 roots in (0,5) 

2.5 + 1 - 1.5 - 0.25 + 2 2 roots in (0'2.5)' 1 in (2.5,5) 

1-25 + 1 -0.25 - 1.1875 - 1 Middle root in (1.25'2.5) 

We have I ~ W  determined that there is one root in each of the intervals 
(0,1.25), (1.25,2.5), (2.5,5). We may continue the process of bisection to 
find a particular root to any required degree of accuracy. Clearly we improve 
the root by one binary position a t  each bisection. 

We shall use Newton's approximation to impro.ve the middle root. 
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Now 
f 24 = 0 

f;(A) = - 1 

f 2x1 = (A - 2) -f1(X) 

Taking x = 1.6 we get 

fl = - 0.6, f2 = - 1.24, f3 = -0.536 
and 

f 4 = 0.2, f 5 = 3.52 
so that 

Taking x = 1-75 we get 

fl = -0.75, f2 = - 1.1875, f3 = 0.0156 
and 

f = 0.5, f j = 3.8125 
so that 

Taking x = 1.7459 we get 

fl = -0.7459, f2 = - 1.18953319, fa = 0.00000643 
and 

fi = 0.4918, f k  = 3.8063 
so that 

Correct to six decimal places we now have h = 1.745898, 
We can see that at the expense of some extra calculation Newton's 

approximation has given much better convergence than continued bisection, 
which would have required about twenty iterations to achieve the degree 
of accuracy obtained here. 

If we have brcr>O for all r, although the sequence f,(X), fn-l(X), ..., f,(X) 
is not a Sturm series we may partition the matrix into two or more tridiagonal 
submatrices and apply the Sturm theory to these submatrices. 

6 
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Example 5.3 

l 1  0 0 0 0  

Here we have b, = 0 so that b, c, = 0, but for all r Z 4, b, c, > 0. Because 
b, = 0 we have from theorem 1.14 that 

So we may find the latent roots of B by applying the Sturm theory to 
Dl and D, individually. This case clearly simplifies the work involved. 

If b,c,< 0 for any r then we cannot apply the Sturm theory a t  all. Clearly 
this case is not possible for a symmetric matrix. Here of course it is harder 
to locate particular roots unless we have prior knowledge as to their distri- 
bution. Having located a root we can of course use Newton's method as 
discussed in the previous section. For complex roots we can use a method 
such as Bairstow's method. 

A convenient method for finding latent roots in this case, however, is the 
method of Muller which enables us to use the recurrence relation of equation 
(5.1) rather than to find the characteristic equation explicitly. 

The method of Muller fits a quadratic equation as an approximation to 
the characteristic equation in the neighbourhood of a root, and takes one 
root of the quadratic as the approximation to this root. With this approxi- 
mation to the root we proceed to fit a new quadratic, and so on. 
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If f (h)  is the characteristic equation, we take three points z,, x, and x, 
in the neighbourhood of a root and fit a quadratic through the points 
[x,, f (xl)] ,  [x2, f (x,)] and [x,, f (x,) ] and then replace one of the x's by one of 
the roots of the quadratic and repeat this process. 

Example 5.4 
To find the latent roots of the matrix 

Since b3c, = - 32 we cannot use Sturrn's theory. 
Now 

f o ( 4  = 1 

fl(4 = - A  

f 2 ( 4  = (8 - A)fl(h) - 9 

fs(X) = - (1  + A ) f z ( A )  + 32fi(A) 

Let US take as our initial points x, = - 2, x, = 0,  x, = 2. At-x,, 

fl = 2, f2 = 11, f3 = 75 

at x2, 
fl  = 0,  f 2  = -9, f3 = 9 

at x,, 
f l = - 2 ,  f z=-21 ,  f 3 = - 1  

(Since f, has changed sign there is a root in (0,2).) We wish to 66 a quadratic 
y = ax2 + bx + c through the points ( - 2,75), (0,9)  and (2, - 1). This gives 

and putting y = 0 we have 

Since we have established that there is a root between 0 and 2 we replace 
- 2 by 0.61, and take as our new points x, = 0, x, = 0.61, x, = 2. 

At $2, 

f, = - 0.61, f2 = - 13.5079, f3 fi 2.228 

(The root is in (0.61,2).) 
Fitting a quadratic through (0,9), (0.61,2.23), (2, - 1) we get 

y = 4.387x2 - 13.776~ + 9 
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and putting y = 0 we have 

x -- 0.93 or 2-2 

Taking x, = 0 ,  x, = 0.61, x ,  = 0.93, a t  x,, 

fl = - 0.93, f2 = - 15.5751, f, l(?. 0.300 

Fitting a quadratic through ( 0 , 9 ) ,  (0.61,2-228), (0.93,0.300) we get 

and putting y = 0 we have 

f 1 - - - 1-06, f ,  = - 16.3564, f, = -0.225816 

Clearly we are now close to the root. It lies in the interval (0.93,1.06). We 
now use Newton's method commencing with x = 0.995 (the mean of the 
two values). Now 

f;(A) = - 1 

f = ( A  - 8 )  -flfi(A) 

f ;(A) = - ( 1  + A ) f  ;(A) -f,(A) - 32 
When x = 0.995, 

fl = - 0.995, f, = - 15.969955, f, = 0.020060 

and 
f L = - 6.010, f = - 5.040095 

so that 

When x = 0.99898, 

fl = - 0.99898, f ,  = - 15.99387896, f, = 0.00408416 

and 
f ;  = - 6.00204, f ;  = - 4.00816312 

so that 

Correct to five decimal places the latent root is 

A, = 1~00000 

which corresponds exactly to the correct latent root. 
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To find the remaining roots we again use the method of Muller, but we 
divide f3(A) by the root we have just found so that we do not converge to 
this root once more. For this reason i t  is important to find the root with 
which we are dividing accurately. Since, in this example, there Are only two 
roots remaining these will of course be the roots of the fitted quadratic. Put 

Again taking x, = - 2, x, = 0, x, = 2, we get 

and the fitted quadratic is 

y = x 2 - 6 ~ + 9  = (x-3)2 

So the laten& roots of A are 

We can see from this example that it is of some importance to look a t  
the behaviour of the characteristic equation to make sure that we are 
converging to a root. 

In  the case of complex roots, Muller's method, of course, involves complex 
arithmetic. The local convergence, which is proved by Muller,? is generally 
about 1.8 for single roots and somewhat slower for multiple roots. It is 
thought to converge globally, which means that arbitrary starting values 
can be used. It should be borne in mind that roots of polynomials are best 
found in ascending order of magnitude if the polynomial is to be deflated 
by that root as in example 5.4.z If arbitrary starting values are used in 
Muller's method, they should be centred around zero in the hope that the 
smallest root is found first. 

5.1. (i) Use Sturm's theorem to locate to an accuracy of 50.5 the three real 
roots of the equation 

92-40~-21= 0 

(ii) Use Sturm's theorem to locate to an accuracy of 5 0.5 the real roots of the 
equation, 

&+42+6x2+4x-24 = 0 
5.2. If 

f&A) = (ar-h)fr-,(h) -b:fr-z(h) 

t See reference 9. 
f See reference 17, Chapter 2, pp. 55-65. 
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where &(A) = 1 and fl(X) = % - X prove that 

f,.( - co) > 0 for all r 

5.3. (i) If n is a positive integer greater than one and 1 < i < n- 1  show that 
the angles given by 

satisfy 
o<ol<p<y<rr 

(ii) Hence, or otherwise, prove that between any two roots of the Chebyshev 
polynomial T,(x) there is a root of Tn-l(x), where 

Tn(x) = cos no and cos 8 = x 

(iii) Prove that the sequence T,(x), T,-l(x), ..., To(%) forms a Sturm series for 
Tn(x) in the interval ( - 1 , l ) .  

5.4. Let P,(x), P,-,(x), . . ., Po(x) be a sequence of orthogonal polynomials, that 
is, 

/:to(%) ~ ~ ( 2 )  pg(x) dX = 0 for r+ p 

where w(x) is a weighting function. Prove that the sequence P,(x), P,-l(x), . . . , Po(x) 
forms a Sturm series for P,(x) in the interval (a, b).  

5.5. Locate the latent roots of the following tridiagonal matrices 

5.6. (i) Show that the roots of the quadratic 

can be found from the formula 

(If 4ac is smaill then the smallest root of the quadratic can be found more accurately 
from the above formula than the standard formula.) 

(ii) Let z4 be the itb approximation to the root of f(x) = 0. Also, let 
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Then, the next approximation x$+~ is given by 

where 

and 

the sign being chosen so that the denominator has the greater magnitude. 
Show that the above is equivalent to Muller's method. This is the computing 

scheme proposed by Muller. 
5.7. (i) Suppose that x$ = u + vi is an approximation to a root of the polynomial 

and that f (u + vi) = p + pi. 
If a quadratic do x2 + dl x + d2 is fitted to the three points, 

[u-vi, f(u-vi)], [O,f(O)], [u+vi,f(u+vi)l 

show that we can compute do, dl and d, from the equations 

If is a root of the above quadratic, under what conditions is it a closer 
root off (x) = 0 ? 

(ii) Use the method of (i) to locate the latent roots of the tridiagonal matrix 
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T H E  METHOD O F  GIVENS 

The method of Givens reduces a symmetric matrix to tridiagonal form by 
means of a series of orthogonal similarity transformations. 

6.1 ORTEOGONAL MATRICES 

As was discussed in f3 1.2, the orthogonal matrix given by 

has the effect of rotating the x, y-axes through an angle - 6. This idea is 
naturally extended to higher dimensions. For example the matrix given by 

0 

0 

cos 8 

0 

sin 0 

0 

0 

0 

- sin 6 

0 

COS 6 

0 

row 3 

row 5 

column 3 column 5 

is a six-dimensional orthogonal matrix that has the egect of rotating the 
x,, x5-axes through an angle - 0. For convenience we shall write the x3, x5- 
plane as the (3,5)-plane and similarly for other planes. 

6.2 THE METHOD OF GIVENS 

We consider as representative a four by four matrix given by 

First we wish to make a,  zero. In  order to achieve this we take the 
orthogonal matrix that rotates in the (2,3)-plane. Putting c = cos6 and 



The Method of Givens 

a11 a12 a13 a14 1 0  0 0 

0 C S o  a12 a ~ 2  a23 O C - S o  - - 
0 - S C O  a,, a,, a,, a, 0 s  c 0 

0 0 0 1  %a a% a= a@ 0 0  0 1 

[This has left columns one and four unchanged since we are rotating in the 
(2,3)-plane.] 

[This has left rows one and four of the previous matrix unchanged.] 
This is, of course, still a symmetric matrix. We should notice that by 

rotating in the (2,3)-plane we have not altered those elements of A that lie 
in the intersections of the first and fourth rows and columns, as we would 
expect. We wish to put 

ca13 - sa12 = 0 
which gives 

- S 
= - = tan8 

a12 c 
This means that 

c = a12(a:2 + a&)-$ and s = a13(a:, +a:,)-* 

In order to reduce the element now in the (1,4) position we rotate in the 
(2,4)-plane. From the comments made earlier it is clear that this will not 
affect the zeros introduced into the (1,3) and (3,l)  positions. 

Lastly we rotate in the (3, $)-plane in order to reduce to zero the element 
in the (2,4) position. It is not obvious that this does not affect the zeros in 
the (1, 3) and (1, 4) positions, so we shall now demonstrate that this is in fact 
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the case. We have 

1 0  0 0 bll b12 0 0 1 0 0 0  

- 0 1  0 0 b12 b22 6 2 3  b24 0 1 0 0  
- 

0 0  C 8 O b23 b33 b34 0 0  C - S  

0 0 - S C  O b24 b34 b44 O O S C  

If we choose bZ4/b2, = tan 8 we obtain the required result. 
I n  general we rotate in sequence as follows: 
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Al = Jr'T AXl 

which is the required tridiagonal form. From Gerschgorin's theorem we see 
that all the roots lie in the interval ( -  6,6). Now 

x f o  $1 f 2  f3 S(x) Comment 

0 +1 + O  -25 - 1 1 root in ( - 6, O), 2 in ( O , 6 )  

3 + 1  -3 - 3 2  5 +- 2 1 root in (0,3), 1 in (3,6) 

We have now already established that there is one root in each of the 
intervals ( -  6, @), (0,3), (3,6) and we may use any method we choose to 
converge to particular roots. The actual latent roots are, correct to four 
decimal places, 

Example 6.2 
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A, = UTAY, 
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A, YY,TAgY9 

Note that the (2,4) position is already zero, so that we proceed to the (2,5) 
position next. 

This is now in tridiagonal form. We cannot use the Sturrn theory directly 
on A, because there is a zero superdiagonal element. As in oxample 5.3 we 
can partition A, and apply the Sturm theory to each of the tridiagonal 
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submatrices. Here we have 

The roots of Dl are actually A, = 2, A, = 6, A, = 14 and the roots of D, are 
A, = 2, A, = 8. 

6.3 LATENT VECTORS AND GIVENS' METHOD 

If Y is a latent vector of the tridiagonal matrix we have 

a, b, 0 ... 0 0 0 Y1 

b, a, b, ... 0 0 0 Y2 

= AY 

O O O ... bnml an-, bn Yn-1 

0 0 0 ... 0 bn on Yn 

which yield the set of equations 

bnyn-l+anYn = A Y ~  
If we arbitrarily put y, = 1 we can see that the first equation can then 
be solved for y2, which then allows the second equation to be solved for y,, 
and so on. We shall then be left with the nth equation which we may use as 
a check. 

Example 6.3 
Taking the matrix A of example 6.1 which had latent roots, correct to 

four decimal places, A, = 4.7150, X, = 1.5970, A3 = - 5.3121, we have, using 
A,U = XI?, 

5 ~ 2  = &I. 

5 ~ 1  - %YZ - By3 = X Y ~  (6.1) 

-+yZ+%3 = '93 

When X = 4.715, putting y, = 1 we get 
4.7 1 5  

Y z 2 = 5 =  0.943 
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sad 
Y3 = 5(5 - $y2 - 4.7159,) = - 0.060225 

From the third equation we get 

and so it would seem that we can only guarantee two-decimal-place accuracy. 
As it happens the second value of y, is correct. Taking 

we get 

Multiplying XI by the first row of A we get 

which agrees as well as can be expected with the latent root. 
When X = 1.597, putting y, = 1 we get 

and 

From the third of equations (6.1) we get 

and again we have a breakdown in accuracy. This time it is the first value 
of y, which is closest ! 

This example demonstrates well the difficulty of the latent vector problem 
in tridiagonal matrices. In  other respects the matrix is quite well con- 
ditioned because the latent roots are well separated and the matrix is 
symmetrical, and a t  first sight we would certainly not expect this loss of 
accuracy in the latent vectors. Wilkinsont shows that this will often be so. 
He also discusses how we may improve the accuracy and suggests the method 
of inverse iteration, which is discussed in $9.4. 

1 See reference 7, pp. 315-323. 
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6.4 NUMBER OF CALCULATIONS REQUIRED BY THE 

GIVENS METHOD 
In the Givens method we have to calculate a square root a t  each stage which 
makes it a little difficult to compare with other methods. For the sake of 
comparison we shall assume that a square root is equivalent to two ordinary 
calculations. Then to find cos0 a t  each stage will require five calculations, 
and sin 0 will require only one. So in the full i j(n - 1 )  ( n  - 2 )  transformations 
we shall perform 

3(n  - 1 )  ( n  - 2 )  calculations 

In reducing the a,, position to zero we perform 4n- 2 multiplications in 
forming AY,, and a further six multiplications only in forming YTAY,, 
providing that we take full advantage of symmetry. We require the same 
number of calculations for each position in the f i s t  row, so that this requires 

(4n  - 2 )  ( n  - 2 )  + 6 ( n  - 2 )  calculations 

The second row will require 

[4(n - 1 )  - 21 ( n  - 3 )  + 6(n  - 3 )  calculations 

In  all the number of calculations required are given by 

S, = 3(n-  l ) (n-2)+( (4n-2) (n-2)+6( .n-2)+[4(n- l ) -2] (n-3)  

+6 (n -3 )+ [4 (n -2 ) -2 ] (n -4 )+6 (n -4 )+ . . .+ (4 .3 -2 )+6 )  

= 3(n-1)(n-2)+6[(n-2)+(n-3)+ ...+ 11 

+ ( 4 n - 2 )  (n-2)+(4nW6)(n-3)+(4n-10)  (12-4)+ ... + 1 0  

= 3(n- l ) (n -2)+3(n- l ) (n -2)+g(n-2) (n- l ) (3+4n)  

= + ( n - 2 ) ( n - 1 ) ( 2 1 + 4 n )  

(See table 6.1 .) 
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The number of calculations required to find the latent vectors will of 
course depend on the method used to solve the set of equations obtained 
when performing inverse iteration and on the number of iterations needed. 

A comparison of Tables 6.1 and 3.1 shows, somewhat surprisingly, that 
Danilevsky's method, which takes no account of symmetry, requires fewer 
calculations than that of Givens. Against this we must, of course, take into 
account that the location of the latent roots is more convenient when we 
have a tridiagonal matrix, especially if we only require particular latent 
roots such as those in a given interval. Also, Givens' method is a stable one for 
determining latent ro0ts.f 

Providing that we are able to find square roots accurately, the Givens 
method is quite convenient for hand calculations because it is easy to 
remember and simple to perform. If we are using a computer we would 
almost certainly use Householder's method instead. This is the next method 
to be discussed. 

6.6 EXERCISES 
6.1. Show that the matrix 

1 0  ... O . . .  0  ... 0 0  

0 1  ... 0  ... 0  ... 0 0  
. . . . . . 

0  0  ... cose ... -sin8 ... 0  0  
. . . . . . 

0  0  ... sin6 ... cos6 ... 0 0 
. . . . . . 

0 0 ... 1 0  

0 0  ... O . . .  0 ... 0 1  
column p column q 

is orthogonal. 
6.2. Use the method of Givens to find the latent roots and vectors of the following 

matrices : 
6 3 4  1  8 -6 

(I) A =  ( .  6  1; 
4 4 5  -6 12 -4 

7 See reference 7, pp. 286-290. 

7 
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6.3. Use the method of Givens to transform the matrix 

into a tridiagonal matrix B. Use Sturm's theorem to locate the latent roots of B 
to the nearest integer. Find the smallest roots correct to two decimal places. 
Find the latent vectors of B corresponding to these latent roots and hence the 
corresponding latent vectors of A. 

6.4. Show that the sum of squares of the elements of b+, is the same as that of 
A,, for the Givens transformation. That is, the Euclidean norm, [I A [I,, is preserved 
in transforming A to tridiagonal form. This is one of the reasons for the stability of 
the method, because it means that the size of the elements is bounded a t  each 
stage, which certainly is not true for Danilevsky's method. 
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T H E  METHOD O F  HOUSEHOLDER 

The method of Householder, as with Givens', reduces a symmetric matrix to 
tridiagonal form by means of a series of orthogonal similarity transformations. 
m e r e a s  Givens reduces a single element to zero at  each stage, Householder 
introduces the required zeros into a whole row a t  each stage. 

7.1 A SYMMETRIC ORTHOGONAL MATRIX 

Consider the matrix B given by 

P = I -2UUT 

where Y is a column vector such that Y T Y  = 1. Clearly P is symmetric so 
that 

PPT = B2 = (I  - 2YYT)2 

= I - 2YYT - 2YYT + 4YYT YYT 

= I -  4YYT+4UUT 

= I  

Renee B is an orthogonal matrix with the special property that 

p- l=  pT =, p 

It is an orthogonal matrix of this form that is used a t  each stage of the 
Wouseholder reduction. 

7.2 THE METHOD OF HOUSEHOLDER 

We take as representative the four-by-four matrix given by 

We wish to reduce a, and a,, to zero. The method of Givens suggests that 
we should be concerned with the (2 ,3)  and (2, &)-planes. For this reason we 
take 

YT = ( 0 ~2 ~3 ~4 
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where yz + yj + y$ = 1, so that 

and 
0 

\ Q  - 2 ~ 2 ~ 4  - 2 ~ 3 ~ 4  1-2~2,  / 
Forming PT AP1 = P1 AP1 and denoting its elements by bij we find that 

where z = a,, y, +al3 y3 + a,, y,. Squaring each of the equations (7. l), (7.2), 
(7.3) and adding we get 

b?, + bq3 + b?, = (a,, - 2y, z), + (al3 - 2y3 z ) ~  + (al4 - 2y4 z ) ~  

= ' f 2  + - 4 z ( a ~ ,  $2 + ~ 1 3  93 + a 1 4 ~ 4 )  + 4 z 2 ( ~ 8  $. $/j  + y$) 

= a;, + a'& + a!, - 4z2 + 4z2 

= at2 + a:, + a?, (7.4) 

We require that b13 = b,, = 0. Hence from equations (7.2) and (7.3) we get 

Also, from equations (7.1) and (7.4) we have 

a!, +a?, +a?, = O2 + O2 + (al2 - 2y2 z)% (7.6) 
so that 

a,, - 2y, z = ~t (a:, + a!, + a:,)+ 
and 

a,, yz - 2yg z = ~f: yz(af, + a?, + (7.7) 

Multiplying the two equations of (7.5) by y3 and y, respectively and adding 
them to (7.7) we find 



so that 

or 

The Method of Householder 

z = + yz(a:2 + a?, + a:&)& 

Substituting for z in (7.5) and (7.6) we finally find 

It is usual to select the sign in equation (7.8) so that yi is as large as possible, 
and in particular so that y,f 0. 

In order to reduce the b,, position of A, to zero we can use either a trans- 
formation of this type or the slightly simpler Givens transformation. 

It is hoped that the extension to the general case is now clear. 

Example 7.1 

so that 
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Hence 
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-1 - 3  0 0 

- 3  -1" -10 -fO 
- 9 9 
- 

0 -10 25 25 
9 9 

0 - 25 25 
9 9 9 

Now 

so that 
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Hence 

which is the required tridiagonal form, and we may find the latent roots in 
the usual way. The roots are 

h , = h , = O ;  h 3 , h , = 2 ( - l k J 1 5 )  

We note again the multiple root causing the zero superdiagonal elements. 

7.3 REDUCING THE NUMBER OF CALCULATIONS 
To gain the most bene6t from Householder's method we need to give 
careful consideration to its execution. 

Let the matrix A,-, have elements aij, and put 

b = (a:,r+l + a,2,v+2 + . . . +a!*)* 
and 

d = b + l ar,r+, I 
Then we get for the oomponents of U;. 

and 
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the sign chosen to be that of a,,,+,. If we let Z, = (2bd)*Yr, then the com- 
ponents of Z, are 

zr+l = d 
and 

zj = +arj, j = r + 2 , r + 3  ,..., n 

Further, if we put 
1 

Wr = aAr-lZr 
and 

we get 

where 
x, = VrZT 

So we compute in sequence W,, V, and X,. Since A, is symmetric we do not 
need the elements of X, below its leading diagonal. Also, we only require the 
last (n - r)2 elements of A,. 

We f i s t  find the number of calculations required to obtain A,, and again 
take a square root as being two calculations. 

To h d  A,-, Z, requires (n - r)2 c;blcu1ations, since we require only the last 
( n  - r )  elements. So, to find W;. takes ( n  - r )2  + ( n  - r + 3 )  + ( n  - r )  calculations. 
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Bearing in mind that ZF W, oontains only 8 single element, to find V, tskea s 
further 2(n - r + 1 )  + 1 calculations. Lastly, to obtain the required elements of 
Xr takes (n - r)2 calculations. So, in all, A, requires 

= 2(n - r)2 + 4(n - r )  + 6 calculations 

In  all, the method of Householder requires X calculations, where 

(See Table 7.1.) 

Householder's method requires about half the number of calculations that 
Givens' does, and is also a substantial improvement on Danilevsky's method. 
By comparison with Givens' method, we can see that, for use on a computer, 
we prefer the method of Householder, which is faster and requires less 
storage. As a hand method, Householder's is rather complex, and in this case 
we may still prefer Givens' method. We also note that, if any element is 
already zero, we do not have to perform that particular transformation with 
Givens' method, but we can only miss out a Householder transformation if 
all the required elements in a row are zero. 

As with Given's method, Householder's method gives a stable reduction to 
tridiagonal form. 
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7.1. Use the method of Nouseholder to reduce the following matrices to 
tridiagonal form : 

5 7 4 - 4  

7 1 9 - 4  
(ii) A = 

4 9 4 2  

-4 -4 2 -3 

7.2. Show that the property of exercise 6.4 applies also to the Householder 
transformation. 
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The method of Lanczos also reduces a matrix to tridiagonal form by means 
of a similarity transformation. It finds the matrix producing the trans- 
formation, not as a finite sequence of transformations, but by constructing 
the sequence of column vectors that constitute this matrix. 

Lanczos' method reduces the matrix to the tridiagonal matrix @, which is 
given by 

a, b, O O ... 0 0 0 

1 a, b, 0 ... 0 0 0 

O 1 a, b, ... 0 0 O 
. . . .  . . . .  . .  . . . . .  . .  . . .  . 

O O 0 O . . . O 1 a n  

by finding Y such that 6 = Y-1 AY. The method constructs the matrix Y as 
a sequence of column vectors Ill, Y,, . . . , Yn, where each Y, is orthogonal to 
each of the previous vectors in the sequence, and Y,,, is given by the 
recurrence relation 

Y,+, = AY, -a, Y, - b, Yi-, (8.1) 
where U, = O and JIl is arbitrary, and a,, b, are chosen so that Yi+, is 
orthogonal to Yi and Pi-,. We shall see shortly how we may find a, and bi, 
but first we shall prove that Y, is generally orthogonal to each previous vector 
of the sequence, and then that Y-I AY = 6. 

Theorem 8.1 

If Yifl is orthogonal to Yi and Y,-,, then it is orthogonal to each previous 
vector in the sequence. 

Proof 
From our choice of a, and b,, Y, will be orthogonal to Y, and Y,. Assume 

that Y, is orthogonal to each previous vector. Then from equation (8.1) we 
have 

= AY, - a$ Yi - bi Yi-I 
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so that, if r < i - 1 ,  

Y r  Y,+l. = Y r  AYi - a, YT Y, - bd Y? Pi-, 

= Y,T AYi 

= Y r  AY, 

= YF(Y,,, + a, YT + b, P,-l) 
= 0 

Hence by induction the theorem is proved. 

Theorem 8.2 
C = Y-IAY, providing that Y,#O, i = 1,2,  ..., n. 

Proof 
NowY = ( P I  Y, ... Y,), so that 

AY = A ( Y ,  Y2 ... Y,) = (AY, All2 ... A % )  
Also 

a, b, 0 O ... 0 0 O 

1 a% b, Q ... 0 0 Q 

Y C = ( Y ,  Y, ... P, )  0 1 a, 6, ... 0 O O 
. . . .  
. * . .  

. . .  . . . .  . . .  . .  . 
0 0 0 O . . . O l a ,  

= (a,Y,+Y, b,Y,+a,Y,+Y ,... b,Y,-,+a,U,) 

Prom equation (8.1) this gives 

Since the sequence Y,, Y,, . . . , Y, forms an orthogonal set of vectors, 
providing they are all non-zero Y-l will exist and benee 

G = Y-I AY 
as required. 

To find a, we premultiply equation (8.1) by YF which gives 

Pf' Y,,, = YF AY, -a, Yf' Y, - bi YF Y,-l 

and from the orthogonality requirement we get 

O = YF AXi-aiYT Pi 

a, Y r  Y, = Yf' AY, 

Since Y,' Yi and Y,' AY, are both single elements we can easily determine a,. 
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To find bl; we premultiply equation (8.1) by YF1, which gives 

YEl Yi+, = YE, AY, -a, YE1 Y, - 6, Yr-1 Yi-l 
so that 

bi YEl = YEl AY* 
= YT AY,-, 

= Yf'(Y, +a,-, Y,-, + bi-l Yi-,) 
= YTYi (8.3) 

which enables us to find conveniently bi. We note that if we normalize each 
vector Y, so that YT Yi = 1, then each b, = 1 and the matrix Y is orthogonal. 

Example 8.1 
We take here the matrix A of example 6.1 

Let 

. . 
Then 

so that 

and 
Y, = AY1 - a, Yl = AY, 
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so that 
-1 5 a, = -= -3 and b,=y= 25 

and 

so that 

Hence 

which is the required tridiagonal matrix. If we compare this matrix with 
the matrix A, of example 6.1, we can see that the leading diagonals are 
identical, and that the product of corresponding elements on the super- 
diagonal of A, is the same as the element on the upper superdiagonal of 6. 
Clearly we shall get the same Sturm sequence here as in example 6.1. 

It is clear that theorem 8.2 does not hold if any Yi = 0, and, furthermore, 
from. equations (8.1) and (8.3) we can see that all successive vectors will 
also be zero. 

If we find that Pi = 0, then we can select any non-zero vector Xi, which is 
orthogonal to all the previous vectors in the sequence. Then Yi+, is given by 

Yi+l = AXi - ai Xi - bi Pi-, (8.4) 

Premultiplying equation (8.4) by X$' we get 

XF = XT AX, -a, X$' Xi  - bi X$' TIg- ,  
so that 

0 = X$' AXi -ai X$' Xi 



The Method of Lanczos 99 

or 
ai X,l. Xi = Xf' AX, 

which is of the same form as equation (8.2). Now premultiplying equation 
(8.1) by YEl we get 

YE, Yi+l = YE1 AXi -ai YE1 Xi - hi YEl Jli-, 
so that 

0 = Y,l.-l AXi - hi Yr-, Yi-, 
or 

hi YEl Yi-, = YE1 AXi = Xr AYi-, 

= X,l.(Yi + a(-, Yi-l + Yi-,) 
= xryi= 0 

since Yi is zero. Since YE, Pi-, + 0, this means that hi = 0, and we can see 
that this means that the matrix C can be partitioned into two tridiagonal 
submatrices. 

Example 8.2 

Then 

so that 

and 

so that 
a , = - 2  and b 2 = 8  
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which gives 

Hence b, = 0. Now any vector of the form 

will be linearly independent of Y ,  and Y 2  and we can then use the Gram- 
Schmidt process to find an orthogonal vector.? When c = 4, this gives 

so that 

Hence 
a, = 6 

The required tridiagonal form is now given by 

which has roots A, = A, = 6, A, = - 3. 

It is convenient to take as the vector Y1, the vector whose first component 
is unity and the rest zero. In this case no multiplications or divisions are 
required to fhd  a, and Y,. Now to form AY, will require n2 multiplications, 
to form Y,T Y ,  n multiplications, to form Y,T AY, a further n multiplications, 
and to form a% one division. Y ,  will require n multiplications. So in forming Y ,  
we perform 

n2 + 3n + 1 calculations 

t See reference 11, p. 442. Here, of course, we only have to perform the one step of the 
process since the previous vectors are already orthogonal. 
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To fiad Y, r~quires ( E ~  + 3% + 1) + (1 i- n) = n2 + 4% t 2 caIculations, and 
similarly for all succeeding vectors up to Y,. To find a, and b, requires a 
further n2 + 2n + 2 calculations. So, in all, the number of calculations needed 
by the Lanczos method is given by 

S, = (n2+3n+ l )+ (n -3 ) (n2+4n+2)+(n2+2n+2)  

= n3+3n2-5n-3 

(See Table 8.1.) 

8.4 FURTHER COMMENTS O N  LANCZOS' METHOD 
FOR SYNMETRIC MATRICES 

W W s o n t  points out that in practice the vectors can quickly lose their 
orthogonality property in which case we have to reorthogonalize. If we find 
that Y, is not strictly orthogonal to all previous vectors, we replace it by 
&. such that 

X, = Y , - d , ~ , - a , ~ , -  ... -a , - , ~ , -~  
where 

d, Yf' Y, = Y,. Y, 

It is, of course, essential to the Lanczos method that strict orthogonality is 
maintained, so that we ensure that our sequence of vectors are all linearly 
independent. This necessity detracts somewhat from the practical value of 
Lanczos' method and certainly for computer use Householder's method is 
preferable. We note that, having found a latent vector of C, we only have 
to multiply by Y  to find the latent vector of A. 

t See reference 7, p. 394. 

8 
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8.5 THE NETHOD O F  LANCZOS F O R  UNSYMMETRIC NATRICES 

The method of Lanceos extends conveniently to reducing an unsymmetric 
matrix to tridiagonal form. In  this case Lanczos' method constructs two 
sequences of bi-orthogonal vectors. 

We reduce A to the matrix C by constructing two sequences of vectors 
Y,,Y,, .. .,Y, and Z,, Z,, .. ., Z, such that each Z, is orthogonal to the previous 
Y vectors, and each Y, is orthogonal to the previous Z vectors. 

The vectors Y,,, and Z,,, are given by the recurrence relations 

Y,+, = AY, - a, Y, - bi Y,-,, Z*+, = AT Z, - c, Z, - d, Z,-, 
By the orthogonality requirements we find that 

a, Z," Y, = Z$ AY,, b, ZE, Y,-I = Y$ Z, 
C, Y," Zi = Y$ AT Zi, di YE1 Z,-, = Z r  Y, 

which is similar to the symmetric case. Now i t  is clear that 

ZEl Y,-, = YE, Z,....,, Z$ Y, = Y," Z,, Z$ AY, = Y,T AT Z, 

which means that 
a , = c  , and b, = d, 

so that the equations we need are 

Y,,, = AY, -a, Y, - b, Y,-, (8.5) 

Z,+, = AT Zi - Z, - bi Z,-, (8.6) 

a, Z," Y, = Z," AY, (8.7) 

b, ZE, Y,-, = Z," Yi (8.8) 
If Y is the matrix whose columns are the vectors Y,, Y,, . . . , Y,, and Z is 

the matrix whose columns are the vectors Z,, Z,, . . . , Z,, we now proceed to 
show that, in general, 

C = y-1 Ay = Z-1 AT Z 

Theorem 8.3 

If Y,+, is orthogonal to Z, and Z,-,, then it is orthogonal to Zj for all j 
such that 1 < j < i - 2. Similarly, if Z,,, is orthogonal to Y, and Y,-,, then it 
is orthogonal to Yj for all j such that 1 < j < i - 2. 

Proof 
The proof here follows exactly the same lines as that of theorem 8.1 and 

it would be mere repetition to inelude it. 

Theorem 8.4 
U-1 and Z-I both exist providing that Z$ U, # 0 for all i. 



PFOO~ 
Mow 

so that providing Zf' Y$ # 0 for all i it is clear that (ZT Y)-l exists and hence 
1 ZT Y I # 0. This, of course, means that 1 ZT 1 = I Z I # 0 and I Y I # 0. Hence Z-I 
and Y-I both exist, as required. 

Theorem 8.5 
G = Y-I AY = 2;-I AT Z providing that ZT Yi # 0 for all i .  

%"roof 
Theorem 8.4 has established the existence of Y-l and Z-l. This proof is 

now identical with that of theorem 8.2. 
We note that if we choose Yi and Zi so that ZTYi = 1, then bi = 1, and 

from theorem 8.4 we see that ZTY = I. Hence ZT = P-l. 

Example 8.3 
Here we take the matrix A of example 3.1. 

Let 
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so that 

0 a , = : - = : O  
1 

and 

so that 

and 

(AT Z3 is not required.) 

Z F Y 3 = (  - 2 8 8 ) ,  Z $ A Y 3 = ( 2 8 8 )  
so that 

288 
= - I  and b - - 288 

a3 = 3 - 7 = - 3 2  

Hence the required tridiagonal matrix is 
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This i a  the matrix whose latent roots were found using Muller's method in 
example 5.4. 

If either Y, = 0 or Z, = 0, then clearly Zf'Y, = 0 and theorem. 8.5 does not 
hold. I n  this case we proceed as for a zero vector in the symmetric case, that 
is, we choose any non-zero orthogonal vector. But in this case we have to 
note that, in general, bi#di unless both Y, and Zi are zero, which we shall 
now show. Suppose that Y, = 0 and we replace it by a non-zero vector Xi 
which is orthogonal to all the previous Z vectors. Then 

Y,+, = AX, -a, X* - bi Y,-l 

and premultiplying by ZT-l we get 

Zc1 Y,+l = Zgl AX, -a, Zz1 Xi - bi ZE1 Y,.-, 
so that 

b, ZE, Ytm1 = Z c l  AX, = Xf' AT Zi-l 

= X,T(Z, + a,-, Z,-, + b,-, Z,-2) 

= xf' Z, 
On the other hand, 

z,.,, = AT Z, - c, 21, - a, Z,-, 

and premultipl~ng by YE1 we get 

Ygl Z,+, = YEl AT Z, - G~ Ye, Zz - d, Ygl Z,-, 
so that 

a, YE1 Z,-, = Ye, AT Zi = Zf' AYi-l 

= zT(y8 + a,-, Yi-, + bf-, y6-2) 

= Zf'Y, = 0 

Hence, in general, d, = 0 but b,# 0. We further note that Y-I AY is now of 
%he form 
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whereas Z-I AT 2; is of the form 

Although CZG, we can partition them both into the same tridiagonal 
submatrices. 

Example 8.4 

Here we take the matrix A of example 3.3. 

8 8 

12 1 
AY, = 

12 
, ATZ2 = 

5 

0 - 4  
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a 8 -  - . ~ - - . 3  8 - , b Z = & - 8  1 -  

Since Y, = 0 we have to choose a non-zero vector X, that is orthogonal to 
both Z, and Z,. Any vector of the form 

where c# 0 is linearly independent of Z, and Z,. When c = 13 the Gram- 
Schmidt process gives 

G T = ( 0  2 -6  5 )  
Since Y, = 0, d3 = 0.  
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We can use either of the two tridiagonal matrices 

to find the latent roots.? 

8.7 FAILURE O F  LANCZOS' METHOD FOR UNSYMMETRIC MATRICES 

We have seen in the previous section how we can deal with the case when 
ZFY, = 0 because either Y, = 0 or Z, = 0. Unfortunately it is quite possible 
for Z$Y, = 0, but Y,# 0 and Z,+ 0. If this is so Lanczos' method breaks 
down because we are unable to determine a, or b,+,, as can be seen from 
equations (8.7) a,nd (8.8). We note that this case is not possible for s p -  
metric matrices with real coefficients. 

so that 

and 

So here Y2#0, Z2#0 but Z,TY2 = 0. 

t C is similar to A and C1 to AT, so by theorem 1.9 their latent roots are the same. To h d  the 
latent veetors of A we must of course use C. We note that Lanczos' method also allows us 
conveniently to  fhd  the latent veetors of AT. 
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In this case the only possibility is to take different initial vectors and hope 
that this condition is then avoided. 

Here, if we take, 

we get 
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So finally the required tridiagonal matrix is 

It is instructive to investigate the circumstances under which either YZ or 
Z, will be zero, which we now do. From equation (8.5) we have 

Y$+, = AY, -a, Yi - bi Yi-, 
so that 

Y, = AXl-alYl = (A-a,I)Y, 

Clearly, in general, we may put 

= g(A) Yl 
where 

g(X) = Ar+~lhT-l+ ..- + p r - l h + ~ r  

and if Y,, = 0 then g(X) is the minimal polynomial of Y, with respect to A. 
We saw in $4.1 that this was the polynomial found by Krylov's method. 
If we look back to example 8.4 we can see that the grade of Y, is two, the 
result we had already obtained in example 4.2 using Krylov's method, 

Clearly, if the grade of Y, with respect to A is r, then we shall have Yr+, = 0. 
Similarly, if the grade of Z, with respect to AT is q, then Z,,, = 0. It is 
interesting to note that having g(A) Y, = 0 does not necessarily imply 
that g(AT) Yl = 0.t 

We now have 
Yr,, = !?(A) 

and 
Z,,, = g(AT) Z1 

t See example 8.4, where Yg = 0 but 2, # 0 although Y1 = Z1. 
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so that 

We can see that there are several possibilities for the vanishing of Z,T,,Yr+, 
without Zr+, or YT+, being themselves zero. 

If we take as the vectors Y, and Z, the vector whose first component is 
unity and the rest zero, then no multiplications are required to find Y,, Z,, 
and a,. To form AP, and AT Z, requires 2n2 multiplications. To form Z$ Y, 
and Z$ AY, needs a further 2% multiplications, and a, requires one division. 
To find Y, and Z, requires 2n multiplications. So in forming P, and Z, we 
perform 

Zn2 + 2% + 2 + 2% = 2(n2 + 2n + 1)  calculations 

To find Y, and Z, requires (2n2 + 4n + 2) + (2n + 1) = 2n2 + 6n + 3 calcula- 
tions, and similarly for all succeeding vectors up to Y, and Z,. To find 
a, and 13, requires a further n2 + 2n + 2 calculations. So in all, the number of 
calculations needed by the Lanczos method for unspmctric matrices is 
given by 

(See Table 8.2.) 
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8.10 FURTHER COMMENTS O N  THE LANCZOS METHOD 
FOR UNSYMMETRIC MATRICES 

As in the symmetric case, in practice we shall have to reorthogonalize our 
vectors. Bearing this in mind, plus the possibility of zero vectors and of a 
complete breakdown, we can see that the method of Lanczos hardly compares 
with that of Danilevsky. Even in the straightforward case Lanczos' requires 
more than double the calculations of Danilevsky's. Nevertheless the Lanczos 
method is extremely interesting from a theoretical point of view and is 
useful to the understanding of the many related methods. Householder 
presents an interesting account of Lanczos' method in this direction.? 

There are many other methods of reducing a matrix to tridiagonal form, 
most of them practically superior to  Lancz0s.f 

8.11 EXERCISES 

8.1. Use the method of Lanczos to reduce the following symmetric matrices to 
tridiagonal form, 

8.2. Complete the proofs of theorems 8.3 and 8.5. 
8.3. Use the method of Lanczos to find the latent roots and vectors of the 

following matrices. Also find the latent vectors of the transposed matrices. 
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8,4, V#e the uetbod of h9czo8, takhg 

to show that A = PCP-1 where 

99 700 -70 

-14 -99 10 

1 7 6 

99 -9870 0 

Note that the characteristic equation of C is 

(A-6) (A-1) (h+1) = 0 
(See exercise 3.2.) 

Show that if each arithmetic calculation is performed correct ody to four 
significant figures then the method of Lanczos yields 

1 0  0 99 -9870 0 

1 -99.66 0.3103 

0 1 7-66 0 1 0.6627 

and that the characteristic equation of Cl is 

ha-0~0027h2+2~9123h+ 28.2942 = 0 

which has the approximate roots 

A, = - 2.7, A,, h3 = 1.4 & 2.9i 

Note that in this case Y3 is far from being orthogonal to 2%. 
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AN ITERATIVE METHOD FOR FINDING T H E  
LATENT ROOT OF LARGEST MODULUS AND 

CORRESPONDING LATENT VECTOR 

%Then we require all the latent roots and vectors of a matrix we would 
generally choose a direct method of solution. Frequently we do not require 
the complete solution, and in this case we are likely to choose an iterative 
method of solution. For example, in $$ 2.2 and 2.3 we were concerned with 
finding whether or not An-+ 0 as n-+ oo, and hence were interested only in 
the latent root of largest modulus. The method now to be described will 
generally find this for us. It is a slight variation from the method usually 
given. 

9.1 TEE ITERATIVE METHOD 

Let Xi, i = 1,2,  . . ., n, be the latent roots of A with 

A,, A,, . . ., A, being real. Also, let Po be an arbitrary column vector that can be 
expressed in the form 

where Xi is the latent vector associated with Xi and a, # 0. We then form the 
sequence of vectors given by 

being for %he moment an arloilrary scalar, so that 
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and in general 

= k, kl . . . %-,(a, A f p  Xl + . . . + a, A:p X, + a,,, A$$, X,,, + . . . + a, X,) 

Now A$ = h2, = . . . = A:, SO that 

where B is independent of p, but the vector E(p) does depend on p. Let 
yDi, bi and ei(p) denote the ith elements of the vectors Y,, B and E(p) 
respectively. Then 

ypi = ko kl . . . kp-l Afp[bi + e,(p)] 

which means that, if yp-l,i # 0, 

As p -+ oo it is clear that ei(p) -t 0, so that 

Since the scalars & will be known quantities this gives us the method for 
finding the latent root of largest modulus, and in general the associated 
latent vector. The usual choice of Ic, is such that the largest component of 
k i q  is unity, in which case kyl gives the ith estimate of A$. 

The method normally presented forms the sequence 

and the method given here is really looking a t  every other vector in this 
sequence. I believe it has advantages in that it gives faster convergence, 
does not s d e r  quite so much from rounding errors and tends to smooth out 
local instabilities. We look first at  a straightforward example. 
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Example 9.1 

Clearly holding four decimal places we cannot improve the solution 
further. Now 

and a check shows that the positive sign is to be taken. This agrees very 
well with the correct root of 10 and the latent vector, which is 
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correct to four decimal places. The convergence here is good because the 
other two roots of A are A,- = 2 and A, = 1, so 

and the vector E ( p )  in equation (9.2) tends to zero quite quickly. In  this 
example if equation (9.4) is used we find, using the same Po, 

and holding four decimal places we can only achieve two-place accuracy in 
the latent root as opposed to three-place accuracy previously. This is, of 
course, due to rounding errors, which are not bad in this example because 
the matrix A is well conditioned. In fact, in this example there has been 
no real gain by using A2, for we first had to find A2 and then check using A 
which sign we should select for the root. 

Example 9.2 
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100.0676 1.0000 

Y2 = kl A2 Yl = ( 0.0000 ) = 100-0676 ( 0.0000 ) , = l00.0676 

6.6076 0.0660 

Again, holding four decimal places, we cannot improve the solution further. 
Now 

Jkl = 5 10~0002 

Checking to determine which sign we should select we get 

and it  appears that we have not in fact solved the problem. The reason for 
this is that A actually has one root of 10 and another of - 10, and the vector 

is not a latent vector of A, but a linear combination of the two latent vectors 
corresponding to the latent roots 10 and - 10.t In  a case such as this i t  Is 
generally of advantage to use A2. 

Example 9.3 
Here we take the matrix of example 9.1 but start with a different vector. 

125 9 -124 

25 9 -24 

f We note that if X is a latent vector of A then by theorem 1.6 it is a latent vmtor of As, 
but a. latent vector of As is not necessarily a latent vector of A. 
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We saw in example 9.1 that the latent root of largest modulus is 10, but 
obviously we have not converged to this root here. To find the reason. for 
this we have to look back to our original assumptions. In equation (9.1) we 
assumed that a, + 0. Now the latent vectors corresponding to the two latent 
roots 2 and 1 of A are 

and it is easily seen that here 

Hence a, = 0 and A, = 2 takes up the role of the dominant latent root. 
Often rounding errors will cause a small component of X, to be introduced, 
and then after an unstable start convergence to A, will eventually take place. 
It is not usually pointed out, however, that examples, such as this one, 
exist where this cannot happen. With Yo as the starting vector it is clear that 
Y, is always of the form 



120 Latent Boots and Late~t Vectors 
which can be expressed as 

y* = 3x2 X 2  + (xl - 3 ~ ~ )  X ,  

This means that no component of X, can ever be introduced. Admittedly 
this case is rare, but its possibility means that it is generally worth performing 
a few iterations with another starting vector just to be on the safe side. It 
is interesting to note that we can have this condition and still converge to 
the correct latent root, as the next example shows. 

Example 9.4 
Here we take the matrix A of example 3.1 which has roots 
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Y6 = k4A2Y4 = 

1.00 
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and holding two decimal places this is as far as we can go. Now 

and we have not even achieved one-decimal place accuracy. Also, remember- 
ing that A, = A, we have 

and (+)I3 fi 0.3 x 10-lo, SO we would hardly expect such slow convergence. 
The inaccuracy in the solution is due to rounding errors, this matrix being 
particularly badly conditioned. If we use the sequence of vectors defined by 
equation (9.4) and hold two decimal places, the convergence stops when 
A, = 3.20 and the latent vector is 

The correct latent vector is given by X,T = ( 1 1 1 ). We can see that in 
situations such as these there is an advantage in working with A,. The 
reason for the poor convergence is that the matrix A has only two latent 
vectors, these being? 

Yo cannot be expressed as a linear combination of X, and X,, as is required 
by equation (9.1). Here we have the remarkable situation that, even if we 
start with a vector which is a linear combination of X, and X,, rounding 
errors will tend to destroy this linear dependence. 

Example 9.5 

t See example 3.4. 
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Yz = klA2Y1 = 

and holding two decimal places this is as far as we can go. This is an inter- 
esting example for we have converged to a negative value, the reason being 
that the required root of A is imaginary. Now 

which corresponds exactly to the two roots of largest modulus of A. Here, 
as in example 9.2, the vector 

is a linear combination of the latent vectors of A. Clearly in a case such as 
this it is of advantage to use A2. 

Example 9.6 

66 40 333 

Y; = koA2Yo = 
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It appears here that no convergence is occurring. In  such an instance we 
suspect the matrix of having complex roots. In  the next section we shall see 
how these may be found without using complex arithmetic. 

Once we have decided we are looking for complex roots it is better to 
revert to using A, instead of A2, and the sequence defined by equation (9.4), 
because, as will be seen, the roots are then easier to find. 

Let the roots of largest modulus of A be A, and h2, and let 

hl=a+ij3 sothat A,=,-ig 
Also, let the corresponding latent vectors be X, and X, where these are also 
complex conjugates. 

t See theorem 1.19. 
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Now, remembering that we are using the sequence of vectors of equation 
(9.4), i t  is easily shown that the equation equivalent to (9.2) becomes 

where a, and a, are complex conjugates. Obviously A, and A, both satisfy 
the same quadratic equation, say 

Using this fact we find that 

Hence as p + a, 

which enables us to find b, and b2.f- Furthermore, if we put 

then 

and clearly as p -+ a, 

Also, 
UP+, = Lo k1 . . 

Equations (9.6) and (9.7) allow us to find Z ,  and Z,, and hence the latent 
vectors associated with A, and A,. 

Example 9.7 
We take here the matrix of example (9.6) which we already suspect of 

having complex roots, and use as our starting vector the vector k,Y, of 
that example. 

t If we were still working with Aa the roots of the quadratic would be and h% and some 
complex arithmetic would be required to find & and h,. 



396.60 

396.60 
Now, putting 

- - 
we get 

Solving for b, and b2 we find? 

b , =  - 4 0  and b, = 401 

By solving the quadratic equation h2 - 40h + 401 = 0 we obtain 

X 1 = 2 0 + i  and h 2 = 2 0 - i  

which are the exact latent roots of A. 
From equation (9 .6)  we put 

so that 

t Note that here if we solve the first two equations the third one is automatically satkfied. 
This will not generally be so, and we can perhaps use the third to determine whether or not we 
need more iterates. 
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and from equation (9.7) we put 

Y2 = k, kl[2crZl - 2pZ2] 
so that 

Hence the latent vectors are given by 

which correspond to the exact latent vectors of A. 
Although we reverted back to using A instead of A2, our earlier work was 

not wasted, for we only required two further iterations. This example has 
given particularly good results. It should be pointed out that this does not 
necessarily follow because the quadratic equation 

is often ill-conditioned, especially if 13 (the imaginary part of A,) is small.? 

In 5 9.1 we performed iteration using the simple polynomial in A,A2. We 
can, of course, use any polynomial in A to iterate with, because, from theorem 
1.13, if X is a latent root of A, then f(X) is a latent root of f(A). Naturally 
there is not much point in using a polynomial for which it is laborious to 
find the roots. A polynomial which is often of use in improving convergence 
is one of the form A2 - dI. 

Suppose that the latent roots of A2 are real and that 

Then for any choice of d,  either A$ - d or A; - d is the dominant latent root 
of A2 - dI, The best convergence to Xf - d will be obtained when 

t See reference 7, p. 580. 
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and to At-d 

d = $(A? +A:,) 

for it is in these cases that the vector E(p) of equation (9.2) goes to zero 
most rapidly. 

Example 9.8 
Here we take the matrix A of example 9.1 and, being wise after the event, 

we take d = 4(4+ 1) = 2.5 so that 

122.5 9.0 - 124.0 

12.0 1.5 - 12.0 

25.0 9.0 - 26.5 

Using Yo and ko as in example 9.1 we get 

and we have now converged to the solution. This gives 

We can see that we have got the same solution as in example 9.1, but we h&ve 
reached it in three iterations instead of four. Whereas 

we now have 

so that E(p) tends to zero somewhat faster. 
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This device is extremely useful if we have some knowledge as to the 
dominant and subdominant latent roots, or if convergence is slow because 
of close roots. In  the latter case the rate of convergence will give us an 
indication as to what value of d should be selected, and if the roots of A are 
real, it is especially useful working with A2 because we know that its roots 
will be positive. A full discussion of this type of shift of origin is given by 
Wilkinson,? as well as an acoeleration technique due to Aitken. 

Another useful possibility is to iterate with the polynomials (A2-d1)-I or 
( A  - a)-,. The second case was the one recommended for finding the latent 
vector of a tridiagonal matrix. Rather than computing the inverse itself we 
solve a t  each stage the set of equations 

(A2 - dI) Yi+l = i& Y ,  
in order to find Xi+,. It is interesting to notice that in this method, with a 
suitable choice of d, we can converge to any desired root. It is usual to use 
a method such as triangular decomposition to solve the equations, altering 
only the right-hand side a t  each stage. This method is analysed fully by 
Wilkinson. $ 

Example 9.9 
Kere we take the matrix A of example 9.2. We have already determined 

that A4 = = 100 and the rate of convergence suggests that the remaining 
root is somewhat less than two. Taking d = 2 we get 

and taking 

then (A2 - 21) Y1 = ko Yo yields the equations 

See reference 7, pp. 572-584. 
$ See reference 7, pp. 619-626. 
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which have the solution 

yl = 0.0816, y2 = 0-0000, y, = 0.0714 
so that 

0.0816 1.0000 

0.0000 = 0.0816 0.0000 

= ( 0.0714 ) ( 0.8750 

Then (A2 - 21) Y2 = & Yl yields the equations 

which have the solution 

9, = - 0.8648, 9, = 0.0000, 9, = - 0.8661 
so that 

- 0.8648 0.9985 

y2 = ( ~ ~ 0 0 0 0  ) = - 0-8661 ( O*OOOO 

- 0.8661 1.0000 

Then (A2 - 21) Y3 = k2 Y2 yields the equations 

7y1 - I 8y2 - 8y3 = 1.0000 

which have the solution 

y, = - 1.0001, y2 = 0~0000, y, = - 1-0001 
so that 

Now 
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and J1.0001 = 1-0000 correct to four decimal places, which corresponds 
exactly to the correct value of A,, as does the latent vector 

In  this method, as in that of the previous section, we have the possibility 
of adjusting d as we proceed. This is not to be recommended unless con- 
vergence is not taking place or is slow, because this means that we have to 
alter the left-hand sides of the simultaneous equations. We note that the 
better the approximation d is to the latent root the more ill-conditioned the 
equations become, so that care is needed in their solution. 

Inverse iteration is one of the most useful of the available iterative methods. 

9.5 MATRIX DEFLATION 
There are numerous methods available for deflating an n x n matrix, A, to 
one of size (n-  1) x (n - 1) having n-  1 of the latent roots of A. This 
technique is clearly useful in the context of this chapter. I intend to look 
a t  one such method here. This is based on the unitary similarity trans- 
formations of theorem 1.5. 

Suppose that we have determined the latent root A, and the corresponding 
latent vector X, of the matrix A, and that X, is normalized so that 

Then, if we take a unitary matrix C, having X, as its first column, we find 
as in theorem 1.5 that 

C1 C2 ... 

CT AC, = C i l  AC, = = B, 
4 - 1  

where A,-, is an (n - 1)  x (n - 1) matrix having A,, A,, ..., A, as its latent 
roots. Once we have found a root of An-, we can then repeat the process 
with A,-,. If we find all the latent roots of A in this manner we shall 
eventually produce the triangular matrix of theorem 1.5. Let us write the 
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Then suppose that we have found the latent root A, and the corresponding 
latent vector Zn-, of An-,. We get 

which gives 
A, z -t- DT Zn-, = A, x 

and, of course, 
An-, Zn-I = A, Zn-I 

Equation (9.8) gives 
x = (A, - A,)-1 DT Zn-I (9.9) 

which allows us to find the only unknown element of the latent vector Y,. 
From theorem 1.2 we have 

C,Y, = x, 
from which we may find the latent vector X, of A. 

It remains to be shown how we may find the matrix C,. We shall consider 
only the case of a real latent vector, which means that 6, is orthogonal, in 
the hope that the extension to the complex case is then clear. It is convenient 
to choose C, so that it is symmetric,t of the form 

C, = I-2YYT 

as in the Householder transformation of $7.1, which means that 

If the elements of Y are y,, y,, .. ., y,, then 

and since we wish the first column of C, to be the latent vector X, whose 
components are x,,x,, ..., x,, we get 

and from these n equations it is easy to determine the values of y,, y,, . . . , y,. 
f In the complex case C1 would be Hermitian. 
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Subsequent dehtions may be similarly performed. dthough this method 
requires more calculations than some of the other deflation methods, it is 
quite general and is extremely stab1e.t 

Example 9.10 

Suppose that iteration has given us the latent root of largest modulus of A, 
which is A, = 48, and the corresponding latent vector, which is 

Then normalizing so that Xf' X, = 1 we get 

This means that 
1-2y! = + 

- 2 ~ 1 ~ 2  = % 
- 2 ~ 1 ~ 3  = f 

and hence 

yl = 8, 9, = - Q, y3 = - 8 
This gives 

f See reference 7, p. 594. 

10 
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We can now h d  the next latent root and vector using the deflated matrix 

This gives A, = 16 and 

From equation (9.9) we get 

so that the latent vector of A is given by 

We could similarly deflate A, to obtain the remaining latent root A, = 12 
and the latent vector, 

Deflation is often a very useful technique, especially for large matrices 
when only a few of the latent roots and vectors are required. This method is 
also useful in eonjuction with $2.4 in the case of equal roots. 

9.6 I?URTHER COMMENTS ON THE ITERATIVE METHOD 

It is clear that there are many circumstances under which an iterative 
method is extremely useful. The case of complex roots needs especial care 
because the quadratic equation can be ill-conditioned, but since we are 
able to find two roots simultaneously it is not really surprising that we 
are likely to need extra precision. The case that gives real di%culty is that of 
a matrix not possessing n linearly independent latent vectors.t Methods 
for dealing with this are discussed by Wilkinson.$ 

Although in nearly every instance we have taken k;l to be the element 
of largest modulus in the vector Pi, it is occasionally worth taking & = 1 

f See example 9.4. 
$ See reference 7, Chapter 9, $3 16, 32, 41 and 53. 
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for certain i, elspecially for the first few iterates, to iron out local instabilities 
or to avoid rounding errors due to division of the elements in kT;i. 

It is hoped that a reasonable case has been made for the use of A2 in 
preference to A. Nevertheless, it is often quite adequate to use A, especially 
if prior knowledge shows that no advantage is to be gained by using A2. 
We note that using A2 approximately halves the number of iterations 
required, but we have roughly n3 extra calculations to make in finding A2. 

An interesting discussion of various iterative methods is also given by 
Householder. f 

9.1. Find the latent roots of largest modulus and corresponding latent vectors 
of the following matrices : 

5 2 -20 

-10 2 -5  

13 7 -12 

3 2 -2 

9.2. By using the Frobenius matrix whose characteristic equation ie 

x3 - 9.40x2 - 1 . 4 4 ~  + 13.54 = 0 

find the largest root of this cubic correct to two decimal places. 
9.3. (i) A skew-Hermitian matrix is a matrix such that 

Show that the latent roots of a skew-Hermitian matrix are purely imaginary. 
Hence show that if A is an n x n skew-Hermitian matrix where n is odd, then at 
least one latent root is zero. 

(ii) Find the two latent roots of largest magnitude of the matrix 

correct to two decimal places. 

t See reference 12, Chapter 7. 
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9.4. Establish the equation 

Y, = ko k, . . . Ic,-,[al Af Xl + az Ag Xz + E(p)]  

of $9.2. 
9.5. Given that the latent roots of the matrix 

are approximately PO, 5 and 1, use the method of $9.3 to find the largest and 
smallest of these to two decimal places. 

9.6. If 

20 -10 20 10 0 0 1 -1 2 

A =  ( -10 25 -5 0 1 3  

20 -5  85 20 15 -10 0 0 1  

show that A - 101 = LU. Taking ko = 1 and 

solve the equations LUX, = ko Yo by first solving the equations LZ = &Yo where 

and then solving the equations UU; = Z. 
Continue the inverse iteration to find the latent root close to 10 of the matrix A. 

Notice that A-dI only needs to be decomposed into the product LU once for 
the method of inverse iteration. 

9.7. For the tridiagonal matrix A, of example 6.1 find a lower triangular matrix 
L with unit elements on its leading diagonal, and an upper triangular matrix U 
such that 

A,-AII = LU 
Solve the equations 
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Perform one step of jnveree iiteratim by solving the equations 

LUP, = kl Y, 

to find a more accurate latent vector of Al. 
Finding a starting vector Yl by the above is the method recommended by 

Wilkinson for performing inverse iteration on a tridiagonal matrix. In  practice 
Wilkinson has found that TI, is never then needed. For details of the method of 
triangular decomposition, and the necessary pivoting techniques see (p. 23). 

9.8. Given that one latent root of the matrix 

-10 3 3 

-50 17 10 

48 -19 -3 

is A, = 2 and that the corresponding latent vector is 

use the method of matrix deflation to find the remaining latent roots and vectors. 
9.9. The largest latent root of the matrix 

is A, = 12 and the corresponding latent vector is 

Use the method of deflation to find a three by three matrix whose latent roots 
are the remaining latent roots of A. By iterating with this three by three matrix 
h d  the next largest latent root of A and the corresponding latent vector. By 
deflating once more find the other two latent roots and vectors of A. 



Chapter 10 

THE METHOD OF FRANCIS 

The method of Francis, discovered also by Kublanovskaya and generally 
referred to as the Q-R algorithm, is an iterative method that attempts to 
reduce a matrix to triangular form. From a practical point of view this is 
one of the most important methods at present available. 

10.1 THE ITERATIVE PROCEDURE 

The method decomposes the matrix A into the product 

where Q, is an orthogonal matrix and U, is an upper triangular matrix. 
Then a matrix A, is formed by 

A, = UIQI 
and since 

A = Ql U, = QI U, Q1 &il = Q1 Ai Qil 

A, is similar to A. The method proceeds iteratively by forming the sequence 
of matrices A,, A,, ..., A$, . . . , where 

A$ = Ui Qi 

Q, being orthogonal and U6 upper triangular and these being given by 
decomposing A,-, into the product 

Under certain conditions A$ tends towards an upper triangular matrix as 
i -+ oo, so that the latent roots of A lie on the diagonal of this matrix. 

The complete proof of the Q-3-3 algorithm is by no means easy and only an 
indication as to how the final result may be arrived at is given here.* 

Let us put 
w3 = Q,Q,.-.Qi 

t For a formal proof see reference 12, (i 7.9. Also see reference 7, pp. 515 ff. 
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Then, 
= Ui Q, = Q;l(Qi Ui) Qi = Qil A,-1 Qi 

= Q;l A,-2 a-1 Qi 

= Qil  Qrdl . . . Qil AQl . . . Qi 

= (Q1 Q2 . . . Qi-1 Qi)-l A(Ql Q2 *. Qi-1 Qif 

= W;l AW4 

so that A* is similar to A. 
Also, 

A = Ql Ul 
so that 

AQl = Ql U1 Q1= Q1 A1 = Q1 Q2Uz 
and 

AQlQ2 = QlQ2U2Qz = Q1Q2A2 = QiQzQsUs 

Proceeding in this way we get 

From equation (10.1) this gives 

A, = Wz1 AW, = Wil  Witl Ua+l = WT W++, U,+, (10.3) 

since Wi is orthogonal. 
Equation (10.2) allows us to investigate the limit of VCT, as i-tco, and 

equation (10.3) then allows us to investigate A, as i -+ m. Clearly if Wd -+ W 
(say) as i-tco, then 

A,-+Ui+, as i - tm 

where Ui+, is of course upper triangular. It is possible to investigate the 
limit in this full form? but instead an indication is given as to how this may 
be arrived at  inductively. 

Instead of considering the sequence 

AW, = Wi+l U,+, 

f is t  consider the equation 

AYi = Yi+l ri+l 

where Yi is a column vector such that Yf Yi = 1 and ri is a scalar. 

t See reference 12, 5 7.9. 
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Theorem 10.1 
If the latent roots of A are such that 

then r,+A, and Y,+X, as i+w, where X, is the latent vector of A 
associated with A, and 

AY, = ri+,Yfil 
with YfY, = 1. 

Proof 
Since r, is chosen so that Yf'Y, = 1, the result follows immediately from 

59.1. 
Next we consider the iterative procedure 

AY, = y,+, R,+l 
where Yi is a makrix containing two columm Yo and Yz, such that Yf Y, = I, 
and Ri+, is a two by two upper triangular matrix, that is, 

Theorem 10.2 
If the latent roots of A are such that 

then r,, + A,, r4,+ A, and Y,,-+ X, as i -+ w, where these are given by the 
above iterative procedure of equation (10.4). 

Proof 
Since Yf Y ,  = I we get that Y,T, Y,, = 1 and also we have, from equation 

(10.41, that 

Axil = Yi+l,l ri+l.l Yi+l,2 x 0 = r,+1,1 Yi+1,1 

Hence from theorem 10.1 r,, -+ A, and Y,, -+ X, as i -+ CQ. 

The second equation arising from equation (10.4) gives 

Because YE1Y4+1 = I, we must have that Yf+,,,Y,,,, = 0 and hence Y,+,,, 
and Pi+,, are linearly independent. 
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Now Y8tl,l -+ Xl as i -+ co, so that YitllB must become linearly independent 
of X1 as i-tco and therefore becomes dominated by the next largest root, 
that is A,. Hence ri+,,, -+ A, as i -+a, and the theorem is established. 

Notice that Y,il,2-+X2 as i -+a only if Xl and X2 are orthogonal. In 
particular this will be true if A is symmetric. Since Pi+,,  tends to a limit and 
Y51,1Yi+1,2 = 0, Yi+1,2 must also always tend to a limit. 

It is hoped it is now clear how the following theorem may be established. 

Thwrem 10.3 
If the latent roots of A are such that 

IAll>lh,l> ... >/An1 
then in the sequence defined by 

AWi = W,+l U,+, 
where Wi is an orthogonal matrix and U, is upper triangular, 

W, -+ W (i.e. W tends to a limit) 

and the elements on the leading diagonal of U, tend to the latent roots of 
A as i-tco. 

If W2 -+ W, then from equation (10.3) we get 

A, = WT W,,, U,,, -+ WT VVZTiil = U{+, 

We have now established that if no two latent roots of A are of equal 
modulus then A, tends to an upper triangular matrix. 

If the latent roots of A are not all of distinct modulus then A, may not 
tend to an upper triangular matrix, but may instead have a block of elements 
centred on the leading diagonal whose latent roots correspond to the latent 
roots of A of equal modulus. 

For example, suppose that A is a four by four matrix with 

IXlI>IA21 = Ihsl>lAsl 
and that 

W i =  ( Wi1 Wi2 W,, Wid 
Then clearly Ws1 -+ X1 and W, -+ V (say) as i -+ co, but W,, and W,, may not 
tend to a limit. (Compare with 5 9.2.) Also we can see that 

where x,, x,, . . ., x, may or may not depend on i. 



142 Latent Boots and Latent Vectors 

Then, since 

Lim WT IN,,, = O W$wi+l,2 w$W~+1,3 O 
$+a Wg &+1,2 Wg &+I, O 

Lim Ai = Lim(Wr Wit, Ui+ l) is of the form 
$+a 6+co 

and the latent roots A, and A, are the latent roots of the matrix 

The element r,: may of course be zero, but, in particular, if A, and A, are 
complex then r* will not be zero. The extension to the general case should 
now be clear. 

Theorem 10.4 
Define a sequence by 

AUT, = W,+l U,+1 
where Wi is orthogonal and U, is upper triangular. Then if 

A, = Wr IN,,, U,,, 

A, tends towards a block triangular matrix as i +a, where the latent roots 
of each block correspond to the latent roots of equal modulus of the matrix A. 

We now look at how that Q-R algorithm is actually performed. We wish to 
decompose A,:-, into the product 

= &iUi 

This is done by finding C& such that 

Q? = Ui 

We form &T as the product of orthogonal matrices which are chosen as in 
either the Givens or the Householder methods. Taking as representative the 
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three by three matrix, 

a11 a12 a13 

A,-1 = ( a21 a22 @23 

a31 a32 a33 

we wish to introduce zeros into the a,,, a,, and a,, positions. The method of 
Givens suggests that we rotate in the (1,Z)-, (1,3)- and (2,3)-planes, so that 
the first stage forms 

where c1 = all(atl +a;,)-* and 81 = a2,(at1 +ail)-* which will introduce the 
required zero into the a,, position. Then successively P,(PIAi-l) and 
P3(P2Pl A+-,) are formed, where P, and P3 are of the form 

so that Qr = P3 P2 PI. Then Ai is given by 

In forming Ai we lcompute in sequence U, PT, (U, PF) PT, (U, P,T P,T) P,T. 
We can of course replace the Givens type transformations with those of 
Householder and for computer purposes this is undoubtedly preferable in 
general. 

Example 10.1 

Then 

c = all(a:l +ail)-* = $, s = a,,(a~, + ail)-* = + 
so that 
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Then, 

At this stage A, -- 10.2 and A, -- - 1.2. 
Now 

e = 10.2(10.22 + ( - 1.6)2)-* = 0.99 

8 = - 1.6(10.22+ ( -  1.6)Z)-+ = - 0.15 
so that 

Then 

so that 

Then 

These are good approximations to the exact roots which are A, = 10 and 
A, =: - 1. Notice that rounding errors have not seriously affected convergence 
to the roots. Notice also that 

and 

Also 
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Actually in exaot arithmetic we clearly have that 

Example 10.2 
4 - 3  

Then 
c = * ,  S Z 3  5 

so that 

and 

c = 0.99, s = 0.07 

so that 

and 

c = 1.00, s = 0.03 
so that 

and 
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Hence convergence is slow to the latent roots which are A, = A, = 1. But 
if A had been, say, a four by four matrix with the other two latent roots, for 
example, A3 =: 10 and A4 = 5, then at this stage we might have had 

where E, and 8% are small. 

10.4 THE &-R ALGORITHM A N D  HESSENBERG FORM 

Clearly for a general matrix larger than a two by two matrix the Q-R 
algorithm involves an excessive number of calculations. For this reason it is 
advisable to reduce first the matrix to an upper Nessenberg form, that is, a 
matrix of the form 

We can apply either the Givens or the Householder transformations to a 
matrix to obtain the Hessenberg form. Of course, if the matrix is symmetric 
then B is tridiagonal. The important point here is that the Q-I% algorithm 
preserves the Hessenberg form, which makes this an extremely useful 
technique. 

Then, 
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so that 

c - 3(32 + 42)-* = 3, 8, = 4(32+ 42)-* = $ 3 - 
so that 

5 36 - 1  

0 3 - 3  

0 4  5 

5.0 36.0 - 1.0 

0 5.0 2.2 

0 0 5.6 
Then 

5.0 36.0 - 1.0 25.6 25.8 - 1.0 

0 5-0 2.2 ) ( 
0 0 5.6 0 0 5.6 

and 
25.6 25.8 - 1.0 

3.0 4.0 2.2 

0 0 5.6 

and we see that B, is still a Hessenberg matrix. Clearly from the m y  in 
which it is formed this will always be so. 

Working to two decimal places, the next two iterations yield 
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The exact latent roots are A, = 27, A, = 5, A, = 1. Notice that convergence 
to the largest latent root has already taken place. It is possible to improve 
convergence to the next root by wing a shift of origin similar to that of (5 9.3. 

Consider the sequence 

A,+, = U, Q, +p, I 
where 

a u i  = A,-pgI 
Then 

so that A,+, is still similar to A, and must then, of course, be similar to A. 
The standard Q-R algorithm takes pi = 0 for all i. A suitable choice of p, 
may improve convergence to particular latent roots. For example, in the 
matrix B, of example 10.1 a possible choice to improve convergence to A, = 5 
would be to take p, = 0-81, this being the current estimate of A,. Whereas 
the latent roots of B, are A, -- 27, A, -- 5, A, -- 1, the latent roots of B, -p,I 
would obviously be A, -c 26.19, A, ---- 4.19, A, --. 0.19, so that we have con- 
siderably improved the dominance of A, over A,. 

Wilkinson gives a full discussion on suitable choices of p,, and of a 
powerful double-shift te0hnique.t 

10.6 FURTHER COMMENTS O N  THE &-R ALGORITHM 

As a hand method the Q-R algorithm clearly presents a large amount of 
computation and for this reason only three simple examples were given 
earlier. As a computer method the Q-R algorithm, with suitable shift of 
origin, is extremely powerful, mainly because it is a very stable method. 

If the Q-R algorithm is applied to a general matrix then Householder-type 
transformations are most suitable in reducing A to triangular form. But if 
the matrix A is first reduced to Wessenberg form, whioh is generally advisable, 
then Givens-type transformtbtions only are needed in reducing B to triangular 
form since each column of B only requires the introduction of one zero. 

t See reference 7, Chapter 8, $5 36-45. 
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10.1. Apply the Q-R algorithm to the following matrices : 

4 57 2 

i 
20 19 -29 

(iv) B =  15 19 -10 

0 24 6 0 3 -4 
10.2. ,Prove theorem 10.3. 
10.3. Prove that the Q-R algorithm preserves the Hessenberg form. 
20.4. If 

show that the Q-R algorithm gives Bi = B for all i. Use a shift of origin to try to 
obtain convergence. 

10.4. Reduce the matrix 

99 700 -70 

-14 -99 10 

I 7 6 

to an upper Hessenberg matrix B, performing all calculations correct to four 
significant figures. Apply the Q-R algorithm to the matrix B, again using four 
significant figure accuracy, and employing suitable shifts of origin. Compare the 
latent roots so obtained to those of exercises 3.2 and 8.4. 



Chapter 1 I 

OTHER METHODS AND FINAL COMMENTS 

Some of the other methods available are listed below with very brief 
comments, and references. 

1. Z'he Method of Rutishauser which is also called the L-R algorithm. It 
led to the development of the Q-R algorithm of Francis and Kublanovskaya. 

The matrix A is decomposed into a lower triangular matrix L, and an 
upper triangular matrix U, such that ] L, I = 1 and 

We then form A, = U, L, and A, is then similarly decomposed as 

and A, = U,L,. This process is continued iteratively and in general the 
sequence A,, A,, . . . will converge to an upper triangular matrix. 

The method is important since it led to the Q-R algorithm, but it is not 
as general or as stable as that algorithm. (See reference 7, chapter 8; reference 
13, pp. 45 ff.; reference 12, $7.7; reference 21, pp. 475 ff.) 

2. The Method of Jacobi is an iterative method, which uses plane rotations 
similar to those of Givens', but with the aim of producing a diagonal rather 
than a tridiagonal matrix. It is a stable method and generally produces 
good latent vectors, but the number of calculations required will generally 
be large compared with the methods of Givens or Householder. (See reference 
7 ,  pp. 266-282.) 

3. The Method of Kaiser uses a Householder type of transformation, but 
like the Jacobi method attempts to diagonalize the matrix. The method 
achieves this by maximizing the first element on the leading diagonal rather 
t h m  reducing off-diagonal elements to zero. The method seems promising, 
especially for large matrices when only a few of the latent roots are required. 
(See reference 14.) 

4. The Leverrier-.Fucleev Method is based on the fact $hat 

TL 

2 A t  = Trace of Ak 
$=I 
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It comyutes, for any matrix A, the coeEcients of the oharaoteristic equation 
and the adjoint matrix of A. The sequence 

is constructed, where A, = A and 

Trace of A, 
Pr = 

Then the characteristic equation is given by 

and the adjoint matrix is ( - l)"-lB,-,, where Bn-, = A,-, -p,-, I. If A-l 
exists, then A-l = B,-,/p,. 

The method has no cases of breakdown, but the number of calculations 
is somewhat prohibitive. (See reference 15, p. 193 ; reference 6, p. 177.) 

5. The Esmlator Method finds the relation between the latent roots of the 
matrix and those of its principal submatrix. Then commencing with a two 
by two matrix we successively build up to the n by n matrix, finding at each 
stage the latent roots of the submatrix. The advantage of the method is that 
accuracy may be fairly easily checked at each stage, but again the number 
of calculations is prohibitive. (See reference 6, p. 183.) 

6. The Method, of Eberlein is based on the fact that any matrix is similar to 
a matrix which is arbitrarily close to a normal matrix. (A is normal if 
A*A = AA*.) Eberlein's method attempts to reduce A to a normal matrix N, 
such that 

IN1 = ID11 ID21 .-. ID,/ 
where no .D, is greater than a two by two matrix. The advantage of this 
method is that the latent root problem of a normal matrix is well-conditioned. 
Developments along these lines seem likely to provide an excellent algorithm. 
(See reference 13, p. 53; reference 22.) 

7. Matrix Squaring is a method similar to the iterative method of $9.1, 
but instead of working throughout with A or A2 we work with the sequence 
of matrices A, A,, A*, As, . .., AZT. This is useful when the two latent roots 
of largest modulus are poorly separated. (See reference 7, p. 615.) 

8. Spectroscopic Eigenualzce Analysis is an iterative method due to Lanczos 
and is based on replacing equation (9.4) 
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where Tz(A) is the ith Chebyshev polynomial of the first kind. This, of course, 
means scaling A so that - 1 <A, < 1. There seems, at present, to be no 
special advantage in this method over the more usual iterative methods. 
(See reference 16, p. 190; reference 12, p. 188; reference 7, p. 617.) 

Whenever we use a method that finds directly the characteristic equation, 
the condition of this equation should be carefully investigated, for many 
polynomials are extremely ill-conditioned. We may easily turn a well- 
conditioned latent root problem into an ill-conditioned polynomial problem.? 
Though there are a large number of methods available, the complete solution 
of the latent root and vector problem for a large unsymmetric matrix still 
presents severe difliculties. 

To date, the best answer seems to be to use a Householder-type trans- 
formation to reduce the matrix to Hessenberg form, and then to apply the 
Q-R algorithm to the Hessenberg matrix, both of these being stable processss. 

For a symmetric matrix the method of Householder, together with inverse 
iteration for finding the latent vectors of the tridiagonal matrix, is generally 
quite adequate. 

If we require only one, or a few, of the latent roots, then it is best to use 
one of the iterative methods together with matrix deflation when more than 
one root is wanted. If approximate values of the required latent rootn are 
known then inverse iteration provides an excellent method. 

j. See reference 13, pp. 28-31, 
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Appendix 1 

THE LATENT ROOTS OF A COMMON 
TRIDIAGONAL MATRIX 

Let A be the common tridiagonal n x n matrix given by 

a c O O  ... 0 0  
b a c O  ... 0 0  
O b a c  ... 0 0  
. . . .  . . . .  . . . . . .  . . . . 
0 0 0 0  ... b a  

We can write A as 
A = aI+B 

so that if X is a latent root of A and ,8 is a latent root of B, we have from 
theorem 1.13 that 

X = a+,8 (1) 
If Dn(,8) = I B - ,811, we have 

and expanding Dn(,8) by the &st row we get 

Dn(,8) = -,8Dn-i(8) - bcDn-2(/3) (2) 
which is very close to the recurrence relation for e Chebyshev polynomial. 
Bearing this in mind we put 

/3 = 2(bc)*x and Dn(,8) = ( - 1)" (bc)n/2Un(x) 

and substituting in equation (2) we get 

( - 1)" (bc)"12 Urn($) = - 2( - (bc)"12 xUn-i(x) - ( - I)"-' (bc)"I2 
which gives 

Urn(%) = 2xun-,(x) - Un-2(~) 
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and this is the recurrence relation for a Chebyshev polynomial. Noting that 
Do@) = 1 and Dl@) = -p we see that Un(x) is a Chebyshev polynomial of 
the second k i d ,  and hence 

sin(n-t-1)B 
Un(x) = sin e 

where x = cos 6' and we can see that the zeros of U,(x) occur when 

which means that Dn@) = 0 when 

r?T 
j3 = 2 J(6c) cos - 

n+ 1' 

and hence the latent roots of A are given by 

r?r 
A,, = a + 2  J(bc)cos- r = l,2, ..., n 

n + l y  

No knowledge of Chebyshev polynomials is required. Substitution of equa- 
tion (3) in (2) shows that these are required roots. 



SOLUTIONS T O  EXERCISES 

Chapter I 

(iii) h 1 = 3 ,  A2=2,  h 3 = l  

1.5. Sinh 0 and cosh 0 can be defined from Fig. 5 as 

Y x sinh 0 = - C O S ~  0 = - 
r'  r 

where the hyperbolic angle 0 is defined as 0 = 2Alr2, A being the shaded area. 

Hyperbola x2-y2=r2 

Fro. 5 
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This is analogous to de-g sin I9 and cos 0 using the circle x2+ y2 = 9q2. See 
Fig. 6. 

It is interesting to notice that the matrix 

transforms the circle x2 + y2 = r2 into the hyperbola Xa - Ya = r2. Since 1 P I = i, 
the area of transformation is i, so that iA' = .A, which means that iI9' = 8. That is, 

iI9 radians = 0 hyperbolic radians 

By considering the transformation 

1 0  COS el el C O S ~  e 
( 0  ) (a in0 '  ) = ( i s i u s .  ) = ( s i n h 0 )  

we have shown that cos ( - ie) = cos i0 = cosh 0 and i sin ( - it?) = - i sin i0 = sinh 19. 
Thus these relationships have been established without recourse to the exponential 
function. By showing that A ((see Fig. 5) is given by 

it is easy to show that cosh 8 = i(e0-t-e-0) and sinh 8 = +(ee-e-*). 
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1.6. If X is a latent vector of AB and Y the corresponding vector of BA, then 
BX = Y (and AY = X). 

1.7. The matrix of exercise 1.1 (iv) has the same characteristic equation as I. 

1.10. A X = =  
Eence 

X*A* = AX* ( 1  is the complex conjugate of A) 
which gives 

X*A*AX = XX*hX = XAX*X 
But 

A*A = I 
so that 

X*X = AhX*X 
Hence 

X h = l  and j X I = l  

1.13. See theorem 4.3 for the first part. 
From theorem 1.14, 

h(A) X = h(h) X 
But 

h(A) = 0 
Hence 

h(h) = 0 

1.18. (i) X1 = 15, A,, h3 = + 2 d6 

(ii) h1=34, h,,h3=+4J5, h,=O 

When h = a(%-l),XT = k(l1  ... 1). 

1.28. For 

A ; h P  B i  AI 
p = ( ...........; ......... ) and Q = (...-;-ri..) 

form PQ and QP. 

IPQI = IQPI 

Chapter 2 
2.1. Axes of symmetry are the lines 

4 y = 3 x  and 3y=-4x  

Distances are and i. (Since the curve is a hyperbola only one axis actually 
meets the curve.) 

12 
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2.2. One axis of symmetry is the line 48s = 289 = 212. Any line in the plane 
x+2y+2z = 0 is also an axis of symmetry. (One cross-section of the ellipsoid is a 
circle.) 

The distances are + and 1. (The radius of the circle is 1.) 
2.3. Ellipse if XI, A, > 0 or A,, A, < 0. 
Circle if Xl = A&O. 
Hyperbola if Xl > 0, & < 0 or A, < 0, h, > 0. 
Parabola if A1 = 0 or A, = 0. 
(Straight line if A, = A, = 0.) 
2.4. (i) A, = 2, A, = -3, hence hyperbola. 
(ii) A, = 13, A, = 0, hence parabola. 
2.6. Jacobi scheme is 

with xlO = xrn = x, = x40 = 0. 
The Gauss-Seidel scheme is 

with x, = xm = 0 being the only initial values needed. The exact solution is 
X, = 1.5, X, = 4.0, x3 = 0.5, x4 = -0.5. 

2.7. (i) For Jacobi's method, I M - XI I = - AS+ 0.01 = 0. Hence the method will 
converge. 

For the Gauss-Seidel method, I M - XI I = - X(h2 + 3.98A - 3.99) = 0. Hence the 
method will not converge. 

(ii) For Jacobi's method, I M - A 1  1 = (A - 2) ( - As- 2X + 4.1) = 0. Hence the 
method will not converge. 

For the Gauss-Seidel method, I M - XI [ = h2( - h -0.1) = 0. Hence the method 
will converge. 

Solution of (iii) is x = y = z = 1. 
Solution of (iv) is x = y = 2 = 1. 

2.12, (i) 

(ii) 
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-3 

(vii) x=klet(  i )+k2e-t (  1 

-3 

2.13. (i) The latent roots of A, are A, = A, = 1, since these are both roots of A. 
The latent vector of A, is 

- 27k2 - 1836k3 - 20251c, d 

(ii) - 60k2 - 37051c, - 45004 t 

- 39k2 - 37024 - 2925k3 t 

- 10k2 - 8 J(2) lc, - 15 J(2) Ic, t 

(iii) (a) 2k2 + 4 2 )  k3 + 3 J(2) k3t 

-1 8k2 +lOJ(2)%+12J(2)&t 
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2.16. (i) 

(ii) 

Chapter 3 
3.1. (i) A1=3, & = 2 ,  A,=-4.  

(g)  

(iii) 

3.2. Using arithmetic correct to four significant figures gives 

Notice that in exact arithmetic the a2, position is zero and hence Az = B is 
not formed. This example highlights the dangers of a small pivot element. The 
roots of 

h3 - 5.95h2 - 5.95A+ 39.5 = 0 
are 

A, = 5.80, h2 = 2-68, A, = -2.54 

which do not bear much resemblance to the correct latent roots. Notice that bl 
is quite close to the trace of A, but that b, is quite different from I A\.  Most com- 
puters use floating point arithmetic, which means that calculations are performed 
to a set number of significant figures, so that this sort of result is quite possible 
in practice. 



Solutions to Exercises 

Chapter 4 
4.2. This starting vector yields the full characteristic equation 

X4-3X3-7X2-13h-10 = 0 

The grade of this vector with respect to A is four. 
4.3. From 5 4.2 we have F = Y-I AY, where, of course, 

Y = ( Y o  Yl ... Y,-,) 

A latent vector, say Z, of F is easily found and then 

X = YZ 

where X is the corresponding vector of A. If r < n, then Y-l does not exkt so that 
F is not similar to A. (It is not even the same size.) 

Chapter 5 
5.1. (i) f2(x) = 27x2 -40 

fl(x) = *(SOX + 63) 

f,(x) is positive 

The exact roots are xl = g; x,, x3 = *(- 7 + 413) 

The two real roots are xl, x, = - 1 + 45. 
Notice that having only three polynomials in the sequence means that a t  most 

only two distinct real roots are possible because there cannot be more than two 
changes of sign. 

5.4. See Lanczost for an excellent discussion on orthogonal polynomials. 
5.5. (i) Exact roots are X1 = - 3 ; A,, X3 = - 3 + 48. 
(ii) Exact roots are Xl = - 1 ; 4, A, = 1 + J3. 
5.7. (i) It is not known under what conditions convergence takes place. The 

advantage is that complex arithmetic is avoided. 
(ii) The exact roots are 

1 .  
X3,X, = +ti; hl,X2 = & - 2  t 
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Chapter 6 

6.2. (i) 5  0 

5  9.2 -1.6 , A1=13, h2=3,  A 3 = l  

'= ( 1 -1-6 1.8 ) 

From the above set of vectors, any two orthogonal vectors can be chosen for X, 
and X2. Notice X3 is orthogonal to X1, X2 for all values of k. 

To the nearest integer the roots are Al = 9, A2 = 5, = 2, A4 = -7. Correct to two 
decimal places & = 2.00 and A4 = - 6.84. 

Chupter 7 
7.1. (i) 1 -25 0 

. = ( - 2 5  5 12 

0 12 -2 
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(ii) 5 -9 0 0 

-9 9 5 0 
B =  

0 5 2.4 -1.2 

0 0 -1.2 -9.4 

Chapter 8 
8.1. (i) 6 25 0 1 0  0 

0 3 6.4 

0 4 -4.8 

(ii) 2 2 5 0 0  1 0  0 0 

0 4 -9 -24 

0 3 12 32 

0 0 20 -30 

In both the above exercises it is assumed that YT = ( 1 0 ... 0 ). 

(iii) 

Note that Y, = 0. 

8.3. (i) 

Vectors of AT are 
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Note that Y3 = 0, hence b3 will depend on the next vector chosen. 

Notice that 

and when X = 1, yl# 1. (See $6.3.) 

Note that Y3 = Z3 = 0 so that b3 = 0. 
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(iv) 

A,= A2=4, A,=-2, Xl,X2= 

Vectors of AT are 

Chapter 9 
9.1. (i) 

(ii) 

(iii) 

A,, A, = 10 & 5i, XI, 

9.2. x = 9.40. 
Iterating with the Robenius matrix is equivalent to using Bernoulli's method 

for finding the root of the largest modulus of a polynomial. 
9.3. (ii) Exact roots are hl, 4 = -t. 4 4(5) i. 
9.5. A, = 11, A, = 3-45. 
9.6. The equations LZ = koYo, which are easily solved by forward substitution, 

give 
xl = 0.1, x2 = 0.2, 2, = 0.5 

Then UY1 = Z can be solved by backward substitution to give 

yl = -2.2, y, = - 1.3 y, = 0.5 

Hence 



166 Latent Roots and Latent Vectors 
Solving LUY2 = kl Yl gives 

1.000 

- 0.227 

Solving LUY, = k,P, gives 

Hence 

1 0 " - 4.71500 5.00000 0-00000 

-1.06045 1 0 - 0.01275 - 0-20000 = LU 

0.00000 15.6863 1 0 0 0.02226 

Then 

gives 

1 

= -7556.1774( 0.9430 ) = - 7556.1,74 

- 0.0595 

Solving LUY, = kl Yl gives 
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This gives, correct to four decimal places, the latent vector of Al. (The latent 
root was only given to four dechal  places.) Notice that Yl is extremely accurate. 

(Compare with exercise 2.13.) 

which gives 

12 3 2 -2 

0 1 -1  -1  
C i 1  AC, = 

0 5  5 - 5  

0 -5 -6  4 

Iteration gives 

A, = 10 and Z2 = 

-1 
which gives 
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which gives 

10 5+& 

0 - 1 + 1  1 
4 2  4 2  

which gives 

and 

Chupter 10 
10.1. (i) Al = 20, A2 = 1. 
(ii) A, = -A2 = 5. 
(iii) A, = 37, X, = 6, X, = 1. 
(iv) Al = 35; A2,A3 = If:i. 
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