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PREFACE

This book is concerned with the latent rootst and latent vectors of matrices
whose elements are real. Its main purpose is to discuss some of the methods
available for finding latent roots and vectors. The methods presented include
not only those that are the most useful in practice, but some chosen because
of the interesting ideas they present and the help they give to a general
understanding of the latent root and vector problem. I have attempted
throughout to introduce the material in as uncomplicated a manner as
possible.

One of the reasons for the book is the importance of latent roots in a wide
field of applications, for example, nuclear and atomic physics, statistical
analysis, aeronautics, structural analysis, design of control systems, vibration
theory, and the convergence and stability of various numerical methods. I
hope this book may be of use to people working in such areas.

I have assumed a knowledge of elementary matrix and determinant theory.
The first chapter gives many of the theorems required in the later chapters.
Schur’s theorem, that every matrix is similar to a triangular matrix, is
given early on in the belief that this has often not been used to its full
potential. It is also of great practical importance since the triangular form
can be obtained by stable methods such as the Q-R algorithm, in contrast to
forms such as the Jordan canonical form which can only be obtained by
unstable methods. The second chapter presents just four of the many uses of
latent roots and vectors and these reflect only my own interest in the subject.
The remainder of the book is devoted to methods of finding latent roots and
vectors,

I have attempted to illustrate all the methods with simple examples that
can be easily followed and understood. In many cases, for the purpose of
illustration, the examples and exercises are so constructed that exact
arithmetic is possible. Obviously this is not the case in practical examples,
so it must be borne in mind that these particular examples may not reflect
the numerical problems that can arise. In practice a knowledge of the
condition of a problem with respect to its solution is desirable. By condition
I mean a measure of the sensitivity of a solution with respect to changes in
the original data. This measure is clearly important since we are unlikely to
have exact data and also we shall have to introduce rounding errors in
computing a solution. A method which leads to an ill-conditioned problem is
unstable, and of the methods discussed those of Danilevsky, Krylov and
Lanczos can be said to be unstable since they are either directly or indirectly
connected with the Frobenius form which can be extremely ill-conditioned
with respect to its latent roots. For a full discussion of this type of problem
and for a detailed error analysis of most of the methods the reader can but be
referred to J. H. Wilkinson’s The Algebraic Eigenvalue Problem.

t Often referred to as eigenvalues, characteristic values, characteristic roots and proper
values.
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NOTATION

Upper case letters have been used almost exclusively for matrices and
vectors, and lower case and Greek letters for scalars. A has been used only to
represent a latent root. The matrix A is generally the matrix of prime
interest, and, unless otherwise specified, is an »n x » matrix containing only
real elements.

IA| Determinant of the matrix A.

A-1 Inverse of the matrix A.

AT Transpose of the matrix A.

A* Matrix whose elements are the complex conjugate of A7,

|| Modulus of «. No confusion should arise with |A[.

I The unit matrix.







Chapter 1
LATENT ROOTS AND LATENT VECTORS

1.1 LateExT RooTs AND LATENT VECTORS
A latent root of a square matrix A is a number, A, that satisfies the equation,
AX = AX (1.1)

where X is a column vector and is known as a latent vector of A.
The values of A that satisfy equation (1.1) when X 5 0 are given by solving
the determinantal equation, called the characteristic equation of A,

|A—M|=0 (1.2)
since (1.1) may be written as
(A-A)X =0
and since, if | A —AI|#0, then (A — M)~ exists, it follows that
A-A)TA-NHX =IX=X=0

The solution of equation (1.2) as it stands involves the evaluation of an
n x n determinant and the extraction of n roots from the resulting polynomial
in A, If the latent vectors are also required, we shall have to solve the »
equations of (1.1) for each value of A. Since the determinant of (1.2) is not
wholly arithmetie, its evaluation will involve of the order of »! calculations.
The general solution of the problem in this form is clearly impracticable.

(s )

' = X—T+10=(A=5)(A—2) =0

Example 1.1

Hence

AN =]
4—2
So the latent roots of A are A, = 5 and Ay = 2. From AX = AX we get
3x+y = A

2+ 4y = Ay
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When A = 5,
3x+4y = bx
2%+ 4y = by
Hence
Yy =2
When A = 2,
x4y = 2%
244y = 2y
Hence
Yy=—x

The latent vectors of A are any vectors of the form
1 1
X, = k( ) and X, = Ic( )
2 -1

i
y=-x 4 y=2x

(5,10)
{-8.8}

(-4,4)
(1,2)

Fie. 1

Geometrically, we have found those vectors which remain unaltered in
direction when they are transformed by the matrix A. The latent root
measures the change in magnitude of the latent vector. See Fig. 1.

Various results and theorems that will be needed in later work are now
given.
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1.2 SIMILAR MATRICES

Similar matrices and similarity transformations will play an important
role in much of the work in this book.

Two matrices A and B are said to be similar if there exists a matrix €
such that ‘

B=C1AC

The transformation from A to B is called a similarity transformation. If
€ is a matrix such that

T = (-1

it is called an orthogonal matrix, and the similarity transformation is said
to be an orthogonal transformation. An important orthogonal matrix is given

by
cosfl —sinf
R )
sinf cosf

Y

Fi1e. 2

which has the effect of rotating the 2 and y axes through an angle —8 into
new axes X and Y for

(cosﬁ ——sinﬁ) x) X‘)
sinf  cosé <y _(Y/
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gives :
X =cosf.x—sinf.y

Y =sinf.x+cosb.y .
which can be shown by elementary algebra to give the required transforma-
tion.

Theorem 1.1
Similar matrices have the same characteristic equation.

Proof
B=C1AC
Hence
{B—M|=|CTAC-A|=|C1AC-\1IC|
=|CHA-A)C| =|C*||A-A|{C]
= [C1||C||A—-A|
=|A— M|
Theorem 1.2

If B=C1AC and X and Y are the respective latent vectors of A and B
corresponding to the latent root A, then,

CY=X
Proof
BY =AY
Hence
CBY = \CY
But
(B = AC
s0 that
ACY = ACY
which gives
Y=X
Theorem 1.3

Every matrix is similar to a triangular matrix, i.e. a matrix having zero
in each position either above or below its leading diagonal.
Before proving this important theorem we need some intermediate results.
We denote by C* the matrix whose elements are the complex conjugate
of C7. If C is such that
O = (-1
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it is called a unitary matriz. If the elements of C are all real, then, of course,
it is orthogonal.

Theorem 1.4
The elements on the leading diagonal of a triangular matrix are its latent
roots.

Proof
Let :
ay; 0 ... 0
a21 a22 e 0
A= .
anl L ann
Then

|A—X| = (@3;—A) (Ba2—A) .. (Bpyy—A) = 0

The case of an upper triangular matrix is equally simple.
We now restate theorem 1.3 more strongly and prove it by induction.

Theorem 1.5 (Schur’s theorem)
For every matrix A, there exists a unitary matrix C such that

B=C*AC
where B is triangular.

Proof

When A, = (a,,) the theorem is clearly true.

Suppose that the theorem is true when A, is an n x » matrix.

Let the latent roots of A, ., be A, A,, ..., A, ., and X be the latent vector
corresponding to A; normalized so that

X¢ X, =1
Further, let us choose a matrix €, having X, as its first column and with

its remaining columns such that €, is unitary. Then we find that, since C, is
unitary,

Ale € ... ¢

CFA,,C,=CA,,C =

<
il
=]
o
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where A, is an n xn matrix. The characteristic equation of B, is given by
|By— X} = (3~ X)|A,—AT| = 0

and hence the latent roots of A, are Ay, A, ..., A, ;. Our inductive hypothesis
asserts that we can find a unitary matrix €, such that

A2 d12 d13
0 A dy
C1A,C,=1 0 0 )
0 0 0
Let C,,, be the unitary matrix given by
1{0 0
0
Copa=
C.

We now find that

dln

(€€, 1A, 1(C €, ) = CL(62A,,€) Gy = CLBICL

M G Cy

0 Ay o
=F 0 0 X
0 0 0

Putting € = C, C,,, the theorem is proved.}

Cin+1
Com+1

C3ni1 =B

At

1.3 TarorEMs CoNcBRNING LaTtENT RooTs

Theorem 1.6

If A and X are a corresponding latent root and vector of A, then A and
X are a corresponding latent root and vector of A™, m being an integer.
(The case of negative m is valid, of course, only if A1 exists.)

Proof

We have
AX = )X

+ Working through exercise 2.13(i) may help to follow the proof.
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and, if A1 exists,
X = )A1X
Agsume that the theorem holds for m = r so that
AX=XX
which gives
Ar1X = X AX = 11X
Also, when A-! exists,
A1X = A1X = X1 X
Hence by induction the theorem is proved.

Theorem 1.7
A™ >0 as m—>o0 if and only if |A| <1 for all A.

Proof

First assume that A™—0 as m—>oc0.

From theorem 1.6 we have

AnX = X

so that, if A»—>0 as m—>o00, A*X 0. Hence XX -0, which means that
jAl< L.

Now suppose that |A| <1 for ail A

We saw in theorem 1.5 that we can put

A =CB,C
where B, is triangular. It is easy to show by induction that we have
Am = CBprC?

Now, By is triangular and has A7, A%, ..., A as the elements on its leading
diagonal, so that in the limit as m oo, we get

0 by by ... by,
0 0 bza ces bzn
B’ln "9B = O 0 0 e ban

0o 0 0o .. O

but it is clear that B" = 0 = LimB* = Lim B?. Hence we must have
m—» m-~>w0

B = 0 and B~ 0 as m—> 0.

Since

Am = CB7C

A" >0 asm->o0
which is the required result.
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Theorem 1.8 (Cayley—Hamilton theorem)

A matrix satisfies its own characteristic equation, i.e. if the characteristic
equation of A is

A= A —pp X2 — =, A=, =0
then
Av—p Ani_p A2 —p A-p,I=0
Proof
Consider the matrix B, which is the adjoint of the matrix (A — ). That is,

BA-Al) =|A-)|.I (1.3)
Each element of B is a co-factor of the determinant |A — M|, and hence

is a polynomial in A of degree not greater than n — 1. This means that we can
find matrices B, B,, ..., B, independent of A such that

B = BIATA“1+B2A7D“2+ cen +Bn_1A+Bn
Hence (1.3) becomes

(ByA 14+ B A2+ +B, A+B)A-A) = A"—p,X» 1~ . —p, 1 A-D,).1
and equating coefficients of A we get
B,A =— p,I

Bn«—l A —Bn = "pn-ll

BA -B,=- p1

Post-multiplying the first of these by I, the second by A, the third by
A2, ..., the nth by A*, the (r»+ 1)th by A” and adding we get

0 = ‘pnl‘?n_lA-—...-—-plAn~1+An
or
A”—plA%~1~p2An—2_ i =Dy A=p,I=0
as required.
Theorem 1.9

The latent roots of the transpose of A are the same as those of A.

Proof
The latent roots of A are given by

|A—X|=0
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Since | A—Al| is formed by subtracting only from the leading diagonal of
A we have

JAT M| =|A-M|T=]|A-A|=0
and the theorem is proved.

Theorem 1.10 (Gerschgorin’s theorem)
The modulus of any latent root of a matrix does not exceed the largest

sum of the moduli of the elements of any one row or column.
Proof

Let the components of the latent vector X of A be #,,%,,...,%,.
Then, since

AX = XX

we have
@qy By + Qyp Tyt oo+ 0y T, = ATy

a/21 x1+a22 x2+..- +a/2n xn = Axg

Gy By +OpoTat oo + 0y &, = A2,
Let |x,|>|x;| for all ¢, then selecting the rth equation above we get
A= a,l.%+a,2.%+... +am.%
so that
A< an]+apl+ ...+ o]
because |z;/x,| <1 for all <.
The column case follows from theorem 1.9.

Theorem 1.11
The sum of the latent roots of A is equal to its trace.

Proof
The latent roots of A are given by
[A-M|=0
or
Gy —A Gy Bin
gy Oap—A ... Bon

Gpa P
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which gives, say,
ANt — Py A — =Py g AP, = 0
and if the theorem is true we must have
Pr=—(ay +op+... +0,,)
We see that, if A, = [a,,], the theorem is true. Assume that the theorem is
true for an (n—1) x (n — 1) matrix.

Then, if we expand the above determinant by its last row, (a,, —2) is the
only element to contribute to the coefficient of A»~1, so that if our inductive
hypothesis holds, this element times its co-factor yields

(@ =N A= @y +Aga+ oo H 8y ) A2 — L~}
which gives as the coefficient of A1
Pr=— (A + g+ ... +0y,)
(The above gives —p, but also —A", and since we equate the characteristic

equation to zero we are justified in changing the sign.) So by induction the
theorem is proved.

Theorem 1.12
The product of the latent roots of A is equal to |A|.

Proof
From theorem 1.5 we can express A as
A = CBC
where B is triangular. Hence
[A[=|C[|B][C=[C[{C]|B|=|B|=2AA...2,
ag required.

Theorem 1.13
If A is a latent root of A, and f(A) is a polynomial in A, then f(d) is a
latent root of f(A).

Proof
Let f(A) =a,A"+a, ;A" +... +a; A+l
Then
fAX =a,A"X+a, A" 11X+ ... +a;AX +qX
so that if X is a latent vector of A, from theorem 1.3 we get
fAX =a, A" X+a, A 1X+.. . +0, XX+, X
= (G A"+ @, A" 1+ e A+ a) X
=X
as required.
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Theorem 1.14
D, | D, .
HA={— , D; and D, being square,
0 | Dy
then,
|A—A|=|D;—Al| | Dy— AL
Proof

Clearly it suffices to show that |A| = |D,||Dy|. Firstly we see that if D,
contains just one element, say a, then expanding |A| by the first column
we get

|A|=a|Dy| =|Dy||Dy]

Assume that the theorem is true when D, is an (n—1)x (n—1) matrix.

Now let

Ay Qg - Gy €3 Cra v Cip
Qg Ogg v Oy €y Caz oo Cap
1A= Bpy  Oug - Ban Cpx Cnz - Cnm | _ D, | D,
0 0 0 by by bim 0 | D,
0 0 0 by by bom
0 0 ... 0 by b, byum
Expanding | A| by the first column we get
i i
[A] =“n’ M i % l"%ll Mo § X I+...+(-—-1)"""1(JL,,1 m | X
| o {Dy| | 0 ID,| D,

where M,; is the minor of a;; with respect to D;. But M;;is an (n—1) x (n—1)
group of elements, hence by our inductive assumption
[A] = a3, My | D3| —ag My, [Dg|+ ... + (= 1)" 1 ayy My, [ Dy
= [ay My =0 My +... + (= 1) ay; M ] | Dg| = | Dy | [ Dy
and so by induction the theorem is proved.

14 TEEOREMS CONCERNING LATENT VECTORS
Theorem 1.15

If A has r distinct latent roots, then it has at least r linearly independent
latent vectors.
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Proof
From theorem 1.5 we can put A = CBC-1, where B is triangular. From the
construction of that theorem it is clear that the latent roots of A can be made
to appear in any order on the leading diagonal of B. Suppose that the r
distinct latent roots Ay, A,, ..., A, appear in the first r positions. Then, if Y is a
latent vector of B having elements ¥y, ¥,, ..., ¥,, from BY = XY we get
MY +bya¥at+bisYs+ .. +by Y, = MYy
AgYa+bog¥s+ ... + Do Yn = MYy

AgYs+ .. +bgp 4, = Ay

An Yo = "yn

Suppose that A = A, where p<r, and we pub ¥, =¥y, =...=y, = 0.
We then get the equations

A =2Ap) Y1+ b1y +b13ys+ ...+, =0
Ay=2p) Yo +bogys+ ... + by, = 0
Qz=Ag)ys+ ... +bgy, = 0

A=Ay, =0

Since the last equation is 0 = 0, we are left with p—1 equations in p
unknowns. If we fix y,#0, we then have p—1 equations in p— 1 unknowns
and since none of the values Ay, 2, ...,A,_; are equal to A,, the rank of the
equations is p — 1 so that we can solve uniquely for y,,95,...,y,_;. We have
now clearly found a particular solution to the original set of equations, so
that the r latent vectors of B corresponding to Ay, A,, ..., A, are respectively

Y1 291 %31 %n
0 Ys 239 2y
0 0

?{3 21:3
0 s 0 5 0 s sesy zr,r-—l
0 0 0 Y,
0

HAHERN
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where y; #0,4,#0,...,4,#0. There r vectors are obviously linearly indepen-
dent. Let H = [Y,Y,... Y,] so that the rank of H is . Then,

CH = [CY,CY,...0Y,]=[X,X,..X]=6G

where X;, X,, ..., X, are the latent vectors of A corresponding to A;,A,, ..., A,.
Since €1 exists, the rank of & is 7 and the theorem is now proved.

Theorem 1.16

If the latent roots of A are all distinct, then the » latent vectors are all
linearly independent.

Proof
This follows immediately from theorem 1.15.

Theorem 1.17

If A has » linearly independent latent vectors then it is similar to a
diagonal matrix.

Proof
Consider a matrix ¢ whose columns are the latent vectors of A. Then

AC = A(X1X2.--X,n) = (A1X1A2X2..-Anxn)

A, 0 ... 0
0 2 .. O
= (X X,...X,) . .2 .
0 0 ... X,

= CB

where B is diagonal. Since all the latent vectors X,,X,,...,X,, are linearly
independent, €1 must exist. Hence

B=C1AC
and the theorem is proved.
Theorem 1.18
If A; and ), are distinct latent roots of A with
AX =\, X and ATY=A)Y
then X7Y = 0, i.e. X and Y are bi-orthogonal.
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Proof
From AX = X; X we get
MYTX =YTAX = (ATY)TX = (4, )X = , YTX
Since A;#A; it must be that Y7 X = 0, and hence X7Y = 0.
Theorem 1.19
If X is a latent vector of A corresponding to the latent root a + bi, then ¥

is the latent vector corresponding to the latent root a — b, where the elements
of Y are the complex conjugates of those of X.

Proof
Let us write X = X, +¢X, and Y = X, —1X,. We have
AX; +1X,) = (a+bi) (X; +1X,)
80 that
AX, +1AX, = aX, —bX, +iaX, +ibX,
Equating real and imaginary parts this gives
and
Multiplying (1.5) by (—4) and adding to (1.4) we get
AX, —iAX, = oX, - bX,—iaX, —ibX,
so that
AX, —-iX,) = aX, —iaX,—ibX, — bX,
= (a—bi) (X, ~iX,)
or
AY = (a-b)Y
as required.
1.5 THEOREMS CONCERNING SYMMETRIC MATRICES
Theorem 1.20

The latent roots and vectors of a real symmetric matrix are all real.

Proof
From theorem 1.5 we can put
B=C1tAC
where B is triangular and € is unitary, that is C* = C-1. Hence
B* = (C1AC)* = (C*AC)* = C*A*C =C1AC=B
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But we can only have B* = B if B has real diagonal elements and since the

diagonal elements of B are the latent roots of A, these roots must be real.
It follows that the latent vectors of A must also be real.

Theorem 1.21
Every symmetric matrix is similar to a diagonal matrix.

Proof

From the above theorem we had B* = B. Since B is triangular it must
also be diagonal.

Theorem 1.22

A symmetric matrix has n linearly independent and orthogonal latent
vectors.

Proof
From theorem 1.21 we can put
A 0 L0
0 A ... O
ClAC=B=}| . . .
0 0 ... A,

If the columns of € are X, X,, ..., X, this gives
AC = AX,X,...X,) = (AX, AX,... AX))

and it follows that X,,X,, ..., X, are all latent vectors of A. Since €1 exists
they must all be linearly independent.

Furthermore, since from theorem 1.20 the latent roots and hence the
latent vectors of A are real we have

C1=(C* =T
so that
X X,...X )T (X;X,...X,) =1
which means that
X7X; =0 whenever i#j
This completes the proof of the theorem.
Further results and theorems will be given as and when they are required.

In the next section just a few of the applications of latent roots and
vectors are briefly discussed.
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1.6 ExeRrOISES
Section 1.1

1.1. Find the latent roots and vectors of the following matrices

7 5 a —b
~4 -2 b a

-1 -1 5 3 5 ~2
(i) 3 1 -1 (iv) -3 1 3
-2 -1 6 2 5 -1

1.2. Show that all vectors are latent vectors of the unit matrix.

Section 1.2

1.3. Show that the matrix R of §1.2 has the effect of rotating the z,y-axes
through an angle — 6. (Alternatively we ean think of R as rotating a point throngh
an angle 8.)

1.4. Use the matrix of rotation R to show that

8in (a+ 0) = sin « cos 6+ cos asin §

cosnf —sinnf
R? =
sinnfd cosnb )

Show that

Show also that R is isomorphic to the complex number cos 6+ sin §. Hence prove
De Moivre’s theorem.

1.5. Show that the matrix
( cosh  sinh 6 )

- sinh 8 cosh @

has the effect of rotating a point (z,y) on the hyperbola 2?—y? = #2 through a
‘hyperbolic angle’ 6. Hence prove that

sinh (¢ + ) = sinh « cosh 6+ cosh asinh §

1.6. If Xs£0 is a latent root of AB, show that it is also a latent root of BA.
What is the connection between their corresponding latent vectors ? Deduce that
if AB = BA then A and B have a common latent vector.

1.7. Show that a matrix A#I cannot be similar to I. Hence give an example of
two matrices with the same characteristic equation that are not similar.

1.8. Show that a unitary matrix € can be found with a given first column X
such that X*X =1.

1.9. If A-? and B! both exist show that (AB)1 =B-1A-1,
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Section 1.3

1.10. If A is unitary show that [A| =1 for all A.

1.11. By finding the latent roots of the matrix R of question 1.4 give an alterna-
tive proof for De Moivre’s theorem when » is an integer.

1.12. Prove that A™ remains finite as m—co if, and only if, | A|<1 for all A.

1.13. The minimal polynomial of a matrix A is defined to be the polynomial
R(A) of least degree such that A(A) = 0. Show that k() is a factor of the character-
istic equation of A. Show also that any latent root of A is a root of A(A).

1.14. Prove that every latent root of A lies on or inside at least one of the circles.

n
[A—ay] ='21| | = Loyl
3 =
This is known as Brawer’s theorem.

Section 1.4

1.15. Prove that if A is similar to a diagonal matrix then it has » linearly inde-
pendent latent vectors.
Section 1.5

1.16. Show that (AB)* = B*A*,

1.17. A matrix such that A = A* is called Hermitian. Prove that the latent
roots of a Hermitian matrix are all real. Also prove that a Hermitian matrix is
similar to a diagonal matrix.

Miscellaneous
1.18. Find the latent roots of the magic squares

s 1 6 16 2 3 13
5 11 10 8
G A=| 3 5 7 ); @) A=
9 7 6 12
492 4 14 15 1

(A is magic if the elements in each row, column and the two main diagonals add
up to the same number, this number being called the magic number.)
Show that one latent root of a magic square is the magic number.

1.19. Show that the characteristic equation of the n x n matrix,

6100 .. 000
1010 .. 00060

0101 ..000

S OO

[~ e )

[T R -

O O O
o

ot o

O e O
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is given by
A — =10 A2 m20, (A 30 A6 4 (—1)"2 =0, neven
f(A) ={ \n4 n——lCl A2 n-—202 an—4. n—-sca An~6.p
A (=12 (1 1)/2]A =0, 7 odd

1.20. If
a a
0 a a
A= ] a
a a & .. 0

show that the characteristic equation of A is
(-1 e+ A2 (na—a—A)=0

where n is the order of the matrix A. Find the latent vectors of A.
1.21. If

al

P oaay, oay ... @,
yy G A0y ... Gya,
s 2
A={ a0, aza, af .. aga,
2
a 0, 0,0 G,03 ... a

show that the only latent roots of A are

n
A=0 and A= Y a?

i=1
1.22. If
0 0 0 ... O a,
0 0 0 0 ay
A= SR : :
0 0 0 .. 0 a,,
by by, by ... b, a,b,

show that the characteristic equation of A is

n~1
(—z\)‘”’z()\z-—anbﬂ)\— py aibi) =0
i=1
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1.23. If A is the circulant given by

a;  ay Qg a,
Gy QG Qg ]
A= a, ; G, 0 Gpo
Gy Ay @ ...
show that
|A—AL| = f(eg) fles) fleg) .- flen—y)
where
f(®) =0y +a,z+az2%+... +a, z" 11—
and

€, = et2rk/n)

That is, ey, ey, ..., €,_, are the n roots of %1.
1.24. A symmetric matrix A is said to be positive definite if X7 AX>0 for

every non-zero real vector X. Show that A is positive definite if all its latent
roots are positive.

1.25. A matrix is said to be normal if AA* = A*A. Prove that

(i) The latent vectors corresponding to distinet latent roots of a normal matrix
are orthogonal.

(ii) If A is normal then A and A* have the same latent vectors.

1.26. If A" = 0 for some positive integer r then A is said to be ni]potent.l]?rove
that the latent roots of a nilpotent matrix are all zero.

1.27. If A? = A then A is said to be idempotent. Show that the latent roots of
an idempotent matrix are all zero or unity.

1.28. Show that AB and BA have the same characteristic equation. (Question
1.6 had the restriction that A#0.)




Chapter 2

APPLICATIONS OF LATENT ROOTS
AND LATENT VECTORS

The first application given is useful in that it helps give a geometric
understanding to the latent root and vector problem.

2.1 AXES oF SYMMETRY OF A CONIC SECTION
The general two-dimensional conic whose centre is at the origin is given by
f@,y) = ax®+ 2hay +by? = 1

We can write this in matrix form as

a h x ) 51
e (1) (F)- o

XTAX =1 * (2.2)
The slope of the normal at a point P(z;,%,) on the curve is given by

_of |of _ 2hz +2by,  ha,+by,
n " oyl ox  2ax,+2hy,  ax,+hy,

or

The normal will be an axis of symmetry of the conie if its slope is equal to
the slope of the line OP, O being the origin. If this is the case,

hzy+by, _ 9
arythy, x4

This will be true if there exists A such that

axy + by, = Ary
and
hxy+ by, = Ay
that is, if
(4] G)-)
b b Y1 Y1
or

AX = XX
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Clearly any vector, X, satisfying this equation will be an axis of symmetry

of the conic. From theorem 1.22 we know that there will be two such vectors
X, and X,, and that XX, = 0.
Furthermore, if X is a latent vector of A, from equation (2.2) we get

XTAX =XTXX =AXTX =1
but
XX = (22 +y%) = (%)
where 7 is the distance of P from the origin. Hence,
r2=1/A

This also helps us to rotate the conic so that its axes lie along the x, y-axes.
We wish to rotate the axes of symmetry, say «’ and y', through an angle —@
so that they lie along the z,y-axes. To achieve this we put (see §1.2),

z cosf —sinf '
ARl R R
Y sind cosf y'

cosf siné

which also gives

(z y)=" y) ( )=YTR-1 (2.4)

—sind cosd
Now notice that the point P is given by
%, =rcosf and y, =rsind

and if Q is the point (z,, ¢,) lying on the intersection of the curve and the
other latent vector, then clearly

Xy = —r'sinf and y,=r"cosd

and hence the columns of R are latent vectors of A. So substituting (2.3)
and (2.4) into (2.1) we get

X7TAX = YT'R1ARY = YTBY

where, from theorems 1.22 and 1.23, B is diagonal with the latent roots of
A as its leading diagonal.
Hence the equation of the conic becomes

A O x'
(¢ 9") ( ) ( )=(1)
0 A y'

AP+ Ay2=1

or
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We can see that a knowledge of the latent roots and vectors of A is
extremely useful for investigating the conic section. These results are
eagily extended to higher dimensions and to conics whose centres are not
at the origin.

Example 2.1
Take as an example the ellipse given by

Sx?—4xy+56y? =1 (See Fig. 3.)

Fia. 3

In matrix form the equation of the ellipse is

8 -2 x .
o (5 7))

XTAX =1

or
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The characteristic equation of A is

8—A -2
=0

—2 5-—-A
which gives
A2—1324+36=0
or
A-=9)(A—4)=0
so that
A=9 and X =4

Using AX = AX we have

8x—2y = Az
and
— 245y = Ay
When A =9,
—_— = 2y
— 2z =4y
so that
y=—3%
When A = 4,
dr = 2y
- 2% = -y
50 that
Y= 2x

The major axis of the ellipse is the line y = 2z, and its length is r = 1/, = §.
The minor axis of the ellipse is the line y = —3}x, and its length is
v = 1/JA; = L. If we rotate the ellipse so that its axes lie along the # and y
axes we get the equation

4o+ 9y? =

2.2 JACOBI AND GAUSS~SEIDEL METHODS

Two important iterative methods of solving a set of simultaneous linear
equations are the Jacobi and the Gauss—Seidel methods. Latent roots play
an important role here in determining the convergence of these methods.
We shall first outline the two methods. We wish to solve the equations
gy %1+ Oyp Tyt oo+ 0y Ty = by

Qg X1+ By Ty + ... + gy Ty, = by

Oy Xy + o To+ oo+ 8y &y, = by,
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or as a matrix equation

AX =3B (2.5)
Assuming a,, # 0, we rewrite the equations as
2y = 1/ ( —Oga Ty — .. — Qi Ty) +by [0y,
Ty = 1/agy (— a9 2y — e = Oy ) + ba g,
Ty = l/ann(_an1x1~an2x2"‘"' )+bn/ann

In the Jacobi method we take an initial approximation to the solution of
the equations and substitute this into the right-hand side of the above
equations to produce an improved solution. We then substitute this improved
solution in the right-hand side of the equations, and so on.

If we denote x;, as the rth approximation to x; we can represent this
process as

Typpr = /g ( = O Ty — o = Oy Tpyy) +byf0yy
Topi1 = 10y (— 0oy %4, = e = Uy Tpy) +DofA0n
L1 = 1/a’nn( Oy Xpp— Qypa Xgp— - ) + bn/ann
or in matrix form as
X, =PX,+Q (2.6)
where
0 lla;;, 0 ... 0 Gy Qg ... Gy,
P- 01 0 Yag ... 0 gy Qag ... Ogy
0 06 .. 1 0 0 ... 1la,, Dy Gpo  ve Oy
=I-D1A (2.7)
and
g=D'B

The Gauss—Seidel method varies from Jacobi in that as soon as an approxi-
mation to z; is found, it is used in all the remaining equations. We represent
this as '

Lrppr = 1y ( —Qpp Typ = er = Oy Typ) + by [0y

Tgpir = gy (— gy Zyppq = e = Qg Tpy) + oGy

Tpryr = 1/ a’nn( =1 i1~ CpaPopey— .- ) + bn/ Dnn
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or in matrix form as
D(L+D)X,,; = —D1UX,+Q

where L is a lower triangular matrix with zeros in each position of its leading
diagonal (hence {D-}(L+D)}! exists) and U an upper triangular matrix
with zeros in each position of its leading diagonal, and

D+L+U=A (2.8)
Since {D~Y(L + D)} exists, we have
X, =—L+D)UX,+(L+D)B (2.9)

which is of the same form as equation (2.6). For this reason we need only
investigate an equation of the form

X, =MX.+Y
which gives

X, =MX,+Y

X, =MX,+Y=MMX,+Y)+Y =M2X,+MY+Y

X;=MX,+Y=MMX,+MY+Y)+Y=MX,+M?Y+ MY +Y
and it is a simple matter to show by induction that

X, =MX,+MY+M-2Y+.. .+ MY+Y
Premultiplying by M gives
MX, =X, +MY+M-1Y+ ...+ M Y+MY

and subtracting the first of these from the second we get

MX -X, =MX, -MX +M'Y-Y
so that
M-DX,=MM-DX,+M-1)Y

Providing that M does not have a latent root equal to unity (M —1I)~* exists.
So making this assumption

X, = (M—I)'MM-I) X, +(M-I)-1 (M —T) ¥

As r— oo we obviously require X, to converge to a finite limit independent of
our initial value X,. This will be true if M"— 0 as r—>co. If this is true

LimX, =X=M-I)(-)Y

>0
which gives

M-DNX=-1IY
or
X=MX+Y

which clearly satisfies our initial equations.
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From theorem 1.7, Lim M" = 0 if and only if |a|< 1 for all «, where «'is

>0
a latent root of M. (If this is the case the above assumption that there is no
o =1 is justified.) Let us try to translate this result back to the original
problems.
We take first the Jacobi method. From equation (2.7) we see that

M=I-D1A

so that if the method is to converge we require |1—A|<1 for all A, where A
is a latent root of D1 A,

From the form of I - D-! A and using Gerschgorin’s theorem (theorem 1.10)
we get as a sufficient condition for convergence of the Jacobi method that
n
> lagl<2lay| foralld (2.10)

j=1
Taking the Gauss-Seidel method we have from equation (2.9) that
—(L+D)'U=—-(L+D)'(A-L-D) = (L+D)1(L+D-A)
=I-(L+D)1A

which gives that the necessary condition for the process to converge is given
by |1—B|<1 for all 8, where 8 is a latent root of (L+D)1A.

It can be shown that a sufficient condition for the Gauss-Seidel method
to converge is the same as the condition given above for the Jacobi method.t

Since (2.10) gives a sufficient condition for the convergence of both the
Jacobi and the Gauss—Seidel methods, we can see why it is generally recom-
mended that we arrange our set of equations in order that they have a strong
leading diagonal.f

Although the given sufficient conditions are the same for both methods,
it is clear that the necessary conditions are not the same. See exercise 2.7
for examples of each of the cases where one method converges and the other
diverges. Varga has discussed the rate of convergence of the two methods.§

2.3 STABILITY OF THE NUMERICAL SOLUTION OF PARTIAL
DirrERENTIAL EQUATIONS

In stability we are concerned with the propagation of errors in the numerical

solution of a problem. If the errors decay as we proceed the method is said

to be stable, otherwise it is wnstable. Instability is usually caused by the

growth of rounding errors or by the presence of an unwanted (parasitic)
+ See reference 1, p. 73.

t See reference 2, p. 73.
§ See reference 1.
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solution. An investigation of the stability of a method can often involve the
finding of the latent roots of a matrix. We take as an example the solution of
the parabolic partial differential equation given by

o _

== (2.11)

We wish to find values of u(x,) for given values of « and ¢ (Fig. 4).

t

- Ujjer

Ui-1,5 Ui WUity,i
Fia. 4

Suppose that we know the value of u(i,5) = u;;. Then by Taylor’s series
we have

ou 1 P

w(x +h,t) =ui+1’f=u’:j+h'5§+2—!'8x2 (2.12)
ou h* Pu

u(x-—h,t)=ui_1,,-=uﬁ——h.55+é—!.%—2—... (2.13)
ou k? o%u

u(x,t+k)=ui’j+1=uij+k.?t—+§—i.-a-£2—+... (2.14:)

Adding equations (2.12) and (2.13) and ignoring terms in A* and higher we
get

2 Pu
Uyprg+ Ui—q ;=20 + D )

so that

Pu_ Uiy — 2%+ Ui g
ox? h?

(2.15)
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From equation (2.14) if we ignore terms in %2 and higher we get

ou
Yigra =ty + Ko
so that
O Uy jyq — Uy
e - (2.186)
From equation (2.11) we can equate equations (2.15) and (2.16) to give
a finite-difference approximation to the problem. I intend to look instead
at the more interesting case of the Crank-Nicolson method. They replaced
equation (2.15) by

Pu_ 1 (U q;— 2y + Uiy S 20 441+ Yir1441
or* 2 h? 72

which is the mean of (2.15) as it stands and (2.15) with j+1 instead of j.
So equating this to equation (2.16) and putting r = k/h? we get

Uigpr— Ugy = 1255 = 25 Uy 5+ Uy 501 — 2y 500+ Wiga441)
which gives
= Ui g1 (2 20) U — Py iy = Py + (2= 20) Uy + 10405 (2.17)
If we know the initial and boundary values for j=0and i =1,2,...,%,
then from equation (2.17) we can obtain » simultaneous linear equations for
the » values when j = 1. Having found the values for j =1 we can then
repeat the process to find the » values when j = 2, and so on.t{ The equations

arising from equation (2.17) for ¢ = 1,2, ...,n can be written in matrix form,
assuming %y ; = gy = Upyyj = Upiyje = 0:

(2+2r) —r o ... O 0 0 Uy i1
—-r  2+2r) —-r .. O 0 0 Ug jt1
0 0 0 .. —r (2+2r) -7 U151
0 0 0 .. 0 -r  (2+2r) Uy i1
(2—2r) 7 0 ... 0 0 0 Uyj
r 2-2r)y r ... O 0 0 Ug;
0 0 0 ... r (2-2r) r Up1j
0 0 0o ... 0 r (2—2r) Upg

+ See reference 4, p. 18, for a worked example.
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or

which gives

If our starting vector is U, we have
U, = AU,

U, = AU, =AU,

U, =AU,_,=A"T,
Suppose that instead of starting with the exact vector U, we start with a

vector V,, because our initial data have been rounded or have experimental
errors, then instead of finding U,, we get V,,, where

V.= A"V,
If we define E; as the error vector due to rounding errors by
E,=0,-V,
we get
E,=U,-V,=A"U,-A"V; = A"(U,-V,) = A"E,

If the method is to be stable we wish the rounding error to decay as we
proceed, that is,

E,»0 as m—ow0

From theorem 1.7 this will be true if |A| < 1 for all A where A is a latent root
of A. Equation (2.18) gives

A=4B1-1
so that using theorem 1.13 we get
4
A=5-1
B
where 8 is a latent root of B. Hence, we require
4
=1 |<1 (2.19
i )
Now B is a common tridiagonal matrix so that its latent roots are given by T
mar
B = (2+2r)+2\/(1~2)cosn+ ;P m= 1,2,...n

1 See Appendix 1.




30 Latent Roots and Latent Vectors
Since |cos 6] <1 we clearly have
2<B<2+4r

2 < B guarantees the satisfaction of condition (2.19). We reach the interesting
conclusion that the Crank-Nicolson method is stable for any choice of > 0.

It is hoped that this example has demonstrated the importance of latent
roots in this field.

2.4 SIMULTANEOUS DIFFrERENTIAL EQUATIONS

Latent roots and vectors play an extremely important part in the solution

of simultaneous differential equations. Only an elementary introduction to

the case of first-order linear equations with constant coefficients is given here.
The single first-order equation

dx
zﬁ' = Qr
has the general solution
x = ke
where k is a constant. Suppose that we have the equations
dx
%—2- = ¢y + dir,
These can be written as
()=o) ()
dt x, e 4 Z,
or
aX
— == 2.20
i A% (2.20)
Suppose that the solution is of the form
xy = kyeM k
v or X=e“( 1):eMX1
Ty = kpeM 2
Hence p
X oMY =
T AeM X, = AX




Applications of Latent Roots and Latent Vectors 31

which is now in the form of a latent root problem, We know that in general
a two by two matrix has two latent roots and two linearly independent
latent vectors, so that in this case the general solution is

X =X, +eMX,

where A, and A, are the latent roots of A, and X, and X, are the corresponding
latent vectors.

Example 2.2
‘% = da, 2,
%;— = bz, — 3z,
4—-2 -2
[A=M| = =R A—-2=A-2)(A+1)=0
5 —3-A
hence
;=2 and A =-1
When A = 2,
42, — 2%y = 2w,
bxy — 3z, = 21,
hence
Zy =Ty
When A = -1,
4y — 20y = — 2y
bxy— 3%y = — Ty
hence
bxy = 2z,
so that

and the general solution is

4y 1 2
co(2)-se o
Zy 1 5

If the matrix A has equal roots then it may not have » linearly independent
latent vectors and the solution is not quite so straightforward. We can




32 Latent Roots and Latent Vectors

approach the problem by using theorem 1.5. We wish to solve the equation
X
di

Let € be a unitary matrix such that B = €1 AC where B is triangular. Then

put

= AX

Y=0(C'X or X=CY
so that the equation becomes

Cady
which gives
dy
— = 1 =S
pr C1ACY = BY

Since B is triangular this equation may easily be solved for Y. An alternative
approach is to use the Jordan cononical form which is not dealt with in this
book.}

Ezxample 2.3
% = 14x, — Gy
dx
—?‘Ez- = 16z, — 10z,
14-2A -9
|A—A| = =4 +4=(A-2)2=0
16 -10—A
When A = 2,
14z, — 92, = 20
162, — 10z, = 2z,
Hence

4%’1 = 3552

and A has only one linearly independent latent vector. Using theorem 1.5
we get

X1=(§) (Xf'X1=1)

5

(1)
I

t See reference 7, Chapter 1, §§ 8, 28 and 29 or reference 19, Chapter 5.

so that
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hence . .
s & 14 -9 -4
meeses( ) (e sl (63

-3 2 16 -10 5 ¢

2 -25
) ( 0 2 )
Putting X = CY the original equations become
d| Y% 2 -25 Y
Zﬁ(%):(o 2 )(?/2)
The solution to the second of these is
Yo = kyo®
and hence the first equation becomes
% = 2y, — 25y, = 2y, — 25k, e%

or
W1 _ oy, = — 25k, o

di

which has the solution
Yy = ky €% — 25k, te

Hence
_ ( Tey — 25k, )ez:
ky
and since X = €Y,
( 3 -4 ) ( by — 25k, t ) ( $(3k, — 4k,) — 16k, )
X — _ o2
¢ 3 k, L(4k, + 3ky) — 20k,

Clearly these methods are easily extended to deal with more than two

equations. Equations of the form

X
@ =A%
may also be easily solved in the same way. Equations of the form
drX d1X dX
W«+B1»&—t-r:—i-+... +B’”171ft_ = AX
need slightly more sophisticated methods.t Note that the equation,
dX

t See reference 7, Chapter 1, § 30.
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can be transformed into standard form by putting
A=B1C

providing that B~ exists. If B is singular the equations may be reduced to
a smaller set.

2.5 EXERCISES
Section 2.1

2.1. Find the axes of symmetry of the hyperbola
31a?+48xy+ 1742 = 1

Find also the distances from the origin to the intersections of these axes and the
hyperbola.

2.2. Find the axes of symmetry of the ellipsoid
822 4 2092 + 2922 4 28y + 282+ 56yz = 1

Find also the distances from the origin to the intersections of these axes and the
ellipsoid.

2.3. Show that if the axes of the general conic
ax? + 2hay +by? 4+ 2fx + 29y +¢ = 0
are rotated to lie parallel with the x,y-axes, the equation takes the form
M+ +prtgy+e=0

where A, and A, are the latent roots of the matrix

(r )

Give conditions for A; and A, that determine whether the conic is an ellipse or a
cirele or a hyperbola or a parabola.

2.4. Determine the nature of the following conic sections
(i) 2?+day—2y2+62x—8y =1
() 4224+122y+92—2+2y =1

2.5. Extend the results of exercise 2.3 to three-dimensional conics.

Section 2.2

2.6. Solve the following equations by both the Jacobi and the Gauss-Seidel
methods taking x, = , = 23 = x, = 0 as the initial approximation.

22, + 33+ 3x,= 30
-2y~  xy+ Olag+ O-lzy =—T7-0
402, + 20z, — 20025+ 2z, = 39-0
202, + 102, — a4+ 100z, = 19-5
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2.7. Determine whether or not the Jacobi and Gauss-Seidel methods will
converge for the following matrices of coefficients

1 1 1 1 0 1
@ A= 2 1 1 () A=¢ 82 1 1
—399 199 100 80 1 10
and use the appropriate method to solve the equations,
(iii) 2+ y+ z= 3 (iv) x + z= 2
22+ y+ z= 4 8x+y+ z2=84
— 3992+ 199y + 100z = — 100 80x+y+10z = 91

2.8. If XTAX >0 for every non-zero real vector X then A is said to be positive
definite.

Prove that if A is a symmetric positive definite matrix then the Gauss-Seidel
method converges.

(This type of matrix often occurs in practical examples. One such case is the
normal matrix of coefficients obtained in the method of least squares regression.)
Section. 2.3

2.9. Use the Crank-Nicolson method to obtain a numerical solution when
z=0,01,0-2,0-3,04,0-5 and ¢ = 0-01 and 0-02 to the equation

2
%’—: = %?; (0<z<l)
with the initial condition
% =cosm(z+3) whent=0
and the boundary conditions
u=0 whenz=0o0rl and¢{>0
Compare the numerical solution at these points with the analytical solution
u = e~ "teosw(z+ 1)

(There is clearly no advantage in obtaining a numerical solution in this particular
example, but many partial differential equations have no known analytic solution
and many others have extremely cumbersome analytic solutions.¥)

2.10. Show that the finite difference approximation to

ou  Pu
ot ox?
given by equations (2.15) and (2.16) is stable when
k2 =r<}

4 See for example reference 4, p. 3.
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Section 2.4
2.12. Solve the equations

(vii)

(i)

(iii)

Latent Roots and Latent Vectors

2.11. Show that both the Jacobi and Gauss—Seidel methods will converge when
applied to the equations obtained by the Crank—Nicolson method for all values of r.

x

-a—tl = 4y + 2,
dx
--—dt2 = 2y + 4,

.., de

(i) Ttl = 3y -+,
dzx
»d‘tg = — b1y — 2,
dx
—t-zl‘tl = 5y — Ly
dx
“gt—z == 7%‘1‘—3%2

0
2

—1

given that », =5

and @, = 17 when ¢ = 0.

-2 -1
-1 -2
2 2

da, [dt
day/dt
dacg/dt

.. dx
(iv) nd—tl = z;— 2,

(vi)

3

dx,
dt

dx,
dt

dzy
dt

= 8, — T,

= ¥y

given that z, = 2, = sin#/4

when £ = 0.
3dx, du,
—-—*dt E‘ == 5x1+x2
4dx, 2dw,
nate 8 Wpuiuind.
@ T a@ 21142,
1 -1 Zy
1 -3 Zy

2.13. (i) Show that the characteristic equation of

A=

—10
—50
48

3
17
-19

3
10
-3
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is
AB—4N24+51—2 =0
1

and that X; =k| 2 | is a latent vector.

2
Show that
1 2 2
=% 2 -2 1
2.1 =2

is an orthogonal matrix. (X, is the first column and the remaining two columns
are orthogonal to X, and to each other.) Show also that

2 -1 -7
A =C1AC = 0 37 27
0 —48 —35

Put

[ 31 21
A=
—48 —35

What are the latent roots of Ay? Find the latent vector of A,. Hence find an
orthogonal matrix, C,, such that

2 5 -5
B=CAC=| 0 1 75
00 1

(See theorem 1.5 and compare the proof with the finding of B here.) Notice that
B = C;1 (7 AC, C, = (C,C,)1A(C, C,).

(ii) Solve the equations dX/dt = AX for the matrix A of (i).

(iii) Solve the equations

(a) dac,fdt -1 1 -4 2,
duyfdt | = 1 3 1 2,

day/dt \ 2 -2 5 2

(b) dary i 5 -1 -1 2
dogit | = -4 -7 10 2

\ du,/dt 2 -5 5 ) \ 2

2.14. There are n particles, each of mass m, at equal distances [ along a light
elastic string of length (n+1)7 whose ends are fixed. Show that if the particles
4
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execute small transverse vibrations under no external forces then the equations
of motion of the system are given by

-2 1 0 .. 0 % d?z, [di?

ol D20 0 @y d2zy)de?
7 0 1 -2 .. 0 23 §=m] d3x,/di?
0 o0 o .. -2 z, a2, jdf?

where z; is the displacement of the ith particle after time ¢ and T is the tension
in the string. Hence show that the frequency of vibration of the system is

o=J()

and the mode of vibration is given by the ratios

Y1 Y2ty

where A is a latent root, and y, is the ith element of the corresponding latent vector
of the nx n matrix

2 -1 0 .. 0
-1 2 -1 0
A= 0 -1 2 0
0 0 0 ... 2

Find the latent roots and vectors of A.T The theory of vibration is one of the
important applications of simultaneous differential equations.
2.15. Show that the general solution of the simultaneous linear difference
equations
Xr+1 = AXr
is given by
X, =XY,+X3Y,+...+XY,

where J; is the ith latent root of A and Y, is the corresponding latent vector and
A has n distinct latent roots.

2.16. Solve the equations

(l) Tpyr = wn+2yn
Ynia =2, +Y,
(i) Tppr = xn-2yn

Ynsa = 22, —3Yy
given that ; = 0 and y, = 1.

t See Appendix 1.
1 See reference 20,




Chapter 3
THE METHOD OF DANILEVSKY

The method of Danilevsky finds the characteristic equation of a matrix by
attempting to reduce it, using similarity transformations, to a Frobenius
matrix which is now defined.

3.1 FroBENIUS MATRIX

A Frobeniug matrix is a matrix of the form

by by, by .. b,y b,
1 0 0 .. 0 0
B= 0 1 o0 .. 0 0
0 0 0 ... 1 0

B has the important property that the elements in its first row are the
coefficients of its characteristic equation, because

bl_A b2 b3 Yo b,n__l bﬂ,
1 -x 0 .. 0 0

IB=Xi}=| © 1 =2 ... 0 0 |=0
0 0 0o .. 1 —A

and expanding along the first row we get
IB—A| = (b;—A) (=)L —by(1) (—A)" 2+ by(1)2 (—A)"3...
F{=1)"D, 4 (1)* 72 (= 1) + (= 1™ b, (1)
= (=1)P (A" — b, A" 1 —py A" 2— ... —b, 1A=b,) =0
Hence the characteristic equation of B is
A —by A l—p, A2 — . —~b, A—-b,=0

B is said to be the companion matrix of any matrix to which it is similar.
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3.2 METHOD OoF DANILEVSEY
We wish to reduce A given by

T T 1

“21 a22 e azn
A= . )

Apy Qpg - D

to its companion matrix by means of similarity transformations.
We first reduce the nth row to the required form by defining a matrix
C,_;, assuming initially that a,,, ,#0:

1 0 0 0
0 1 0 0
Cn«l =
_ Ty — Dy 1 - )
an,n—-l a’n,'n—l “n,n-—l an,n——l
0 0 0 1
which means that
1 0 0 0
0 1 0 0
Gl = '
a/nl a’n2 an,'n——l “nn
0 0 0 1
Now, AC,,_, is a maftrix of the form
by bis by -1 by
bgy bos bo 1 ban
Acn—-l = :
bn——l,l bn—-2,2 b b n—-1,n—1 bn—l,n
0 0 1 0
where
by = ay—2inL% for all i<n—1 and jEn—1
an,n—-l
and
- Qi1
in—1 "

a’n,n—l
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This gives G2, AC,_, as a matrix of the form
bll bl2 oo b],’n-—-l bln
b21 622 b b2,n——1 bZn
GLAC, , =A=| i P
€4 € o Cpg Cp
0o 0 .. 1 0
where
n~1
¢; = 3 0y;.b;y; forall j#n—1
i=1
and

n—1
Cp1 = _21 Qi bi,n——l + Qpp
=

We have now found a matrix A, which is similar to A and has the nth row
in the required form. To reduce the (n — 1)th row of A, to the required form

we define a matrix €,_,, assuming ¢, ,#0:

1 0 0 0 0
0 1 e 0 0 0
Co= % G R Cna1 O
cn—z cn-—2 Cn—z Cn—z cn—2
0 0 0 1 0
0 0 0 0 1
which means that
0 0
0 0
Cl =
€ € .. Cpg Cpq ©Cp
0 1 0
0 0 1
We have
€1z G2 -+ Cypz  Cip-1 Gy
€1 Cop - Cgp-g  Copq Cap
AL, .= : : : :
0 0 0 0
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where
b, _o.C . .
Gy = bsj—ig;f?c’ foralli<n—2,j#n—2
and
b.
Cin~2 = ;’n;z
e
80 that
Cii Cp - Cims Cime1  Cin
Cay Cag ‘e c2,n——-2 02’ 1 Can
C—}_ A C g = A m— ) ‘ N
-2 £31 Yp.g 2 dl d2 dn_g dn«l dn
1 0
o .. 0 1 0
where
-2
d; = .Zlci.ci]- forall j#n—2orn—1
i=
and

n—2
d; =i§16i.0ij+cj forj=n—-2,n-1

It is important to notice that in forming A, we have not altered the
nth row of A;.

We proceed in this manner until we achieve the Frobenius matrix B.

Example 3.1
0 -2 5
A= -7 1 9
-1 -2 6
Then
1 0o o 1 0O 0
C,={ -+ -1 3 and Cjl=§ -1 -2 6
0 0 1 0 0 i
Hence
0 -2 5 1 0 0 1 1 -1
AC, = -7 1 9 -3 -} 3 }= -5 -1 12
-1 -2 6 0 0 1 0 1 0
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and
1 0 0 1 1 -1 11 -1
C;1AC,={ -1 -2 6 15 1 12 | = 14 6 —23 | =4,
0 0 1 0 1 0 01 0
s0
7w —F i 14 6 —23
C,=§ o 0 and C{'=§ 0 1 O
0 0 1 0 0 1
which gives
11 -1 iz —-% & 7 it
AC =] 14 6 -23 o 1 o0 }=| 1 0o o
0 1 0 0 0 1 0 1 0
and
14 6 —23 A s 7 —15 9
1A C,={ 01 o 100 }|={1 0 0}=A=8B
00 1 010 0 1 O

Therefore the characteristic equation of A is

MB—TR+150-9=0
which has roots
A=1, A=A;=3

3.3 Pivor ELEMENT EQUAL 170 ZERO—CASE 1

In the above section we made the assumption that the element we wished
to divide by was non-zero. This, of course, is not in general true.
Suppose that in the Danilevsky process we reach the matrix A,,_, given by

Qg e Qg e Gypg Opp e Gyg g @y
ajl eee a” aes ai,.__l C&jr ee a]",n__l am
A=) @11 - @Gyj o Gy Cgp o Grgpy Gragn
Opy  een By o 0 Qpr e Oy -
0 e 0 vee 0 1 ces 0 0
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Here the element we wish to divide by in forming C,_, is zero. Suppose
that a,;#0 for some j<r—1, then we define a similarity transformation
that will interchange a,,_, and a,;.

In order to do this we define a matrix S that will interchange the (r— 1)th
and jth columns of A,,_, when we form A, _, S. This means that 8 is given by

1 0
0 1
00 ... 0 .. 1 ..00 | jthrow
S=§ : : ORI Do
00 ... 1 ... 0 ... 0 0 (r—1)th row
0 0 .. O 0
0 .. 0 ... 0 1
jth (r—D)th

column column

It is easy to see that 8- = § and hence 8-1A,_.S = 8A,_, S will have the
effect of interchanging the jth and (r— 1)th rows of A,_, 8. This, of course,
means that given A,_, we can write down 8- A,,_, 8 without actually having
to perform the matrix multiplications. Furthermore, it is clear that this
process does not alter the (r+ 1)th, (r+2)th,...,nth rows of A, . as we
naturally require. For this reason we cannot choose j>r—1.

Example 3.2
-2 2 3
A=) -3 3 3
-2 0 5

We cannot directly form C, because aj, = 0, but since a4, #0 we can
interchange these two elements. So

-2 2 3 01 0 2 -2 3
AS = -3 3 3 1 0 0 }j=¢§ 3 -3 3
-2 0 5 0 0 1 6 ~2 b
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and
01 0 2 -2 3 3 -3 3
S-1AS=| 1 0 o 3 -3 38 }§=|2 -2 3
0 0 1 0 -2 5 0 -2 5

We can see that, as mentioned above, we could quite easily have written
this new matrix straight down. Now

1 0 0 1 0 ¢
C,=1 0 -} 3 and C;l=f 0 -2 5
0O o6 1 0 o0 1
which gives
3 4 -t
A =C1AC, =) -4 3 4
o 1 0
Hence
-1 21 -4 3 4
C, = 0 1 0 and Ci'= 0 1 0
0 0 1 0 0 1
which gives
6 -—11 6
B=CAC'=]l1 0 0
0 1 0

Therefore the characteristic equation of A is

AB—6A241IA—-6 =0
which has roots

3.4 Pivor EvemMeNT EQUAL 70 ZERO—CASE 2

If in the matrix A,_, of the previous section there does not exist an element
a,;# 0 for some j<r—1 then we cannot effect an interchange, but in this
case we see that 4,_, is a matrix of the form
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where D is in Frobenius form. Then from theorem 1.14 we have
[Ayr—AL| =[A—M| = |D;~l| |Dy— AL

Since D is in Frobenius form we can write its characteristic equation straight
down. To find the characteristic equation of D, we use Danilevsky’s method
to reduce it to Frobenius form.

Ezxample 3.3
1 -1 3 4
4 2 1
A=ls 2 1
0 -1 1 0O
Then
1 0 00 1 0 0 0
61 0 0 0 1 o0 o0
C; = and C3;'=
01 1 ¢ ¢ -1 1 ¢
0 0 0 1 0 0 01
which gives
1 4
C1AC; = : ! =A
3 Aly 0 1 —9 1
0 1 0
so that

-1 -2
e ( 1o )
which has as its characteristic equation A2+ +2 = 0, and
1 2
D= ( 43 )
01=(i ';%) and c;1=(i j’)

45
0;1D101=( 1 0)

We put

giving
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50 that the characteristic equation of D, is A*~4A—5 =0, Hence the
characteristic equation of A is given by

R2+A+2)(R2—41—5) =0
which has roots

M=—1, =5 A=y—1+3JT), A =23—-1-4J7)

We can see that this condition considerably reduces the work involved.

3.5 LATENT VECTORS AND DANILEVSEY’S METHOD

If Y is a latent vector of the Frobenius matrix, we have

by by by ... by b, Y Ys
1 06 o .. 0 0 Ys Yo

BY = o 1 o0 .. O 0 Ys §=Af ¥, §=27Y
o 0 0 .. 1 0 Yn Yn

which yields the set of equations

(br—=NY1+by2+b3y5+ ... +b,y, =0

Y1i— Ny =0
Ya— AY; =0
Yn1— Ny =0

The last (n — 1) of these equations gives
Y = )\yn
Yn—g = )‘yn-l = Xy,

o= M =2y,
and substituting in the first equation in these gives
(bl__A)An~1yn+b2)\n—2yn+b3)\n—3yn+_ +bnyn =0
or
A= AP, AP 2 A3 — L ~b )y, =0
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which holds for any value of y,,. If we choose y,, = 1 we conveniently get

Yo = 1
Yna = A
Yn—g = A%

Yy =t

Using theorem 1.2 we also have

X == Cn__lcn_z ces 0201Y
which enables us to find the latent vectors of A.
Example 3.4

Take the matrix A of example 3.1 which had latent roots A, = 1,4, = A; = 3.
When A = 1 we take Y as

A2 1
Y= 2 =] 1
1 1
Hence
1 o0 0 7 -3 # 1 7
Y= -1 -} 3 0o 1 o0 1 J=13 =X
0 0 1 0 0 1 1 1
When A = 3 we get
1 0 0 & =% 22 9 1
Y= -1 -1 3 0 1 0 3 1=f1]=x
0 0 1 0 0 1 1 1

Note that A has only two linearly independent latent vectors.

If we have had to interchange elements in reducing A to Frobenius form
(see §3.3) we must, of course, take this into account in the above process.

The case of §3.4 is not quite so simple. If the latent vectors are required,
having reached the stage of
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instead of just reducing D; to Frobenius form, it is perhaps worth extending
this reduction over the whole of A,_, so that we finish up with a matrix
of the form

bl bz b3 s br—l br Cri1 cr+2 b Cn—1 Cn

o o0 .. O 0 0 0o ... 0 0

0 1 0 0 0 0 .. 0 0

B= 6 0 0 .. 1 0 0 0o .. 0 0
0 br—{-l br+2 oo bn-—l bn

0 1 0o .. 0 0

6 0 o0 ... O 0 0 0 .. 1 0

from which it is fairly easy to determine the latent vectors of B.

Example 3.5
We take the matrix A, of example 3.3 given by
1 2 3 4
A 43 2 1
1=V o0 -1 -2
0 0 1 0
but we now take
bo-t -1 -d 4321
C ] 1 0 0 4 0 0 1 0 0
"o o 1 o amt "=t o010
60 0 0 1 0 0 0 1
which gives
4 5 9 11
C1A,C Lo-o 0 B
MU= g 90 1 -2 |7
g 0 1 0
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so ‘that
4 5 9 11 o A
1 0 0 0
BY = Ya =2 Ys =Y
0 0 -1 -2 Ys Ys
0 0 1 0 Yy Y

which gives the equations

4y, + 5y, + Yy + 1y, = My,

Y1 = XYy
—Ys —2Yy =My
Ys = Ay,

The last two equations allow us to determine ¥, and y,, which then allows

us to find y; and y, from the first two equations.
We have

Y3 = My
80 that
— Xy — 2y, = Ny,
or
A2+2A+2)y, =0
which means that, if A is a latent root of D,, y, is arbitrary, otherwise it
(and y,;) must be zero.
We also have
Y1= Yy
s0 that
AAy,+ By, + 9ys + 11y, = N2y,
or

(R—4A—B)y, = 9y;+11y,
which means that if A is a latent root of Dy, y, is arbitrary, otherwise it is

determined by the above equation.
Taking A, = — 1 we get

Ys=Ys=0
and taking y, = 1 we get y,= —1 so that
-1
1
Y, = 0
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Hence
1000 } -3 -1 -1 ~1 —1
0100 0 1 0 0 1 1
CsCIYI: =
6110 0 0 1 0 0 1
00601 0 0 0 1 0 0
Taking A, = 5 we get
Ys=Y,=0
and taking y, = 1 this gives y, = 5 so that
1000\ [} -3 -} -}\ /5
0100 0 1 0 0 1 1
C,CY, = =
0110 0 0 1 0 0 1
0001 0 0 o 1 0 0
Taking A3 = 3(~1+14,/7) and putting y, = 1 we get
Ys = H—1+i|7)
so that
(=142~ 2(=143J7) - B}y, = —L+iy7)+ 11
or
— 2747
Y = 16
and
(= 14iyT) (=27-iyT) 1713047
S T T
so that
1000 1 -3 -} -1 17-13iy7
16
0100 01 0 0 —27-4T
;€. Y, = 16
0110 00 1 o 1312"—”1?
0001 0 0 o 1 1
49— 1347
32
—27—i7
= 16 =X,
— 35+ 707

16
1

51
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Using theorem 1.19 we get

49+ 134,J7

32
— 274147

X, = 16
—35— 1707

16

1

and we have now found all the latent vectors of A.
It is hoped that this example is sufficient to demonstrate how we may
proceed in general.

3.6 IMPROVING THE ACCURACY OF DANILEVSKY’S METHOD

At each stage of the Danilevsky process we are dividing all the elements in
the pivot row by the pivot element. If the pivot element is small this can
obviously lead to bad rounding errors and inaccurate division. To try to
avoid this it is advisable to select the largest element as the pivot. We can
do this using the method described in §3.3.

Our choice of pivot is nevertheless limited. For example, in the matrix
A, _, of §3.3 we saw that we could only select as a pivot an element a,; for
some j <r—1. This means, of course, that division of the elements a,; with
j>r—1 could still lead to inaccuracies, and hence, as is pointed out by
Wilkinson,} the second half of the Danilevsky method is basically unstable.
(That is the elements arising from these possible inaccuracies.)

Fadeeva,} suggests that a comparison of b, with the trace of the original
matrix A (see theorem 1.11) is made as a guide to the accuracy. This does
not seem to be very useful since it is the element least likely to reflect the
inaccuracies. A much better guide would be to compare b, with |A| (see
theorem 1.12), providing, of course, that this can be done accurately.

We note that selection of the largest pivot does not involve any additional
computation.

3.7 NumMmBER oF CALCULATIONS REQUIRED BY
DANILEVSEY’S METHOD

To form the matrix €, ; requires n divisions. Then to get AC,_, requires
n(n—1) multiplications. C;!; can be written straight down without any

t See reference 7, p. 409.
1 See reference 6, p. 173; also reference 8, Vol. 2, p. 212.
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computation and to find C,1; AC,_, requires n(n— 1) multiplications. So, in

all, to obtain A, requires

n+n(n—1)+n(n—1) = n(2n — 1) calculations
Similarly to find A, requires

n+n(n—2)+n(n—2) = n(2n— 3) calculations

Continuing this process we find that the number of calculations required
to obtain the characteristic equation is given by

S,=n2n—1)+n(2n—3)+n(2n—-5)+...+5n+3n
=n{3+56+...+(2n—B8)+(2n—3)+(2n—1)}
=n{n—1)(n+1) = nn?-1)

See Table 3.1.

TasLe 3.1 TasLE 3.2

n n(n2—1) 7 nt—2
3 24 3 7
4 60 4 14
5 120 5 23
6 210 6 34
7 336 7 47
8 504 8 62
9 720 9 79
10 990 10 98
20 7 980 20 398
50 124 950 50 2498
100 999 900 100 9998

Obviously we cannot give the number of calculations required for solving
the characteristic equation since this will depend on such factors as the
method chosen, the number of iterations needed, whether or not complex
or multiple roots are present, and the condition of the polynomial.

To find a latent vector of B requires n— 2 multiplications (powers of ).
To calculate the latent vector of A from this vector requires n{n — 1) multi-
plications. So, in all, each latent vector of A requires

(n—2)+n{n—1) = n?—2 calculations (see Table 3.2)

The calculations required in the modified methods are of the same order
as those given above.

3.8 FurraEr COMMENTS ON DANILEVSKY’S METHOD

Danilevsky’s method is an excellent method of finding the characteristic
equation by hand computation providing care is taken not to lose significant
5
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accuracy, especially when dealing with small pivot elements.t The instability
of the method reduces its effectiveness as a computer method.

The number of calculations required by the method compares favourably
with other methods, especially when the generality of the method is considered.

3.9 EXEROISES

3.1. Use the method of Danilevsky to find the latent roots and vectors of the
following matrices:

5 —4 9 4 14
G A=| 6 -7 21 @ A=| -1 2 -6
2 -1 3 -1 0 -
3 -3 11
0 4 -
(i) A= -3 —4 -9 -
8 11 28 ~17

-1 -2 -3 -1
3.2. Using Danilevsky’s method with exact arithmetic shows that the character-
istic equation of the matrix

9 700 -70
A=| -14 -99 10

1 7 6
is
B—6A2—A+6 = (A—6)(A-1)(A4+1) =
Repeat the caleulations using arithmetic that is correct to four significant

figures (i.e. make each individual multiplication or addition correct to four
significant figures) to show that this yields the equation

A2 —5-95)A% — 59504395 =0

and find the roots of this equation correct to two decimal places. (Note: The
matrix multiplication should be performed in the same order as suggested in the

text to yield this result.)
3.3. Show how the latent vectors of AT may be found after Danilevsky’s method

has been applied. Find the latent vectors of AT for exercise 3.1 (ii).

t See exercise 3.2.




Chapter 4
THE METHOD OF KRYLOV

The method of Krylov constructs a set of simultaneous linear equations, the
solution of which gives the coefficients of a polynomial which will be either
the characteristic equation or a factor of the characteristic equation.

4.1 Tex MeTHOD OF KRYLOV
In the method of Krylov we take an arbitrary initial column vector Y %0,
and construct a sequence of column vectors using the recurrence relation
Y1 = AY, (4.1)
This gives
Y, = AY,

Y, = AY, =AY,

Y, = AY, , = A‘Y,

Suppose that the first » vectors of this sequence are linearly independent
but that Y, is linearly dependent on the preceding vectors. This must of
course be true for some r<n. Hence we can express Y, as

Y, =a, Y +a, Y, o+...+a, Y +a Y, (4.2)

This defines n simultaneous linear equations in the r unknowns a,, a,, ..., ¢,
and we can select the first r equations to solve for these. The relevance of
this will become apparent shortly.

Theorem 4.1

IfY, is linearly dependent on the vectors Y, Y;, ..., ¥,_,, then all successive
vectors in the sequence will also be linearly dependent on these vectors.

Proof
Yr—f-l = AYr
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which, from equation (4.2), gives
Y., .=0,AY, ;+0,AY, ,+...+0,_;AY +q AY,
=0, Y, +a Y, ;+...+a,_ 1 ¥,+a, ¥,
=0, Y, 1+, Y, o+ +a, 1 V1 +0,Y)+aY,  +...+0a,, ¥, +a, Y,
so that Y, , is linearly dependent upon ¥y, ¥, ..., ¥, ;. Now assume that the

theorem is true for all vectors in the sequence up to Y,,, where p>r. Hence
we can express Y, as

Y, =b6Y, ,+b,Y, ,+...+5,Y,

and we can clearly use the same argument as above to show that Y, is
linearly dependent on the vectors ¥,,¥,,...,¥,_ ;. Hence by induction the
theorem is proved.

From equation (4.2) we get

AYy =0, A Y+, A2 Y+ ... +a,_;AY 40, ¥,

or
(A" —a, A1, A% —q,  A—a )Y =0
which we can write as
g(A)Y, =0
where
gA) = X —a Nt —a X 2— ... —a, ;A—a,

Now g(]) is called the minimal polynomial of Y, with respect to the matrix A,
and r is called the grade of Y, with respect to A.

We shall now show that g(A) is a factor of the minimal polynomial of A,
which in turn is a factor of the characteristic equation of A.

Theorem 4.2
If h()) is the minimal polynomial of A, that is A(A) is the polynomial of
least degree such that 2(A) = 0, then there exists a polynomial g(}) such that

h(A) = g(2) g(A)

Proof
We first note that since h(A) = 0 obviously 2{A)Y, = 0. By the division
algorithm for polynomials there exist unique polynomials g(A) and s(A) such
that
hA) = g(2) g(A) +s(A)
where s(A) is of lesser degree than g(A). But A(A)Y, =0 and g(A)Y¥, = 0,
hence s(A)Y, = 0. This means that s(A) must be null for otherwise g(A)
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is not the minimal polynomial of Y, with respect to A, Hence s(A) is null
and
h(2) = g(A) ¢(A)
as required.
It is of course possible to have h(A) = g(}).

Theorem 4.3

If A(A) is the minimal polynomial of A and f(\) is the characteristic
equation of A, then there exists a polynomial ¢() such that

JQ) =hQ) g

Proof

By the division algorithm for polynomials there exist unique polynomials
g(A) and s(A) such that

J@) = hQ) g(2) +s(2)
where s(2) is of degree less than that of A(A). But f(A) = 0 and 2(A) =0,

hence s(A) = 0. This means that s(A) must be null for otherwise A(A) would
not be the minimal polynomial of A. Hence s(2) is null and

. FO) = B )
as required.

It is of course possible to have f(A) = A(A).

We can now see that by solving equation (4.2) we find the coefficients
of the minimal polynomial of Y, with respect to A. If we solve this polynomial
we find some, or all, of the latent roots of A. The main difficulty in the method
is that we are unlikely to know in advance the grade of the vector Y,. Note
that any latent vector of A has grade 1. A good computing scheme for
Krylov is given by both Berezin and Zhidkov,t and by Gantmacher} which
deals well with the above mentioned difficulty. Gantmacher gives a full
discussion of Krylov’s method. The scheme proposed by Fadeeva§ is
inefficient by comparison because, even if r<n, we have to find »n vectors
before determining the value of r, whereas in the above-mentioned scheme
we only have to determine r vectors. The execution of Krylov’s method is
not discussed here because, as we shall see, it is effectively the same as
Danilevsky’s method, but whereas Danilevsky’s method always allows us
to find the characteristic equation, in the case when r <n Krylov’s method
does not yield the characteristic equation.

t See reference 8, p. 190.
1 See reference 10, Vol. 1, pp. 202-214.
§ See reference 6, p. 158.
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4.2 RELATIONSHIP BETWEEN THE KRYLOV AND
DANILEVSEY METHODS

Let F be the Frobenius matrix given by

000 ... 0 q
100 ... 0 g,
F=§ 01 0 ... 0 a,,
000 .. 1 a

Although this is of slightly different form to the Frobenius matrix considered

in § 3.1, it still retains the important property that the characteristic equation
of F is given by

N—a N lt—aga N2~ . —a,_ 1 A—0a,=0
and for this reason is also called a Frobenius matrix. We also let Y be the

matrix whose columns are the vectors Y, ¥Y,,...,Y, ; and y; be the jth
component of ¥,. We shall now show that

AY =YF
Firstly,
AY = A[Y, Y, ... Y, ,]=[AY AY,...AY, ]
but from equation (4.1) this gives

AY = [Y,Y,...Y,]

Also
Yor Y11 Y21 -+ Yr-g1 Yr-11 000 ..0 a
Yoo Y12 Yoz -+ Yr-ss Y12 100 ..0 a4
YF = Yoz Yz Yoz -+ Yr—23 Yr-13 010 ..0a.,
Yo Yin Yon -+ Yr-2n Yr-1n 000 ... 1 a

Yii Yo Ys1 - Y11 B Yor 1Yt O gYut ..+ Yr-1,1)
Yz Yoz Ysz - Yr-12 (BYor+ O 1Y1at O gYart .ot Yras)
=0 Yz Yss Ysz - Yras (@Yoa+ Yzt G oozt o+ WY a3)

Yin Yon Ysn - Yrin (@G You+ O Yin+ O gYont o+ Yr 1)

From equation (4.2) the last column is ¥, so that

YF =[Y,Y,..Y,] = AY
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In the special case r = n, ¥~ exists so that

F=Y1AY
which is of course the similarity transformation produced by Danilevsky’s
method.

So we can see that Krylov’s method is also indirectly attempting to find
the companion matrix of A. Whereas Danilevsky’s method always allows
us to find the characteristic equation, when r<#n Krylov’s method only
yields a factor of the characteristic equation.t

Bxample 4.1
Here we take the matrix A of example 3.1, that is
0 -2 5 1
A={ -7 1 9 and alsoweput ¥,=1 0
-1 -2 6 0
5o that
0 9 72
Y, =AY, =| -7}, Y,=AY, =} -16 |, Y,=AY, =] -7
-1 8 71

Here it is easily seen that Y,, Y, and Y, are linearly independent so that
the minimal polynomial of Y, with respect to A is in fact the characteristic
equation of A. From

we get the equations

as+ 9a, = 72
—Tay—16a, = —17
— @yt 8a;= 71
which have the solution
Oy =17, Gy=—15 @3=9

so that the characteristic equation of A is

AT 154 -9 =0
Krylov’s method, in this example, has given the characteristic equation of A.
We note that Danilevsky’s method gave the complete Frobenius form.

t Theorem 4.1 shows that we can only find r coefficients,
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Ezxample 4.2
Here we take the matrix A of example 3.3, so that
1 -1 3 4
4 1 2 1
A=
4 2 1 -1
0 -1 1 0
and put
1
- 0
Lo
0
so that
1 9
Y, = AY : d Y,=AY 16
=3 = an = =
! 0 4 2 ! 16
0 0
It is easily verified that ;
Y, = 4Y, +5Y,

so that the grade of Y, with respect to A is only 2 and Krylov’s method
only yields the equation

NP—4r—-5=0
We note that this is the characteristic equation of the matrix D; of
Danilevsky’s method.
This example is of some interest, for being non-derogatory, A is similar
to its companion matrixt and yet neither Danilevsky’s method nor Krylov’s
method with this starting vector yields this.

4.3 Fortuer COMMENTS oN KryLov’s METHOD

Example 4.2 illugtrates well the shortcomings of Krylov’s method, for not
only have we not found the full characteristic equation, but we have not
even found all the distinct latent roots of A. In certain cases a different
starting vector may yield the characteristic equation,] but the uncertainty
makes the method of little practical value. Furthermore, if r <n it is not
easy to find the latent vector by Krylov’s method.

¥ See reference 7, p. 13.
1 See exercise 4.2,
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44 EXERCISES

4.1. Apply Krylov’s method to the matrices of exercises 3.1 (i) and (ii).
4.2. Apply Krylov’s method to the matrix A of example 4.2 taking

0

4.3. Show how the latent vectors may be found in the case where Krylov’s
method has given the characteristic equation. Why cannot this method be used
when r<n?

4.4. If A is tridiagonal (see §5.3) and YT = (1 0 0 ... 0), show that the
matrix Y of §4.2 is upper triangular. Hence show that Krylov’s method gives the
characteristic equation if, and only if, the elements on the diagonal below
the leading diagonal are non-zero.




Chapter 5

FINDING THE LATENT ROOTS OF A
TRIDIAGONAL MATRIX

One important group of methods of finding the latent roots of a matrix, A,
involves obtaining a tridiagonal matrix which is similar to A. The latent
roots of many tridiagonal matrices, in particular symmetric ones, can be
located using the properties of a Sturm series. For this reason we shall first
outline the theory for Sturm sequences.

5.1 STURM SERIES AND STURM’Ss THEOREM

If we have a sequence of polynomials,

fn(w)’fn-—l(x)’ . -afl(x)’fo(x)

which satisfy the following three (sufficient) conditions,} then the sequence
is called a Sturm series for f,(x).

1. When z increases through a real root of f,(x), the product f,(z).f, ()
changes sign, either always from + to —, or always from — to +.

2. If when & = a, f(a) = 0, then f, ,(¢) and f,_,(a) have opposite signs.
(Hence neither is zero.)

3. fy(x) does not have real roots.

The sequence is called a Sturm series for the polynomial f,(z) in (a,b) if
the above three properties hold in this interval.

Theorem 5.1 (Sturm’s theorem)

If we have a Sturm series for f, () in (@, b), @ and b not being roots of f,(x),
then the number of distinct real roots of the polynomial f,(x) in (a,b) is
given by |S(a)—8(b)|, where S(«) is the number of changes of sign in the
sequence f,(a), fro—1(a), ..., fi(), fole).

Proof

As x increases through a root of f.(x), where 1 <r<n -1, then by condition
(2) the value of S(2) does not alter. By (3) this is also true when r = 0. On
the other hand, as z increases through a root of f,(x), then by (1) S(z) either
always increases by one or always decreases by one. The theorem now follows.

t Many variations are to be found. This seerns to have arisen because Sturm’s theorem was

originally proved with only a particular sequence in mind. As far as I know necessary conditions
have not been proposed.
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5,2 CONSTRUCTION OF A STURM SERIES

Suppose we have a polynomial f(x) = 0 having distinct roots. We form the
following equations

fn(x) =f(x)’ fn—l(x) = fl(x)

fn(x) = fn-—l(x) Q1(x) ”’fn——z(x)
Jo1(®) = fro(®) €2(%) — fr—s(®)

and

fo(®) = fi(®) gua(z) — fol®@)

where f.(z) is of lower degree than f, ,(x). The sequence of polynomials
Tn(®), Facal), ..., folz) can easily be shown to satisfy the conditions of a Sturm
series.T The above is the classical construction of the Sturm series, and it is
perhaps a misnomer to call other sequences Sturm series.

Example 5.1
To locate the root in (—1, 1) of the polynomial,
flx) = 2*— 323 —a24-8x—4
Using the above construction we get
fdo) =f@) =a*—32*—a?+8x—4
fa@) =f'(x) = 43— 9> — 22+ 8
fol@) = J5(352% — 90x + 40) = (T2 —18x + 8)
i) = 25(160z — 320) = 282(x —2)

Jol@) =0
v i fs fo fu fo S@) Comment
-1 - - 4+ - 2
1 + + - - 1 One root in (—1,1)
o - + 4+ - 2 One root in (0, 1)
G5 — + + - 2 One root in (0-5, 1)
07 + 4+ - - 1 One root in (0-5,0-75)

Clearly we may continue this process to achieve any desired accuracy.

1 See reference 11, p. 199.
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5.3 Sturm’s TEHEOREM AND THE LATeENT ROOTS OF A
TRIDIAGONAL MATRIX

We wish to find the latent roots of the matrix

@ ¢ 0 0 .. 0 0 0
by a3 ¢ O ... 0 0 O
A= 0 by a; ¢ 0 0 o0
0 0 0 0 .. 0 b, a,

We have to solve the determinantal equation
£ =1A-N| =0

Let f(A) be the determinant formed by the first » rows and columns of
() so that

a;—A Cy 0 0 0 0
by As—A  Cy 0 0 0
£ = : :
0 0 0 by a_4—A ¢
0 0 0 0 b,  a,—2X

Expanding f,(A) by the last row we get

f,,.(A) = (@,— )‘)fr—-l(/\) - br crfr-z()‘) (6.1)

where fy(A) = 1 and f,(}) = a,—A.

We shall show that the sequence f,(A),f,—1(A), ....fo(d) is a Sturm series
in f,(A), the characteristic equation of A, providing that for all » we have
b.¢,> 0. In particular this is true when A is symmetric with 5,20 for all 7.

In order to obtain this important result we require some preliminary
theorems.

Theorem 5.2

The tridiagonal matrix A with b,c,> 0 for all 7, is similar to a symmetric
tridiagonal matrix having non-zero superdiagonal elements.

Proof

We prove the theorem by showing that there exists a diagonal matrix D
such that B = DAD~!, where B is the required symmetric matrix. Let
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/CZIOO...O /a1020...0 /6—;—00...0
1
1

0d, 0 ... 0 by 0y C3 ... O 0 -0 .. 0

2

DAD! = 1
0 0 dy .. 0 0 by az ... O 0 0 =~ ... 0

<o
o]
<
S ..
3
e ——
=) .
]
S ———

\0 0 0 .. dn/
1

/aldl ed, 0 ... 0 /a—o 0 .. 0\
1

1
byd, aydy, c3dy ... O 0 7 0 ... 0
= 1
0 bydy agdy ... O 0 0 — ... 0

by.5 @, Cg3.5" 0
2 dl 2 3 d3
0 b3.i as 0

If B is to be symmetric it is clear that we require

G _b B _b B _b dia 0

Z2 = 28 I ‘n
a2 ¢ d2 ¢ di ¢ a2 ¢,
Since b,c,>0, we have that b,/c,>0 and hence we are able to select the
d’s so that B is symmetric with non-zero superdiagonal elements, as re-
quired. This proves the theorem.
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Theorem 5.3

No two neighbouring polynomials in the sequence f,(A),f,_1(), ..., ()
can have a root in common if b,¢,> 0 for all 7.

Proof
First we note that fy(A) and f,(2) do not have a common root.
Assume that f,_,(2) and f,_,(A) do not have a common root. Now equation
(5.1) is
) = (@, — N/, r-l(A)—'br ¢ fr—2(A)

from which we see that, if our inductive hypothesis holds, f,(A)0 when
fr—1() = 0, for this would mean otherwise that f. ,(A) = 0 also because

b,c,#0. Hence by induction the theorem is proved.

Theorem 5.4

If B is a symmetric tridiagonal matrix such that none of its superdiagonal
elements is zero, then between any two roots of f,(A) there is a root of f,_,(A).

Proof

Sid) = a;—2A
which hasg the root A = a,

J2Q) = (az—2) (@, - ) - b3
when A = g,
Q) =-b3<0
when A = — o0,
f2(A)>0
and when A = o0,

fo()>0

Hence f,(A) has one root less than ¢, and one root greater than a,.

Now assume that f,_,(A) has »—1 distinet roots and that between each of
these there is a root of f,_,(A).

Suppose that two neighbouring roots of f,,_,(X) are X; and 2y, with A, <),
Now,

Fal®) = (@ =X fp () =82 fo_s)
Hence
JalA1) = = b2 fr_s(A9)

and

fn(Az) = qu@fn~2()‘2)
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But by the above assumption f,_,(A) changes sign in (A;,2;) and hence
f.(A) must also change sign. It follows that between any two roots of f,,_;(})
there is a root of f,(A).

By considering the limit as A——o0, it is easy to show that f.()> 0 for
all » and hence f,(A) has a root less than the smallest root of f, ,(A). Its
remaining root can only be larger than the largest root of f,,_;(A). By induction
the theorem is now proved.

Notice that we have also established that the roots of f, () are all distinct.

Theorem 5.5

If A is a tridiagonal matrix with b,¢,> 0 for all r, then between any two
roots of f,(A) there is a root of f,_,(A).

Proof
In theorem 5.2 we can clearly choose D so that the principal submatrix

of A is similar to the principal submatrix of B. The result now follows from
theorem 5.3.

We are now in a position to prove our main results.

Theorem 5.6

The sequence f,(A), fo—1(A), --.,fo(A) is a Sturm series in f,(A) providing that
b,c,>0 for all r.

Proof

We now refer to the conditions of §5.1. Condition (1) follows immediately
from theorem 5.4, condition (2) from theorem 5.2 and equation (5.1) since
b,c,> 0, and condition (3) is satisfied since fo(A) = 1. Hence the sequence is
a Sturm series and the theorem is proved.

This, of course, gives us a powerful method for locating the latent roots
of this type of tridiagonal matrix. We shall now show that this particular
sequence is even more convenient than the general Sturm series.

Theorem 5.7

For the above Sturm series, if « is not a root of f,,(A), then 8(«) is the number
of roots of f,(}) less than a.

Proof
When A = — o0, f,(}) is positive for all r, hence 8(—o0) = 0. So by Sturm’s
theorem the number of roots in the interval (—oo,«) is given by

|8(c) = 8(—00) | = S(x)

and the theorem is proved.
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We note that having located a root using Sturm’s theorem we are likely
to obtain much better convergence using a method such as Newton’s
approximation. Equation (5.1) gives us a useful relationship for applying
Newton’s approximation since from

fr()‘) = (a,— ’\)fr—l()‘) — br crfr—-z()\)

Jr Q) = (@ =0 f1 Q) = fraQ) = b, 0. f1_o(A) (5.2)
where fo(A) = 0 and fi(A) = — 1.

we get

Ezample 5.2
To find the middle latent root of
1 -1 0
A = -1 2 1
0 2 3

By Gerschgorin’s theorem all the latent roots of A are in the interval
(—5,5). Now,
Jold) =1
£ =1-2
F) = 2-2f,()-1
JsQ) = B - f(A) —2f,(A)

z b I i f S Comment

-5 +1 +6 +41 + 0 No roots< —5 (as expected)
5 +1 —4 +11 — 3 3rootsin (—5, 5) (also as expected)
0 +1 +1 +1 + 0 3rootsin (0,5)

25 +1 =15 -026 + 2 2rootsin (0,2:5),1'in (25, 5)

126 +1 —025 —11875 — 1 Middle root in (1-25,2-5)

We have now determined that there is one root in each of the intervals
(0,1-25), (1-25,2:5), (2-5,5). We may continue the process of bisection to
find a particular root to any required degree of accuracy. Clearly we improve
the root by one binary position at each bisection.

We shall use Newton’s approximation to improve the middle root.
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Now
Jo) =0
i) =-1
f5) = A=2)-fi(})
f3) = B=0f(1) —fo() +2
Taking x = 1-6 we get
fi=—06, fo=-124, f;=—0-536

and
fa=02, f3=2352
so that
0-536

Taking x = 1-75 we get
fi=—075, f,=-11875, f,=0-0156

and ,
fi=05, f,=38125
so that
0-0156
A=1 75——-?—;5-2—5- = 1:75—-0-0041 = 1-7459

Taking x = 1-7459 we get
fi=—0-7459, f,=—1-18953319, f, = 0-00000643

and
fL = 04918, fi = 3-8063
so that
0-00000643
== 1-745898

Correct to six decimal places we now have A = 1:745898.

We can see that at the expense of some extra calculation Newton’s
approximation has given much better convergence than continued bisection,
which would have required about twenty iterations to achieve the degree
of accuracy obtained here.

If we have b,c,>0 for all r, although the sequence f,(A),f,_1(A), ..., fo(A)
is not a Sturm series we may partition the matrix into two or more tridiagonal

submatrices and apply the Sturm theory to these submatrices.
6
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Example 5.3

1 2 0 0 0 0 0

/3 -1 -4 0 0 0 0

0 -2 4 0 0 0 0

A= 0 o0 1 -3 3 0 0

0 o0 0 5 8 -1 0

0 0 0 0 -6 —4 1

\o 0o 0 0o o0 5 3

Here we have b, = 0 so that b,c, = 0, but for all r+#4, b,¢,>0. Because
b, = 0 we have from theorem 1.14 that

|A—2l| =D~ AT} | D, — L]

where
1 9 0 -3 3 0 0
5 8 -1 0
D,={ 3 -1 -4 and D, =
0 -6 ~4 1
0 -2 4 0 o0 5 3

So we may find the latent roots of B by applying the Sturm theory to
D, and D, individually. This case clearly simplifies the work involved.

54 Tag MerrOoD oF MULLER

If b,¢,< 0 for any r then we cannot apply the Sturm theory at all. Clearly
this case is not possible for a symmetric matrix. Here of course it is harder
to locate particular roots unless we have prior knowledge as to their distri-
bution. Having located a root we can of course use Newton’s method as
discussed in the previous section. For complex roots we can use a method
such as Bairstow’s method.

A convenient method for finding latent roots in this case, however, is the
method of Muller which enables us to use the recurrence relation of equation
(5.1) rather than to find the characteristic equation explicitly.

The method of Muller fits a quadratic equation as an approximation to
the characterigtic equation in the neighbourhood of a root, and takes one
root of the quadratic as the approximation to this root. With this approxi-
mation to the root we proceed to fit a new quadratie, and so on.
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If f(A) is the characteristic equation, we take three points z,, 2, and 2,
in the neighbourhood of a root and fit a quadratic through the points
[, f(21)], [, f(x2)] and [, f(x,)] and then replace one of the z’s by one of
the roots of the quadratic and repeat this process.

Example 5.4
To find the latent roots of the matrix
0 9 0
A= 1 8 -32
01 -1
Since bgcy = — 32 we cannot use Sturm’s theory.
Now
J o()‘) =1
f1) = =2

fz(’\) =(8 "')‘)f1()\) -9
Js(A) = — (1+2) f,(2) + 32f,(A)
Let us take as our initial points z; = — 2, z, = 0, z; = 2. At z,,

fi=2, fo=11, f3=75
atb x,,

f1=09 f2=“9: f3=9

at g,
fi==2, fo=-21, fy=-1
(Since f; has changed sign there is a root in (0, 2).) We wish to fit a quadratic
Y = aw®+bx + ¢ through the points (—2,75), (0,9) and (2, —1). This gives
y=Ta?—192+9
and putting y = 0 we have
z=21 or 061

Since we have established that there is a root between 0 and 2 we replace
—2 by 0-61, and take as our new points z; = 0, 2, = 0-61, x5 = 2.
At w,,

fi=—061, f,=—135079, f,=2-228
(The root is in (0-61, 2).)
Fitting a quadratic through (0, 9), (0-61, 2:23), (2, —1) we get
y = 4-38722 — 13-7752+9
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and putting ¥ = 0 we have
=093 or 22
Taking #; = 0, z, = 0-61, xy = 0-93, at x,,
fi=—093, f,=—155751, f,=0-300
Fitting a quadratic through (0, 9), (0-61, 2-228), (0-93, 0-300) we get
y = 5364222 — 14-18152+ 9
and putting y = 0 we have

x=106 or 2
At x = 1-06,

fi=—106, f,=—163564, f,=—0-225816

Clearly we are now close to the root. It lies in the interval (0-93,1-06). We
now use Newton’s method commencing with x = 0-995 (the mean of the
two values). Now

fi) = -1
50 = Q= 8) =0

J5) = —(1+2)f5(0) —f2() — 32
When & = 0-995,

fi=—0995, f,=—15969955 f,= 0-020060

and
fi=—6-010, f;=—>5040095
so that
0-020060 .
A= 0-995—!—W0095 = 0-995 4 000398 = 0-99898

When z = 0-99898,
| = —0-99898, f, = —15-99387896, f, = 0-00408416

and
f3=—6-00204, f;=—4-00816312
so that
0-00408416
A== 0’99898+m = 0-99898 + 0-0010190
== 0-9999990
Correct to five decimal places the latent root is
A, = 1-00000

which corresponds exactly to the correct latent root.
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To find the remaining roots we again use the method of Muller, but we
divide f;(A) by the root we have just found so that we do not converge to
this root once more. For this reason it is important to find the root with
which we are dividing accurately. Since, in this example, there are only two
roots remaining these will of course be the roots of the fitted quadratic. Put

_ ) S
95N = 3= nN T A— 1-00000

Again taking #; = —2, 2, = 0, z; = 2, we get

ga(—2) = —25, g¢5(0) =—9, g5(2) =—1
and the fitted quadratic is
y=u2—6x+9 = (x—3)%
So the latent roots of A are
A, = 1-00000, A, = As = 3-00000

We can see from this example that it is of some importance to look at
the behaviour of the characteristic equation to make sure that we are
converging to a root.

In the case of complex roots, Muller’s method, of course, involves complex
arithmetic. The local convergence, which is proved by Muller,} is generally
about 1-8 for single roots and somewhat slower for multiple roots. It is
thought to converge globally, which means that arbitrary starting values
can be used. It should be borne in mind that roots of polynomials are best
found in ascending order of magnitude if the polynomial is to be deflated
by that root as in example 5.4.1 If arbitrary starting values are used in
Muller’s method, they should be centred around zero in the hope that the
smallest root is found first.

5.5 EXERCISES

5.1. (i) Use Sturm’s theorem to locate to an accuracy of +0-5 the three real

roots of the equation
928 ~402~21 = 0

(ii) Use Sturm’s theorem to locate to an accuracy of +0-5 the real roots of the

equation,
at+4a%+ 622 +40—24 =0
52 If
fr()‘) = (ar" /\)fr-—l(k) "b?fr——%(/\)

t See reference 9.
1 See reference 17, Chapter 2, pp. 55-65.




74 Latent Roots and Latent Vectors
where f(\) = 1'and f;(X) = a; — A prove that
J{(—0)>0 forallr

5.3. (i) If » is a positive integer greater than one and 1<i<n—1 show that
the angles given by
(2= B_(Qi-—-l)n (24
2n * PT 2m-1)’ YT T on

o ==
satisfy
O<a<f<y<w

(ii) Hence, or otherwise, prove that between any two roots of the Chebyshev
polynomial T, (x) there is a root of T,_,(x), where

T,(x) =cosnf and cosf=a

(iii) Prove that the sequence T,(x),T, ,(2),..., Ty(x) forms a Sturm series for
T, (z) in the interval {—1,1).

54. Let P, (x),P,_,(),...,Py(x) be a sequence of orthogonal polynomials, that
is,

b
f w(@) P (x) Py(x)de =0 forr#g
a
where w(z) is a weighting function. Prove that the sequence P (x), P, _;(x), ..., Py(x)

forms a Sturm series for P, (z) in the interval (a,5).
5.5. Locate the latent roots of the following tridiagonal matrices

-1 1 0 7 -4 0
iy A= 2 -3 -2 (i) A=§ 11 -7 1
0 -1 -5 0 -1 1
5.6. (i) Show that the roots of the quadratic
ar’+bx+c=0
can be found from the formula
—2¢
¥ b1 (P —4ac)

(If 4ac is small then the smallest root of the quadratic can be found more acourately
from the above formula than the standard formula.)
(ii) Let x; be the ith approximation to the root of f(x) = 0. Also, let

by =x;—z; 4

A= Rylhy_y

8 =1+

9; = F(@;_5) A —f(;_y) 83+ () (A5 +8,)
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Then, the next aPProximation Tt is given by
T =Ty +hiy
where
hi+1 = ’\i+1 hi
and
Ay = —2f(x;) 8,
T gy £ J{93— 41 () 8 M LS (o) A —f @,y 8, +f ()]}

the sign being chosen so that the denominator has the greater magnitude.
Show that the above is equivalent to Muller’s method. This is the computing
scheme proposed by Muller.
5.7. (i) Suppose that x; = u+vi is an approximation to a root of the polynomial

f(@) = aga®+a 2"+ . +a, =0

and that f(u+vi) = p+¢s.
If a quadratic dya?+d, x+d, is fitted to the three points,

[u—vi,flu—vi)], [0,f(0)), [u-+wvi,flutwi)

show that we can compute dy, d, and d, from the equations

dy = v(p—a,)—ug
dy = q(u?—v%) —2uv(p—a,)
dy = —a, v(ut+?)

If 2;,, is a root of the above quadratic, under what conditions is it a closer
root of f(x) = 01
(ii) Use the method of (i) to locate the latent roots of the tridiagonal matrix

0 -1 0 0
i1 ¢ -1 0
0 1 0o -1
0




Chapter 6
THE METHOD OF GIVENS

The method of Givens reduces a symmetric matrix to tridiagonal form by
means of a series of orthogonal similarity transformations.

6.1 ORTHOGONAL MATRICES
As was discussed in § 1.2, the orthogonal matrix given by
cosf —sginf
Y =
sin®  cos6
has the effect of rotating the x,y-axes through an angle —§. This idea is

naturally extended to higher dimensions. For example the matrix given by
1 0 0 0 0 0

0 1 0 0 0 0

Y- 0 0 cosf 0O —gind O row 3
0 0 0 1 0 0
0 0 sinf@ 0 cos8 O Tow 5
0 0 0 0 Q 1

column $ column 5

is a six-dimensional orthogonal matrix that has the effect of rotating the
x4, T5-axes through an angle —6. For convenience we shall write the x,, x;-
plane as the (3, 5)-plane and similarly for other planes.

6.2 Tae METHOD OF GIVENS
We consider as representative a four by four matrix given by
G Ty Gy Gy
A G1p Ggp oz gy
Qy3 U9z O3 Gy
Gyg Ogq Qg Oy

First we wish to make a,, zero. In order to achieve this we take the
orthogonal matrix that rotates in the (2,3)-plane. Putting ¢ = cosf# and
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§ = sinf we have
A, = Y{1AY, = YT AY,

1 6 00 Uy Oy Oy Oy 10 0 O
0 ¢ s 0 Gy Oy (hag Ogy 0 ¢ —s 0O
"0 —s co0 Oy Ogy Oz Qg 0 c 0
¢ 0 01 Oy Ogy Oy Oy 00 0 1
1 0 00 Uy ClhyptSlyg  Clyz—S80yy Oy
0 ¢ s 0 Qg Cllog+Slhgg Cllgg— Sy (o,
V0 —s ¢ 0 Oqg  Clgg+Slhgg Cllgg—SQgg Ogy
0 0 01 (g Clgy+ SOy Clgy—Slyy Oy

[This has left columns one and four unchanged since we are rotating in the
(2, 3)-plane.]

11 Cyp+ 503 003 — $0yp L7
Clypt+S0yy  CPllgg+ 208055 +8%Ag5 (€2 —5%) gz +05(Aga— Bgp) Cpy+ 50y,
Oy — 80y (B —582) Uggt€8(0gy—ng) 8% App—208Upg+ P gy Clizy—8apy

! Cllgy + gy Oltigy — 809y Qyy

[This has left rows one and four of the previous matrix unchanged.]
This is, of course, still a symmetric matrix. We should notice that by
rotating in the (2, 3)-plane we have not altered those elements of A that lie
in the intersections of the first and fourth rows and columns, as we would
expect. We wish to put
COyg— Sy = 0
which gives
%13 _ 5 _ tan6

T
This means that

¢ = (03, +035)"F and s = a4(ad;+ady)E

In order to reduce the element now in the (1, 4) position we rotate in the
(2,4)-plane. From the comments made earlier it is clear that this will not
affect the zeros introduced into the (1,3) and (3,1) positions.

Lastly we rotate in the (3, 4)-plane in order to reduce to zero the element
in the (2, 4) position. It is not obvious that this does not affect the zeros in
the (1, 3) and (1, 4) positions, so we shall now demonstrate that this is in fact
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the case. We have

A, =Y;1A,Y, = YTA,Y,

10 o by by O 0O 1.0 0 0
01 0 0 by bas bay oy 0100
“too ¢ s 0 by by by 0 0 ¢ —s
00 -5 ¢ 0 by by by 0 0 s ¢
1 0 by by 0 0
01 0 by by gzt by,  chyy—sbyg
"Moo ¢ s O Dy Cbygtsby, Chay—shys
0 0 —-s ¢ 0 Dby by +sby, cbyy—sby,
by bia 0 0
b bsg €bag + sDgy cbyy — sbys

0 chyg+8byy  €2bgg+208bgy+ 820y (2 —5%) bgy+8(byy — bgs)

0 by —shyy (CP— %) bgy+08(byy—Dbgg)  €2hyy— 20sby, +52byg

If we choose b,,/b,; = tan § we obtain the required result.
In general we rotate in sequence as follows:

(2, 8)-plane; (2, 4)-plane; (2, 5)-plane; ...; (2,2—1)-plane; (2,n)-plane
(8, 4)-plane; (3,5)-plane; ...; (3,n—1)-plane; (3, n)-plane

(4,8)-plane; ...; (4,n~1)-plane; (4, n)-plane

(n—2,n—1)-plane; (n— 2, n)-plane

(n—1,n)-plane

Bxample 6.1
0o 3 4
A= 3 1 -1
4 -1 O

e =33+t =3 5 =43+4) =3¢
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A =YTAY,
1 0 0 0 3 4 1 0 0
={o 3 % 3 1 -1 0 3 -%
0 —% 3 4 -1 0 0+ 3
0 3 4 10 0 0 5 0
=5 -+ -3 0% -5 )={5 - -%
0 -% % 0 % % 0 -3 %

which is the required tridiagonal form. From Gerschgorin’s theorem we see
that all the roots lie in the interval (— 6, 6). Now

Jo)y =1

fid) = -2

L) = -+ f(0) - 25
Js) = G=2/N) —g5AR)

z f fi fo fs S() Comment
0 +1 +0 —25 — 1 1 root in (—6,0), 2 in (0, 6)
3 +1 -3 % 4+ 2 1 root in (0, 3), 1 in (3, 6)

We have now already established that there is one root in each of the
intervals (—6,0), (0,3), (3,6) and we may use any method we choose to
converge to particular roots. The actual latent roots are, correct to four
decimal places,

A = 47150, A, = 1-5970, Ay = —5-3121

Example 6.2
7 1 -2 1 53
1 5 0 3 1
A= -2 0 8 0 -2
1 3 06 5 1
5 1 -2 1 7

0 =1(12+2)F =2 5 = —2(1242Y)F = -2




A, = YT AY,
1 0
0 s
=f 0 72.5
0 0
0 0
7 J5
5 %
= 0o £
135
5 J5
A2=Y§A1Y2
1 0
U
== 0 0
0 3
0 0
7 6
J6 8
= 0o 0
0 O
5 46
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0 0 0 7 1 -2 1 5
2 0 0 1 5 0 3 1
75 0 0 -2 0 8 0 -2
0 1 0 1 3 5 1
0 01 5 1 -2 1 7

0 1 5

~% 75 45

B %0

2 b5 1

0 1 7

€y =B(5+12)F =Y2: 5 = 1(5+12)

0 0 0 7 5 0 1 5
0 75 0 o -% % 5
1 0 0 0 -% 2 X 0
0 Y: 0 I
0 0 1 5 J5 0 1
0 0 5

0 o0 6
o 0

0o 0 7

1
7E

1 0
0 %
2
0 -7
0 o
0 0
1 0
0 V5
0 0
0
0 o

O D e OO

D e OO O

S

6 o<

o3

[ =B we S o B vun

-0 OO
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= Yy Ay Y,
1 0 00 O 7 /6 0 0 5 1 0 00 O
0 JE 00 3 J6 8 0 0 8 0 Y% 00 —o5%
=f 0 o0 10 0 0 0 28 &8 0 0 10 O
0 0 01 0 0 0 & 22 9 00 01 0
0 —o25 0 0 %% 5 J6 0 0 17 0 -5 00 X%
7 J31 0 0 0
J31 2% o o 2%ve
== 0 0 28 8v6 0
5
0 0 ¢ o2 9
o % o o P
Note that the (2, 4) position is already zero, so that we proceed to the (2, 5)
p
position next.
o= O[O0+ (~ 25024 = 0; s, = ~25{0[00+ (= 24/ = -1
=YFAY,
1000 0O 7 31 0 0 0 10 0 00
0100 0 J31 28 0 o %S 01 0 00
=f 0000 -1 0 0 & & 00 0 01
0001 0 o 0 =22 0 00 0 10
0010 O 0 -—22Y8 o o 182 00 —-100
7 J31 0 0 0
J31 32 28 0 o
= 0 P o o
0 o0 o0 % %
5
0 0 o0 &4 =28

This is now in tridiagonal form. We cannot use the Sturm theory directly
on A, because there is a zero superdiagonal element. As in example 5.3 we
can partition A, and apply the Sturm theory to each of the tridiagonal
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submatrices. Here we have

7 y31 0 e ava
v 5 "6
O R I GV

244/6 5 5
0 v 182

31 Iy
The roots of D, are actually A, = 2, A, = 6, A; = 14 and the roots of D; are
A =2,A=8.
6.3 LaTENT VECTORS AND GIVENS’ METHOD

If Y is a latent vector of the tridiagonal matrix we have

a, b, 0 ... O 0 0 ¥ ¥
by a3 by ... O 0 O s s
BY = oo : : : : = A : = AY
0 0 0 ... by, apy by Yn-1 Yn-1
6 0 0 ... 0 b, ua, Yn Yo
which yield the set of equations
a1 Y1+b39, = Ay,

byt +a3Ys+b3Ys = N,

bn——l Yot Op 1Yt bn Yn = Ayn—l
bn yn—1+anyn = )‘yn
If we arbitrarily put ¥, =1 we can see that the first equation can then
be solved for y,, which then allows the second equation to be solved for y;,

and so on. We shall then be left with the nth equation which we may use as
a check.

Example 6.3
Taking the matrix A of example 6.1 which had latent roots, correct to
four decimal places, A, = 4:7150, A, = 1-5970, A; = —5-3121, we have, using
A Y =2Y,
5y, = Ay
5y1— 32— 3ys = Ay, (6.1)

‘ — 32+ 8Ys = Ms
When A = 4-715, putting y; = 1 we get
Yy, = 252 = 0-943

5
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and
Yy = 5(5— By, — 4-T15y,) = — 0-060225

From the third equation we get

by
Yy = g2 = — 006055

-2

b
and so it would seem that we can only guarantee two-decimal-place accuracy.
As it happens the second value of y; is correct. Taking

1
Y, = 0-94
—0-06
we get
1 0 0 1 1 1
X,=] 0 & -¢ 0-94 =] 0612 l=f 061
0 ¢ & —0-06 0-716 0-72
Multiplying X, by the first row of A we get
1
(0 3 4) 061 | =471
0-72

which agrees as well as can be expected with the latent root.
When A = 1-597, putting y, = 1 we get

Yy = 0-3194
and
Yy = 21-4914
From the third of equations (6.1) we get
ys = 21-2933

and again we have a breakdown in accuracy. This time it is the first value
of y; which is closest!

This example demonstrates well the difficulty of the latent vector problem
in tridiagonal matrices. In other respects the matrix is quite well con-
ditioned because the latent roots are well separated and the matrix is
symmetrical, and at first sight we would certainly not expect this loss of
accuracy in the latent vectors. Wilkinsont shows that this will often be so.
He also discusses how we may improve the accuracy and suggests the method
of inverse iteration, which is discussed in §9.4.

t See reference 7, pp. 315-323.
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6.4 NUMBER OF CALCULATIONS REQUIRED BY THE
Givexs MerTHOD

In the Givens method we have to calculate a square root at each stage which
makes it a little difficult to compare with other methods. For the sake of
comparison we shall assume that a square root is equivalent to two ordinary
calculations. Then to find cosd at each stage will require five calculations,

and sin § will require only one. So in the full $(n — 1) (n— 2) transformations
we shall perform

3(n—1) (n —2) calculations

In reducing the a,; position to zero we perform 4n -2 multiplications in
forming AY,, and a further six multiplications only in forming Y7 AY,,
providing that we take full advantage of symmetry. We require the same
number of calculations for each position in the first row, so that this requires

(4n — 2) (n — 2) + 6(n — 2) calculations
The second row will require
[4(n—1) — 2] (n— 3) + 6(n — 3) calculations
In all the number of calculations required are given by
8, = 3(n—1) (n—2)+{(4n—2) (m—2) + 6(n — 2) + [4(n— 1) — 2] (n— 3)
+6(n—3)+[4(n—2)—2](n—4)+6(n—4)+... + (43— 2)+6}
=3n—1)(n—2)+6[(n—2)+(n—3)+...+1]
+(dn—-2)(n—2)+(4n—6)(n—3)+ (4n—-10)(n—4)+... + 10
=3m—-1)(n—-2)+3n-1)(n—-2)+§n—2)(n—1)(3+4n)
= Hn—2) (n—1) (21 +4n)
(See table 6.1.)

TasiE 6.1
n Hn—2) (n—-1) (21 +4n)
3 22
4 4
5 164
6 300
7 490
8 742
9 1064
10 1464
20 . 11 514
50 173 264

100 1 361 514
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The number of calculations required to find the latent vectors will of

course depend on the method used to solve the set of equations obtained
when performing inverse iteration and on the number of iterations needed.

6.5 FurTraEr COMMENTS ON GivENs’ METHOD

A comparison of Tables 6.1 and 3.1 shows, somewhat surprisingly, that
Danilevsky’s method, which takes no account of symmetry, requires fewer
calculations than that of Givens. Against this we must, of course, take into
account that the location of the latent roots is more convenient when we
have a tridiagonal matrix, especially if we only require particular latent
roots such as those in a given interval. Also, Givens’ method is a stable one for
determining latent roots.t

Providing that we are able to find square roots accurately, the Givens
method is quite convenient for hand calculations because it is easy to
remember and simple to perform. If we are using a computer we would
almost certainly use Householder’s method instead. This is the next method
to be discussed.

6.6 EXERCISES
6.1. Show that the matrix

10 ... 0 .. 0 .. 00

01 ... 0O 0

0 0 ... cosf .. —sinf .. 0 0O row p
A . . . .

0 0 ... sinf .. cosf .. O O row g

0 0 0 0 .. 10

00 ... 0 .. 0 . 01

column p  column ¢
is orthogonal.

6.2. Use the method of Givens to find the latent roots and vectors of the following
matrices:

6 3 4 1 8 —6
G A=| 3 6 4 |; ) A={ 8 —11 12
4 4 5 -6 12 -4

t See reference 7, pp. 286-290.
7
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6.3. Use the method of Givens to transform the matrix

2 4 3 0

4 -2 -3 2
A=

3 -3 6 4

0 2 4 3

into a tridiagonal matrix B. Use Sturm’s theorem to locate the latent roots of B
to the nearest integer. Find the smallest roots correct to two decimal places.
Find the latent vectors of B corresponding to these latent roots and hence the
corresponding latent vectors of A.

6.4. Show that the sum of squares of the elements of A, is the same as that of
A, for the Givens transformation. That is, the Euclidean norm, || A ||z, is preserved
in transforming A to tridiagonal form. This is one of the reasons for the stability of
the method, because it means that the size of the elements is bounded at each
stage, which certainly is not true for Danilevsky’s method.




Chapter 7

THE METHOD OF HOUSEHOLDER

The method of Householder, as with Givens’, reduces a symmetric matrix to
tridiagonal form by means of a series of orthogonal similarity transformations.
Whereas Givens reduces a single element to zero at each stage, Householder
introduces the required zeros into a whole row at each stage.

7.1 A SYMMETRIC ORTHOGONAL MATRIX
Consider the matrix P given by
P=1I-2YYT

where Y is a column vector such that YZY = 1. Clearly P is symmetric so
that
PP7 = P? = (I-2YYT)?

=I-2YYT - 2YY7 + 4YYT YYT
=I1—4YYT +4YY?
=1
Hence P is an orthogonal matrix with the special property that
P1l=Pl=P

It is an orthogonal matrix of this form that is used at each stage of the
Householder reduction.

7.2 THE METHOD OF HOUSEHOLDER

We take as representative the four-by-four matrix given by

Ay Gy Q33 Gy

Byg gy Qog G

A= 12 @2 Oaz Oy

i3 Qg (g Oy

O1a Qpq G3q Oy
We wish to reduce @,3 and a,, to zero. The method of Givens suggests that

we should be concerned with the (2,3) and (2, 4)-planes. For this reason we
take

Y =(0 yo ya Y1)
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where y2+y2+y% = 1, so that

0 0 0 0 0
Y 0 93 YYs Y2V
Y, Y] = : (0 ¥ ys %)= 2 223 2
Ys 0 vays Y3 YW
Ys 0 YYs YsYs Ui
and
1 0 0 0
0 1-242 -2y -2
P, = 1-2Y,Y7 = 2 2Y3 YaYs

—2y,s 1-245 —2yy,
0 ~2ys —2ysy. 1-2y3
Forming P{ AP, = P, AP, and denoting its elements by b,; we find that

b1z = 19— 2Y5(Q12Ya + 013 Y3+ A4 Ys) = Qyp— 252 (7.1)
big = Gz~ 203(Q12 Yo+ By3Ys +Byg Ys) = Qg3 — 2y52 (7.2)
byg = Q1= 24(@12 Y + Qi3 Ys +C1aYs) = gy — 2y, 2 (7.3)

where 2 = G99y + Q3 Ys+ 214 Y4 Squaring each of the equations (7.1), (7.2),
(7.3) and adding we get

b3, +b3+ b2, = (0035 — 205 2)2 + (@13 — 293 2)2 + (@14 — 2y, 2)®
= afy+ a3 +03, — 42(019 Yo + Oy Y5+ A1a Ya) + 422 (H3 + 95 + 13)
= afy +ofs +af, — 427 + 42
= afy +afs +0a, (7.4)

We require that b, = b4 = 0. Hence from equations (7.2) and (7.3) we get

Oyg—2Ys2 = Oy — 2,2 = 0 (7.5)
Also, from equations (7.1) and (7.4) we have
0dy +afy +aiy, = 02+ 02+ (@), — 2y, 2)? (7.6)
so that
Uy —2Yyz = * (afy +af; +afy)?
and

Qo Ys— 232 = L yy(af, +ady+aiy)t (7.7)

Multiplying the two equations of (7.5) by y, and y, respectively and adding
them to (7.7) we find

(B12Y2 + 013 Y5+ 014 Ys) — 22(y3 + 93 +93) = tya(ad, +ads +ad,)t
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80 that

2—22 = —z = +yy(a}, +ad;+a},)?

or
z = tYy(afy +ai; +af,)t
Substituting for 2 in (7.5) and (7.6) we finally find
=31t o] (78)
2] T (ahtals+ay)t

4 Q3
~ 2yy(a, +afs +a}y)?

Ys =

Yo=+ T
e 2yy(af, +ady +ady)?

It is usual to select the sign in equation (7.8) so that y3 is as large as possible,
and in particular so that y,# 0.

In order to reduce the b,, position of A, to zero we can use either a trans-
formation of this type or the slightly simpler Givens transformation.

It is hoped that the extension to the general case is now clear.

Example 7.1
-1 1 2 2
1 3 —4 -4
A=l 52 4 3 _3
2 -4 -3 -3
=3 [ raa] -3 (143) - 3
so that




90

Hence
A, =P AP,
1 0 0
0 -} -3
I R
0 -3 -3
1 0 0
0 -} -3
“lo -3 3
0 -3 -3
-1 -3
-3 -2z
0 -%
Now
y3=
so that
Ya

Latent Roots and Latent Vectors

0 -1 1 2 2 1 0 0 0
_3 1 3 —4 -4 0 -1 -3 —3
~3 2 -4 -3 —3 0 -2 3 -1
2 2 —4 -3 -3 0 -3 —1 3
0 -1 -3 0 0
S I IR QTR
SRR
0 0
10 _ 10
9 9
25 25
E] 9
25 25
9 9
1 _1p 1/, 1
==l1= = {14
2[1 [(—-%)2+<—l§)21%} 2( +J2)
_1+J2_42+2
242 7 4
_(\/2-1—2)%
y3_ 2
D 1 (2 +2)

T 2y, 102 T Ja({2 42 T {22+ 2)
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Hence
A, =P,A P,
10 0 0 -1 -3 0 0 10 0 0
61 0 0 -3 -5 -5 -¥ 01 0 0
00«“;——;) S 00 ¢
00 3 % R 00 ¢ ¢
10 0 0 -1 -3 0 0
01 0 0 ) -3 -7z 1wz 9
= 0 0 ,_}/_23 _% 0 —10 25;/2 0
0 0 —F o S s i
-1 -3 0 0
-3 -2 10;/2 0
- 0 10;/2 50

0 0 0 0

which is the required tridiagonal form, and we may find the latent roots in
the usual way. The roots are

Ao=dy=0; Agd, = 2(—14+15)

We note again the multiple root causing the zero superdiagonal elements.

7.3 Repvucing THE NUMBER OF CALCULATIONS

To gain the most benefit from Householder’s method we need to give
careful consideration to its execution.

Let the matrix A, ; have elements a;,

b= (a;z',ﬂ-l +0 it 02,)t

and put

and
d=0b+|a,,,|

Then we get for the components of ¥,

d\:
Yrer = (gb—)

_ a,m- _ aﬂ. .
Y; = i2by,+1 = i(Zbd)*’ J=r+2,r+3,...,n

and
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the sign chosen to be that of a,,,;. If we let Z, = (2bd)?Y,, then the com-
ponents of Z, are
and Z=d

Zi=1%a,, j=r+2,r+3,..,n

Further, if we put
1
Wr = bd Ar—l Zr

and
1

Ve =W —55a

Z.7ZTW,
we get
A, =PA,_ P,
= (I-2Y, YA, _,d-2Y, YT
= A, —2A,_,Y, Y7 -2V, Y7 A, +4Y,Y7A, Y, V7
=A1—2A,, Y, Y-V, YA, Y, Y)-2(Y,YTA, - Y, YA, Y, YY)
_L
71 b d

1
bd

—A (AHZ Zr- >z 7rA zrz,r)

rr_m
1

(z,.z,TA,»l—zbd

Z,7Z7 A, ,Z, zg')

= A= (W, 27 552,20 W, 27) - (2,W7 -

1
_— wT T
obd Z,WIZ,Z] )

= r—l'_vrzf"‘zrv?
= A’r—l—(Xr_"'XwT)

where
X, =V,ZT

So we compute in sequence W,, V, and X,. Since A, is symmetric we do not
need the elements of X, below its leading diagonal. Also, we only require the
last (n—r)? elements of A,.

7.4 NUMBER OF CALCULATIONS REQUIRED BY
HovusruHOoLDER’S METHOD

We first find the number of calculations required to obtain A,, and again
take a square root as being two calculations,

To find A, ; Z, requires (n—r)? calculations, since we require only the last
(n—r) elements. So, to find W, takes (n —7)2+ (n —r + 3) + (n —r) calculations.
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Bearing in mind that Z7 W, contains only a single element, to find V, takes a
further 2(n —r + 1) + 1 calculations. Lastly, to obtain the required elements of
X, takes (n~r)? calculations. So, in all, A, requires

=12 +n—r+3)+(n—7)+2m—r+1)+1+ (n—7r)?
= 2(n—7r)2+4(n—7r)+6 calculations

In all, the method of Householder requires § calculations, where

n—2

S =Y [2(n—r)?+4(n—7r)+6]
r=1
= [In(n—1)(2n—1)—2]+[2n(n—1)— 4]+ 6(n—2)
= (203 —3n%+n— 6+ 6n2—6n—12+18n—36)
= 1(2n®+ 3n%+ 13n — 54)
$n—2)(2n2 +Tn+27)

(See Table 7.1.)

Tasir 7.1

n Hn—2) (2n2+ Tn+27)
3 22
4 58
5 112
6 188
7 290
8 422
9 588
10 792
20 5802
50 86032
100 677082

7.5 FuorTEER COMMENTS ON HOUSEHOLDER’S METHOD

Householder’s method requires about half the number of calculations that
Givens’ does, and is also a substantial improvement on Danilevsky’s method.
By comparison with Givens’ method, we can see that, for use on a computer,
we prefer the method of Householder, which is faster and requires less
storage. As a hand method, Householder’s is rather complex, and in this case
we may still prefer Givens’ method. We also note that, if any element is
already zero, we do not have to perform that particular transformation with
Givens’ method, but we can only miss out a Householder transformation if
all the required elements in a row are zero.

As with Given’s method, Householder’s method gives a stable reduction to
tridiagonal form.
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7.6 EXBRCISES

7.1. Use the method of Householder to reduce the following matrices to
tridiagonal form:

- 5 7 4 —4
7 9 —4
G) A={ 7 5 12 () A=
4 9 4 2
24 12 -2 4 4 9 _3

7.2. Show that the property of exercise 6.4 applies also to the Householder
transformation.




Chapter 8
THE METHOD OF LANCZOS

The method of Lanczos also reduces a matrix to tridiagonal form by means
of a similarity transformation. It finds the matrix producing the trans-
formation, not as a finite sequence of transformations, but by constructing
the sequence of column vectors that constitute this matrix.

8.1 TEE METHOD OF LANCZOS FOR SYMMETRIC MATRICES

Lanczos’ method reduces the matrix to the tridiagonal matrix C, which is
given by

ay by 0 0 ... 0 0 O
1 a, by 0 ... 0 0 ©
C=1 0 1 a b, 00 0
0 0 0 0 .. 01 a,

by finding Y such that € = Y-1AY. The method constructs the matrix Y as
a sequence of column vectors Y,,Y,,...,Y,, where each Y, is orthogonal to
each of the previous vectors in the sequence, and Y, , is given by the
recurrence relation

Y, = AY,—a,Y,—b,Y,_, (8.1)

T
where Y, =0 and Y, is arbitrary, and a,;, b, are chosen so that Y, ; is
orthogonal to ¥, and ¥,_;. We shall see shortly how we may find a; and b,,
but first we shall prove that Y, is generally orthogonal to each previous vector
of the sequence, and then that Y-1AY = C.

Theorem 8.1

If Y,,, is orthogonal to ¥; and Y;_,, then it is orthogonal to each previous
vector in the sequence.

Proof
From our choice of a, and b,, Y, will be orthogonal to ¥, and Y;. Assume
that ¥, is orthogonal to each previous vector. Then from equation (8.1) we

have
Y, ., =AY, —-a,Y,-b,Y,

-1
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so that, if r<i—1,
YV =Y AY, -0, YT Y, -5, Y'Y,
= YT AY,
= YT AY,
=Y (Y, 3+ Y, +b,Y, ;)
=0

Hence by induction the theorem is proved.

Theorem 8.2
€ = Y-1AY, providing that ¥,#0,¢1=1,2,...,n.
Proof
NowY¥=(Y, ¥, ... Y,),sothat
AY=A(Y, ¥, ... Y,)=(AY, AY, .. AY))
Also
ag bb 0 0 ... 0 0 0O
1 ag by 0 ... 0 0 O
YC=(Y, ¥, ... ¥) 0 1 a3 6, ... 0 0 0
0 0 0 0 .. 01 a,

=(0; Y1+ Y, 0, ¥, +0, ¥, +Y;5...0, Y, , +0a,Y,)
From equation (8.1) this gives
YC = (AY, AY, ... AY )=AY
Since the sequence ¥,,Y,,...,Y, forms an orthogonal set of vectors,
providing they are all non-zero Y~! will exist and hence
C=YT1AY
as required.
To find a; we premultiply equation (8.1) by ¥7 which gives
Y7V =Y AY,— 0, Y7 Y, -0, YIY,
and from the orthogonality requirement we get
or

Since Y7 Y, and Y7 AY, are both single elements we can easily determine a;.
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To find b; we premultiply equation (8.1) by YT, which gives

YL, Yy =Y, AY,~a, Y7, Y, -5, Y, Y, ,
so that
b, YT, Y, , =Y, AY;
= Y7 AY,,
=YI(¥;+a; Yo q+b; 1Y, )
=YY, (8.3)
which enables us to find conveniently b,. We note that if we normalize each
vector Y, so that Y7 Y, = 1, then each b, = 1 and the matrix Y is orthogonal.

Example 8.1
We take here the matrix A of example 6.1
0 3 4
A= 3 1 —1
4 -1 0
Let
1
Y, = 0
0
Then
0
YZY,=(1); AY,=( 3 |; YFAY,=(0)
4
8o that
al £ —? = O
and
Y2 = AYl_al Yl f—4 AY].
0
=| 3
4
0 3 4 0 25
4 -1 O 4 -3

YZAY,=( —15)




98 Latent Roots and Latent Vectors

so that
g, =55 =—% and b,=2% =25
and
Y= AY,—-0a,¥,-0,¥, = -1 +§ 3 §1—-251 0 } = 4
-3 4 0 -3
0 3 4 0 , 0
Yg‘Y:s:(l), AY,; = 3 1 -1 ¢ - 2
4 -1 0 -2 4
Y3 AY3=(%)
so that
8 S 1
a3=—:5[="5‘ a.nd b3::§-5
Hence
0 25 O
c=|1 -t &
o 1 &

which is the required tridiagonal matrix. If we compare this matrix with
the matrix A, of example 6.1, we can see that the leading diagonals are
identical, and that the product of corresponding elements on the super-
diagonal of A, is the same as the element on the upper superdiagonal of C.
Clearly we shall get the same Sturm sequence here as in example 6.1.

8.2 DEALING WITH A ZERO VECTOR IN THE LANo0z0oS METHOD

It is clear that theorem 8.2 does not hold if any Y, = 0, and, furthermore,
from equations (8.1) and (8.3) we can see that all successive veectors will
also be zero.

If we find that ¥, = 0, then we can select any non-zero vector X;, which is
orthogonal to all the previous vectors in the sequence. Then Y., is given by
Y= AX;—a, X, -0, Y, 4 (8.4)
Premultiplying equation (8.4) by XI we get
XIY;y =X AX, -0, X7 X~ 0, X7 Y, 4
so that
0=XTAX,—a,XTX,
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or
which is of the same form as equation (8.2). Now premultiplying equation
(8.1) by YT, we get
Y, Y, =Y, AX;~a, YT, X, -0, Y], Y,
so that
0=Y7,AX;-b,Y], Y, ,
or
b Y Y,y =Y],AX; = XTAY, ,

=XI(Y;+a, 4 Y, 3 +b,,Y,; )

since Y, is zero. Since Y7, Y, ,#0, this means that b, = 0, and we can see
that this means that the matrix € can be partitioned into two tridiagonal
submaitrices.

BExample 8.2
5 -2 -2 1
A={ -2 2 -4 |, ,={ o0
-2 —4 2 0
Then
5
YIY,=(1); AY, = -2 §; YTAY, =(5)
-2
so that
a;,=%=5
and

0
-2

1
0
0 -2
); YTAY,=( —16)

@, =—2 and b,=38

Y2TY2=(8), AY2=

so that
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which gives

8 /0 1
Yo=01 4 }+2f -2 §j—8} 0 J=1 0 =0
4 -2 0 0

Hence b; = 0. Now any vector of the form
XT=(0 0 ¢)

will be linearly independent of ¥; and Y, and we can then use the Gram-
Schmidt process to find an orthogonal vector.f When ¢ = 4, this gives

0
X;=| -2

2 )
" )

XIX,=(8), AX,=| —12 |, XFAX,=(48)
12

g0 that

Hence
ag =6

The required tridiagonal form is now given by

5 8 0
C= 1 -2 0
0 0 6

which has roots A; = A, = 6, A; = — 3.

8.3 NuMBER OF CALCULATIONS REQUIRED BY LANCzO0S8’ METHOD

It is convenient to take as the vector ¥,, the vector whose first component
is unity and the rest zero. In this case no multiplications or divisions are
required to find a, and Y,. Now to form AY, will require #? multiplications,
to form Y7 Y, » multiplications, to form YI AY, a further » multiplications,
and to form a, one division. Y will require » multiplications. So in forming Y,
we perform

n2+3n+ 1 calculations

+ See reference 11, p. 442, Here, of course, we only have to perform the one step of the
process since the previous vectors are already orthogonal.
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To find Y, requires (n®+3n+1)+(L+n)=n*+4n+2 calculations, and

similarly for all succeeding vectors up to ¥,. To find @, and b, requires a
further n?+ 2n + 2 calculations. So, in all, the number of calculations needed
by the Lanczos method is given by

S, =@n2+3n+1)+(n—3)(n2+4n+2)+(n2+2n+2)
= 1B 3n2—5n—3

(See Table 8.1.)

Tasre 8.1

n n343n2—5n-—3

3 36
4 65
5 172
6 289
7 452
8 661
9 924
10 1247
20 9097
50 132 247
100 1029 497

8.4 FurTtHER COMMENTS ON LaNczos’ METHOD
FOR SYMMETRIC MATRICES

Wilkinsont points out that in practice the vectors can quickly lose their
orthogonality property in which case we have to reorthogonalize. If we find

that Y, is not strictly orthogonal to all previous vectors, we replace it by
X, such that

X, =Y-d,) ¥, ~d, Y,—... -4, , ¥, ,
where
&GYTY, = YTY,

It is, of course, essential to the Lanczos method that strict orthogonality is
maintained, so that we ensure that our sequence of vectors are all linearly
independent. This necessity detracts somewhat from the practical value of
Lanczos’ method and certainly for computer use Householder’s method is
preferable. We note that, having found a latent vector of €, we only have
to multiply by Y to find the latent vector of A.

+ See reference 7, p. 394.
8
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8.6 Tre METrHOD OF LANCZOS FOR UNSYMMETRIC MATRICES

The method of Lanczos extends conveniently to reducing an unsymmetric
matrix to tridiagonal form. In this case Lanczos’ method constructs two
sequences of bi-orthogonal vectors.

We reduce A to the matrix € by constructing two sequences of vectors
Y.,Y,,...Y, and Z,, Z,, ..., Z, such that each Z, is orthogonal to the previous
Y vectors, and each Y, is orthogonal to the previous Z vectors.

The vectors Y,,, and Z;,, are given by the recurrence relations

Y1 =AY, -0, Y, ~b,Y, y, 2y, =ATZ;—c;2;—d;Z;
By the orthogonality requirements we find that
o, ZFY; = ZT AY,, b, Z7,Y, ,=Y]Z,
;Y[ 2, =YTATZ,, Y ,Z ,=17]Y,
which is similar to the symmetric case. Now it is clear that
28, Yoy =Y 2, ZTY,=Y{Z, ZTAY;=Y]ATZ,
which means that
a;,=c¢; and b;=4d,
so that the equations we need are

Y= AY;—0,¥,-b,Y, (8.5)

Zy,=ATZ;,—0,2,-b,Z, , (8.6)
a, ZTY, = ZT AX, (8.7)
bZL,Y, = Z]Y, (8.8)

If Y is the matrix whose columns are the vectors ¥,;,Y,,...,Y,, and Z is
the matrix whose columns are the vectors Z,,Z,, ..., Z,,, we now proceed to
show that, in general,

C=Y1AY =ZATZ

Theorem 8.3

If Y, is orthogonal to Z; and Z,_;, then it is orthogonal to Z; for all j
such that 1<j<¢—2. Similarly, if Z,, is orthogonal to Y; and ¥,_,, then it
is orthogonal to Y, for all j such that 1<j<i—2.

Proof

The proof here follows exactly the same lines as that of theorem 8.1 and
it would be mere repetition to include it.

Theorem 8.4
Y- and Z~! both exist providing that Z7 ¥,# 0 for all «.
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Proof
Now
Zr ZrY, Z'Y, .. ZTY,
zr ZrY, ZrY, .. ZFY
ZrY = 7 (Y, ¥, .. Y, )=} " 77 B
zr ZrY, ZTY, .. ZTY,
ZTY, 0 .. 0
0 ZIY, .. 0
0 0 .. ZTY,

so that providing ZF Y, 0 for all 7 it is clear that (Z7 Y)~! exists and hence
| ZTY |5 0. This, of course, means that |Z7| = |Z|#0 and | Y|+ 0. Hence Z-1
and Y- both exist, as required.

Theorem 8.5
C =Y 1AY = Z-1 AT Z providing that Z7 Y,+#0 for all ¢.

Proof

Theorem 8.4 has established the existence of Y1 and Z-1, This proof is
now identical with that of theorem 8.2.

We note that if we choose Y; and Z; so that Z7 Y, = 1, then b, = 1, and
from theorem 8.4 we see that Z7Y = 1. Hence Z7 = Y1,

Example 8.3
Here we take the matrix A of example 3.1.
0 -2 5
A= -7 1 9
-1 -2 6
Let
1
Y,=2,=] 0

0
) ATZ, =| -2
5
fY,=(1),

ZTAY, = (0)
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so that

1]
and
0
Y, =AY, -, Y, = -7 ), Zy=ATZ,—a,Z, =
-1
9 9
AY,=| —16 |, ATZ,=| -12
8 12
ZrY,=(9), ZTAY,=(72)
so that
Ay ="3=8, by=%=9
and
9 0 1 0
Y,={ —16 J—8] -7 J-9] o | =1{ 40
8 -1 ) 16
9 0 1 0
Z,=) —12 }-8f -2 }|-9f o | = 4
12 5 0 —28
0
AY,=| 184
16

(AT Z, is not required.)
ZIY;=( —288), ZIAY,=(288)

so that
288 — 288
a3=-_—2—8—8=—1 and b3=“—‘g-—-=*32
Hence the required tridiagonal matrix is
0 9 0
C= 1 8 -32

0 1 -1
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This is the matrix whose latent roots were found using Muller’s method in
example 5.4.

8.6 DEALING WITH ZERO VECTORS IN THE UNSYMMETRIC CASE

If either Y, = 0 or Z; = 0, then clearly Z Y; = 0 and theorem 8.5 does not
hold. In this case we proceed as for a zero vector in the symmetric case, that
is, we choose any non-zero orthogonal vector. But in this case we have to
note that, in general, b;#d; unless both Y; and Z; are zero, which we shall
now show. Suppose that ¥; = 0 and we replace it by a non-zero vector X;
which is orthogonal to all the previous Z vectors. Then

Y, =AX;~0;X;~-b,¥;

and premultiplying by Z7 , we get
27V = 2L AX —a, 27, X — b, 20, Y,

80 that
b 2L, Y, =27, AX, =XTATZ, ,
=XT(Z;+0;1Z; 1 +b; 1 Z; )
= XzT Zi
On the other hand,

Ziyy=ATZ;~c;2;—d;Z;
and premultiplying by YT, we get
YI,2,, =Y\ ATZ;— ;Y[ 2, -, Y], 2

1 Ti-14¢

so that
&Y, Z2, =Y}, ATZ,=ZT AY, ,
=ZI(Y+a; Y+, Y, )
=2ZTY,;=0

Hence, in general, d; = 0 but b;# 0. We further note that Y-* AY is now of
the form

a; b, 0 0 0 0 0 00 0
1 a, b, 0 0 0 0 00 0
c=f 0o o0 o 1 a., b, O 00 0
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whereas Z-1ATZ is of the form

ag b 0 ... 0 0 O O .. 0 0 O
1 ay by ... 0 0 0 0 .. 0 0 0
¢G,=§ 0 0 0 .. 1 a4, 0 0 .. 00 0
0 0 0 .. 0 1 a by, 00 0
0 0 0 ... 0 0 0 0 .. 01 g

Although C#C, we can partition them both into the same tridiagonal
submatrices.

Example 8.4
Here we take the matrix A of example 3.3.

1 -1 3 4 1
4 1 2 1 0
A=l s 2 1 1 ) BTk,
0 -1 1 O 0

1 1

av,— | P ), arz, - 7
R B 3
0 4

ZIY, = (1), ZTAY,=(1)

._L_.
T =

0

4 —1
L=,
0

8

1

AY, = ATZy = |

—4

ZTY,=(8), ZTAY,=(24)
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0 0
0 4
Y, = o I Z,= 4
0 —16

Since Y3 = 0 we have to choose a non-zero vector X, that is orthogonal to
both Z, and Z,. Any vector of the form

XT=(0 0 0 ¢)
where ¢ 0 is linearly independent of Z; and Z,. When ¢ = 13 the Gram-

Schmidt process gives

XI=(0 2 —6 5)
Since Y; = 0, dy = 0.
0 0
AX =5 ATZ 12
3 -7 ¥ 3 —-12
-8 8
ZIX,=( —48), ZITAX,=(136)
136 17 48
“="=Te BTy o0
0
13&,
Y, = AX;—a,X;—b,Y, = o
37
6
0
13_0.
Zy=ATZ—a, 7y~ dy Ty = o
3
112
3
0
13
AY4— 259 ’ ZZY4=(10336 )’ Z‘%’AY4=(@§‘S‘)
e
74
3
oy =%, by=-%2
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We can use either of the two tridiagonal matrices

1 8 0 0 1 8 0 0
1 3 -6 0 1 3 0 0
€= 17 259 or €= 17 259
0 0 —% —%¢ 0 1 % -5
00 1 & 00 1 1

to find the latent roots.t

8.7 FAILURE OF LaNczos’ METHOD ror UNSYMMETRIC MATRICES

We have seen in the previous section how we can deal with the case when
ZTY, = 0 because either Y; = 0 or Z, = 0. Unfortunately it is quite possible
for ZTY, =0, but Y,;#0 and Z;#0. If this is so Lanczos’ method breaks
down because we are unable to determine a; or b,,;, as can be seen from
equations (8.7) and (8.8). We note that this case is not possible for sym-
metric matrices with real coefficients.

Example 8.5
1 -1 1 1
A=} -1 o0 1}, Y,=Z,=] 0
-1 2 1 0
1 1
AY,={ -1}, ATZ,=| -1
—1 1
ZTY, = (1), ZTAY,=(1)
so that
a,=%=1
and
0 0
Y,=| -1 |, Z,=| -1
-1 1
0
2ZTY,=(0 -1 1) | -1 }|=(0)
-1

So here Y,#0, Z,#0 but ZT Y, = 0.

+ € is similar to A and €, to A7, so by theorem 1.9 their latent roots are the same. To find the
latent vectors of A we must of course use C. We note that Lanczos’ method also allows us
conveniently to find the latent vectors of AT,
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In this case the only possibility is to take different initial vectors and hope

that this condition is then avoided.
Here, if we take,

1
Y.=Z,=}] 1
1
we get
1 -1
AY,=| o |, A7Z, =] 1
2 3

Z1TY1=(3)a Zi"AY1=(3)

Ay =% =1

jed

-2
Y Zz':- 0

, ATZ,={ 6
0

1
0
1
2 —4
-1

Z§Y2=(2), ZgAY2=( —-6)

—_ 8 _ —2
az—’"g—-‘g, b2_3
3 __ 32
3 3
8 16
L= -8} Z;=| *#
4 6
3 3
16
3
- o 84 = 256
AY; = 0 |}, ZIY;=(-%), ZfAY;=( -3

.
ol

32
a; = 4, b3=——3—-
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So finally the required tridiagonal matrix is

1 2 o0
c={1 -3 -2
0 1 4

8.8 RELATIONSHIP BETWEEREN THE LANCZOS
AND Kryrnov METHODS

Tt is instructive to investigate the circumstances under which either Y, or
Z, will be zero, which we now do. From equation (8.5) we have

Y, =AY;~q,Y,-5, Y, ,

so that
Y,=AY, -0, ¥, = (A~-0q, DY,

Y;=AY,~a,Y,-5,Y,
={A-a, ) (A~a, )Y, -0,Y,
=[A%2— (2, +a) A+ (a,a,—by) I] Y,
Clearly, in general, we may put
Y =[A+p, Ar 1+ py A2 4 p,_ A+ p, 117,
=g(A)Y,

where
gA) = N +p X+ +p, A+ D,

and if Y,,, = 0 then g(A) is the minimal polynomial of ¥, with respect to A.
We saw in §4.1 that this was the polynomial found by Krylov’s method.
If we look back to example 8.4 we can see that the grade of Y, is two, the
result we had already obtained in example 4.2 using Krylov’s method.
Clearly, if the grade of Y, with respect to A is 7, then we shall have ¥, ; = 0.
Similarly, if the grade of Z, with respectto AT is g, then Z,,, = 0. It is
interesting to note that having g(A)Y; = 0 does not necessarily imply
that g(AT)Y, = 0.
We now have
Y..=9A)Y,
and
Z,,,=9ANZ,

t See example 8.4, where ¥, = 0 but Z; # 0 although Y, = Z,.
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so that

Z;Tr-a-l Y, = [9(AT) Z,79(A)Y,
=Z{ g(A)g(A) Y,

We can see that there are several possibilities for the vanishing of Z1,Y,
without Z,, or Y, , being themselves zero.

8.9 NuMBER OF CALCULATIONS REQUIRED BY LanNczos’ MeTHOD

If we take as the vectors Y, and Z, the vector whose first component is
unity and the rest zero, then no multiplications are required to find Y,, Z,,
and a,. To form AY, and AT Z, requires 2n* multiplications. To form Z] Y,
and ZT AY, needs a further 2» multiplications, and @, requires one division.
To find Y, and Z, requires 2n multiplications. So in forming Y; and Z; we
perform

202420+ 2+ 2n = 2(n?+ 2n + 1) calculations
To find ¥, and Z, requires (2n?-+4n+2)+(2n+1) = 2n*+6n+3 calcula-
tions, and similarly for all succeeding vectors up to ¥, and Z,. To find
a,, and b, requires a further n?+ 2n + 2 calculations. So in all, the number of

calculations needed by the Lanczos method for unsymmetric matrices is
given by

S,=2(n?+2n+1)+(n—3)(2n2+6n+3) +n2+2n +2
= 203+ 3n2—9n+4
= (n—1)(2n®+ 5n —4)

{See Table 8.2.)

TasLE 8.2
n (n—1) (2n®4-5n—4)
3 58
4 144
5 284
] 490
7 774
8 1148
9 1624
10 2214
20 17 024
50 257 054

100 2 029 104
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8.10 Furreer COMMENTS ON THE LANczos METHOD
FOR UNSYMMETRIC MATRICES

As in the symmetric case, in practice we shall have to reorthogonalize our
vectors. Bearing this in mind, plus the possibility of zero vectors and of a
complete breakdown, we can see that the method of Lanczos hardly compares
with that of Danilevsky. Even in the straightforward case Lanczos’ requires
more than double the calculations of Danilevsky’s. Nevertheless the Lanczos
method is extremely interesting from a theoretical point of view and is
useful to the understanding of the many related methods. Householder
presents an interesting account of Lanczos’ method in this direction.}

There are many other methods of reducing a matrix to tridiagonal form,
most of them practically superior to Lanczos.]

8.11 EXERCISES

8.1. Use the method of Lanczos to reduce the following symmetric matrices to
tridiagonal form,

6 3 4 2 4 3 0
4 -2 -3 2
O A=ls 64| @ a=f "
445 0 2 4 3
-1 1 2 2
1 3 -4 -4
(i) A=

2 -4 -3 -3
2 —-4 -3 -3

8.2. Complete the proofs of theorems 8.3 and 8.5.

8.3. Use the method of Lanczos to find the latent roots and vectors of the
following matrices. Also find the latent vectors of the transposed matrices.

4 18 12 4 —04 —08
G A=| 1 —49 -4 |, @ A=f1 06 07
-1 57 51 2 —08 24

1 38 -3 1 2 -1

Gi) A=f 5 —13 15 |, vy A=(3 2 1

4 —-12 14 6 11 3

t See reference 12,
1 See reference 7.
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8.4, Use the method of Lanczos, taking

1
Y,=Z,=}1 0
0
to show that A = YCY ! where
99 706 -70 1 0 0
A=}§ -14 -99 10 1, Y={ 0 —14 2%
1 7 6 0 1 38
99 -9870 O
o=| 1 e gy
0 1 218

Note that the characteristic equation of € is
A—8)(A-1)(A+1)=0

(See exercise 3.2.)
Show that if each arithmetic calculation is performed correct only to four

significant figures then the method of Lanczos yields

~ 9870 0

1 0 0 99
Y= 0 —-14 1 ) ¢ = 1 -9966 0-3103
6 1 766 0 1 0-6627

and that the characteristic equation of €, is
A3 —0-0027)% 4 2-91231 4 28-2942 = 0

which has the approximate roots

A==, Ay =14429i

Note that in this case Y, is far from being orthogonal to Z,.




Chapter 9

AN ITERATIVE METHOD FOR FINDING THE
LATENT ROOT OF LARGEST MODULUS AND
CORRESPONDING LATENT VECTOR

When we require all the latent roots and vectors of a matrix we would
generally choose a direct method of solution. Frequently we do not require
the complete solution, and in this case we are likely to choose an iterative
method of solution. For example, in §§ 2.2 and 2.3 we were concerned with
finding whether or not A”—0 as n->0, and hence were interested only in
the latent root of largest modulus. The method now to be described will

generally find this for us. It is a slight variation from the method usually
given.

9.1 Tuzg ITERATIVE METHOD
Let A;, ¢ = 1,2, ...,7n, be the latent roots of A with
. ‘All = Mz( T = iArL ‘)‘11>1A7‘+11> ">lAnt

Ap Ay, ..., A, being real. Also, let ¥ be an arbitrary column vector that can be
expressed in the form

Y, =0, X, +a,X,+... +a, X, (9.1)

where X, is the latent vector associated with A; and a, # 0. We then form the
sequence of vectors given by

Y, =4k, A?Y,
k, ., being for the moment an arbitrary scalar, so that
Y, = kg A2Y = k(o A?X; + ... +0, A% K +a,, AX 1+ 40, AK)
= ko B X 4.+ XK+ 0, A Xy o+ 42, A X)
Y, =k A2Y, = k&, A*Y,

= ey M X 4+ 0 K 0y My Ky o+, X))
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and in general

Y, =k, ;A2Y, , =kyky... b, APY,
=koky ... kp 3(a, AP X+ ... +a, P X, +a, N0 X+ +a, 2P X))

Now A2 = A2 =...= A2, s0 that

Y, = koky ... Top_y Agp{(al X, +...+a,X,)

AL \22 2\
o5 e

= koky... ky,_, 3P[B +E(p)] (9.2)

where B is independent of p, but the vector E(p) does depend on p. Let
Ypi» b; and e, (p) denote the ith elements of the vectors Y,, B and E(p)
respectively. Then

Ypi = ko ly ... kp_y N22[b;+e,(p)]

which means that, if y, ,,#0,

Ypi _  koky ..y XP[b,+e(p)]  _ kpy M +e(p)]
Yp-1i  Koky ...l s P Vb +e(p—1)]  [bi+ep—1)]

As p—>o0 it is clear that e,(p)—0, so that

Ypt o 2 (9.3)
Yp-14
Since the scalars k; will be known quantities this gives us the method for
finding the latent root of largest modulus, and in general the associated
latent vector. The usual choice of k; is such that the largest component of
k; Y, is unity, in which case k;! gives the ith estimate of A2.
The method normally presented forms the sequence

and the method given here is really looking at every other vector in this
sequence. I believe it has advantages in that it gives faster convergence,
does not suffer quite so much from rounding errors and tends to smooth out
local instabilities. We look first at a straightforward example.
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Example 9.1
12 3 11
A={ 1 2 -1 |, Yy=f o0}, k=1
2 3 -1 0
125 9 -—124
A= 12 4 -—12
25 9 24
125 1-0000
Y, =kA2Y,=| 12 | =125] 00960 |, k=125
25 0-2000
101-0640 1-0000
Y, =k A2Y, = | 99840 | =101-064| 00988 |, Kzl =101-064
21-0640 0-2084
100-0476 1-0000
Y, = £, A2Y, = 98044 | =100-0476{ 00989 |, Kzl = 100-0476
20-8876 0-2088
99-9989 1-0000
Y, =k A2Y, = | 98000 | =99-9080| 0-0989 |, k1 =99-9989
20-8789 0-2088

Clearly holding four decimal places we cannot improve the solution
further. Now
Jlkt = +9-9999

and a check shows that the positive sign is to be taken. This agrees very
well with the correct root of 10 and the latent vector, which is

1-0000
0-0989
0-2088
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correct to four decimal places. The convergence here is good because the
other two roots of A are Ay =2 and A, =1, so0

1 21
=2 4 % =15

>—’|>4

fad V2150

and the vector E(p) in equation (9.2) tends to zero quite quickly. In this
example if equation (9.4) is used we find, using the same Y,

10-0040 1-0000
Y, = 0-9892 =10-004§ 0-0989 §, k;'=10-004
2-0880 0-2087
10-0020 1:0000
Y, =k AY, = 0-9891 = 10-002§ 0-0989 }, k' = 10-002
2-0880 0'2087

and holding four decimal places we can only achieve two-place accuracy in
the latent root as opposed to three-place accuracy previously. This is, of
course, due to rounding errors, which are not bad in this example because
the matrix A is well conditioned. In fact, in this example there has been
no real gain by using A% for we first had to find A? and then check using A
which sign we should select for the root.

Ezxample 9.2
11 2 - 10 1
A=) -2 -—-10 2 , Yo={ 0}, k=1
1 2 0 0
107 ~18 —106 |
A= 0o 100 o )
7 ~18 -8
107 1-0000
Y, = kA2Y,=| © |=107{ 00000 ) kgt = 107
7 0-0654
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100-0676 10000
Y, =k A2Y, =| 00000 | =1000676] 0-0000 |, k;! = 100-0676
6-6076 0-0660
100-0040 1-0000
Y, =k A2Y, = | 00000 |=100004{ 00000 |, %= 1000040
66040 0-0660

Again, holding four decimal places, we cannot improve the solution further.
Now

Jkgt = +10-0002

Checking to determine which sign we should select we get

11 2 -~ 10 1-0000 10-3400 1-0000
-2 -10 2 0-0000 } =1 —1-8680 } = 10-34}] —0-1807
1 2 0 0-0660 1-0000 0-0967

and it appears that we have not in fact solved the problem. The reason for
this is that A actually has one root of 10 and another of — 10, and the vector

1-0000
6-0000
0-0660

is not a latent vector of A, but a linear combination of the two latent vectors
corresponding to the latent roots 10 and —10.1 In a case such as this it is
generally of advantage to use A2,

Example 9.3
Here we take the matrix of example 9.1 but start with a different vector.
126 9 —124 1
Ar=f 12 4 -12 |, Yo=( 1] k=1
25 9 -—-24 1
10 1-00
Y, =k A2Y, = 4 | =108 040 ), k=10
10 1-00

t We note that if X is a latent vector of A then by theorem 1.6 it is a latent vector of A2
but a latent vector of A2 is not necessarily a latent vector of A,

s
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460
Y, =k A2Y, = 160
4-60
4-15
Y, =, A2Y, = | 1-40

415

4-06
Y, =k, A2Y, = | 136
4-06
3-97
Y, = k,A2Y, = | 1-32
3-97

1-00 \
= 460} 0-35
1-00
1-00
= 4-15§{ 0-34

\ 1-00

1-00
= 4-06] 0-33
1-00
1-00 \
=397] 0-33

1-00

?

3

b

k5t = 4-60
bt = 415
k! = 4-06
kst = 3-97

119

We saw in example 9-1 that the latent root of largest modulus is 10, but
obviously we have not converged to this root here. To find the reason for
this we have to look back to our original assumptions. In equation (9.1) we
assumed that a, # 0. Now the latent vectors corresponding to the two latent

roots 2 and 1 of A are

1 1
X=1 %1 X=]0
1 1
and it is easily seen that here
Y, = 3X,-2X,

Hence a, = 0 and A, = 2 takes up the role of the dominant latent root.
Often rounding errors will cause a small component of X, to be introduced,
and then after an unstable start convergence to A, will eventually take place.
It is not usually pointed out, however, that examples, such as this one,
exist where this cannot happen. With Y as the starting vector it is clear that

Y, is always of the form
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which can be expressed as
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Y, =32, X, + (, — 32,) X5

This means that no component of X; can ever be introduced. Admittedly
this case is rare, but its possibility means that it is generally worth performing
a few iterations with another starting vector just to be on the safe side. It
is interesting to note that we can have this condition and still converge to
the correct latent root, as the next example shows.

Ezxample 9.4
Here we take the matrix A of example 3.1 which has roots

A1=A2:3, )\3=1

0 -2 5 1
A=) -7 1 9 ), Y,=§ 0o}, k=1
-1 -2 6 0
9 -12 12
A2=| —16 -3 28
8 —12 13
9 —0-56
Y, = kA2, ={ -16 |=-16{ 1.00 |, kl=-16
8 ~0-50
—23-04 100
Y, =k AY, =] -804 |=-2304{ 035 |, kyl=—23-04
~22-98 1-00
16:80 \ 100
Y, =k, A2Y,=| 1095 | =16-80f 065 |, ksl =1680
16-80 | \ 100 /
13-20 1-00 \
Y, =k, A2Y,=| 10005 | =13-20f 076 |, kil =1320
13-20 1-00
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Y, = k, A2Y, =
Y, = k,AY, =
Y, = k,A2Y, =
Y, = 1, A%Y, =
Y, = b A2Y, =
Y, = kp A2Y, =

Yn = km A2 Yl(l

Y12 = k'n A? Yn

Y1a = km A? Ym

11-88
9-72
11-88
11-16
9-54
11-16
10-80
9.45
10-80
10-44
9-36

10-44

10-20
9-30
10-20

10-08

\ 10-08
9-96
= ( 9-24 \
9-96
9-84
=1 921

9-84
972
=f{ 918
972

= 11-88

= 1116

10-80

10-44

= 10-20

9-27 = 10-08

= 9-96

= 9-84

= 9-72

1:00
0-82
1-00
1-00
0-85
1-00
1-00
0-88
100
100
0-90
1-00
1-00
0-91
1-00
100
0-92
1-00
1-00
0-93
1-00
100
0-94
100
1-00
0-94
1-00

»

gt =11-88
kgt = 11-16
let = 10-80
kgt = 10-44
kgt = 10-20
kg3 = 1008
kgl = 996
I} = 9-84
kg =972

121
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and holding two decimal places this is as far as we can go. Now
Jhd = 312

and we have not even achieved one-decimal place accuracy. Also, remember-
ing that A, = A, we have

5 _1

29
and (3)'® == 0-3 x 10719, so we would hardly expect such slow convergence.
The inaccuracy in the solution is due to rounding errors, this matrix being
particularly badly conditioned. If we use the sequence of vectors defined by
equation (9.4) and hold two decimal places, the convergence stops when
A; = 320 and the latent vector is

1-00
0-90
1-00

The correct latent vector is given by XI' = (1 1 1 ). We can see that in
situations such as these there is an advantage in working with A2 The
reason for the poor convergence is that the matrix A has only two latent
vectors, these beingt

1 1
X, = 1§, X,= i3
1 ;

Y, cannot be expressed as a linear combination of X, and X,, as is required
by equation (9.1). Here we have the remarkable situation that, even if we
start with a vector which is a linear combination of X, and X,, rounding
errors will tend to destroy this linear dependence.

Ezxample 9.5
4 1 —3 1
A= -5 -2 5 |, Y,=1 0}, k=1
2 -3 -1 0
5 11 —4
A? = 0 -16 0 )
21 11 —-20

t See example 3.4,
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5 0-24
Y, =k A2Y,=| o |=21] 000 |, kt=21
21 1-00
~2-80 0-19
Y, =k, A2Y, = 000 | =—1496{ 000 |, k=—1496
~14-96 100
~3-05 0-19
Y, =k, A2Y,=| 000 |=-1601] 000 |, ks'=—16-01
~16-01 1-00

and holding two decimal places this is as far as we can go. This is an inter-
esting example for we have converged to a negative value, the reason being
that the required root of A is imaginary. Now

Jk3t = £ 4-00¢

which corresponds exactly to the two roots of largest modulus of A. Here,
as in example 9.2, the vector

0-19
0-00
1-00

is a linear combination of the latent vectors of A. Clearly in a case such as
this it is of advantage to use A2,

Erample 9.6

| 4 1 16 1
A=| 2 20 -3}, Y,=f o), =1

3 1 17 0

66 40 333

A? = 39 399 -79

65 40 334

66 1-00

Y, =k A2Y,=| 30 | =66 059 |, =66

65 0-98
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41594 1-00

Y, =k A%Y, = | 19699 | =415.04] 047 |, Izl =41504
41592 | 1-00
417-80 1:00

Y, = k,A2Y, = | 14753 | =41780[ 035 |, k5! =417-80
\ 417-80 1-00
413-00 1-00

Y, =k, A2Y, = | 99-65 | =413-00{ 024 |, k! = 41300
\ 41300 K 1-00
40860 \ 1-00

Y, = k,A2Y, = | 5576 | =40860{ 014 |, It =4086

408-60 \ 1-00
404-60 \ 1-00

Y, =k, A2Y, = | 1586 | =40060] 004 |, K5t = 40460
404-60 1-00
40060 1-00

Y, =k A2Y,=| —2404 | =40060 —006 |, It =400-60

400-60 1-00

It appears here that no convergence is occurring. In such an instance we
suspect the matrix of having complex roots. In the next section we shall see
how these may be found without using complex arithmetic.

9.2 Finpine CoMPLEX RooTs

Once we have decided we are looking for complex roots it is better to
revert to using A, instead of A%, and the sequence defined by equation (9.4),
because, as will be seen, the roots are then easier to find.
Let the roots of largest modulus of A be 2; and A;, and let
A = a+iB sothat A, =oa—if

Also, let the corresponding latent vectors be X, and X, where these are also
complex conjugates.t

+ See theorem 1.19.
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Now, remembering that we are using the sequence of vectors of equation
(9.4), it is easily shown that the equation equivalent to (9.2) becomes

Y, = kgky ... kp_y[ay \p X, +, 08 Xy + B(p)]

where @, and a, are complex conjugates. Obviously A, and A, both satisfy
the same quadratic equation, say

A2 by A+by =0

Using this fact we find that

Y
b2Yp+b1 2l Yp+2 =kokl“-kp—1[sz(P)+b1E(P+1)+E(p+2)]
kza pKpia

Hence as p—>00,

b, Y Y
b, Y, +-Loptl, "p¥% g 9.5
270 k, kpkpi (9.5)

which enables us to find b, and b,.T Furthermore, if we put

a, X, = Z,+iZ,
then
a; X, = Z,—1iZ,
and clearly as p -0,
Y, —>2koky... by y 2y (9.6)
Also,

Y, = kol ... o la, M Xy +a, 01 X, + E(p +1)]

= koly ... loy[A)(Zy +0Z) + g2y —iZ) + E(p+1)]
= Tooky ... ky[20Z; — 2Z, + E(p +1)] (9.7)

Equations (9.6) and (9.7) allow us to find Z, and Z,, and hence the latent
vectors associated with A; and A,.

Example 9.7

We take here the matrix of example (9.6) which we already suspect of
having complex roots, and use as our starting vector the vector k,Y; of
that example.

1 If we were still working with A? the roots of the quadratic would be A2 and A} and some
complex arithmetic would be required to find A, and Age
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4 1 16 1-:00
A= 2 20 -3, Y,=| -006 |, £,=1
3 1 17 1-00
19-94
Y, =kAY, = —-220 |, k=1
19-94
396-60
Y, =k AY, = | —63-94
| 396-60
Now, putting
b, Y, +%+70%20~; =0
we get
1-00 19-94 —396-60
by —006 §+bf —220 | = 63-94
1-00 19-94 —396-60

Solving for b, and b, we findt
b, =—40 and b, =401
By solving the quadratic equation A%2—40A-+401 = 0 we obtain
Ay =20+¢ and A, =20—4

which are the exact latent roots of A.
From equation (9.6) we put

Y, = 2k, Z,
so that
9-97
Z,={ —110
9-97
t Note that here if we solve the first two equations the third one is automatically satisfied.

This will not generally be so, and we can perhaps use the third to determine whether or not we
need more iterates.
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and from equation (9.7) we put

Y, = ko ky[20Z) — 28Z,]

so that
Z, = élfa [20421 - %-;C—J

9-97 396-60 1-10

- % s0f -110 || -e6304 |1=| o907

9-97 396-60 1-10

Hence the latent vectors are given by
9-97 +1-10¢ 9-97-1-10¢
X, =0 -110+997% | and X,=| —110-997%

997+ 1105 9-97—1-10¢

which correspond to the exact latent vectors of A.

Although we reverted back to using A instead of A2, our earlier work was
not wasted, for we only required two further iterations. This example has
given particularly good results. It should be pointed out that this does not
necessarily follow because the quadratic equation

A24b A+by =0
is often ill-conditioned, especially if B (the imaginary part of A;) is small.{

0.3 IMmPROVING CONVERGENCE

In §9.1 we performed iteration using the simple polynomial in A, A% We
can, of course, use any polynomial in A to iterate with, because, from theorem
1.13, if X is a latent root of A, then f()) is a latent root of f(A). Naturally
there is not much point in using a polynomial for which it is laborious to
find the roots. A polynomial which is often of use in improving convergence
is one of the form A%—dI.

Suppose that the latent roots of A? are real and that

2
B>N=A>...22  >2

Then for any choice of d, either A} —d or X2 —d is the dominant latent root
of A?2—dI. The best convergence to A} —d will be obtained when

a=303+2)

+ See reference 7, p. 580.
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and to A2 —d
a=308+2)

for it is in these cases that the vector E(p) of equation (9.2) goes to zero
most rapidly.

Ezxample 9.8

Here we take the matrix A of example 9.1 and, being wise after the event,
we take d = 3(4+1) = 2-5 so0 that

1225 90 -124-0
A?—dl = 120 16 -12-0
250 90 265

Using Y, and k, as in example 9-1 we get

122:5 1-0000
Y, = kA2—-dD) Y, = | 120 | =1225] 00080 |, 2 =1225
25-0 0-2041
98-0736 1-0000
Y, = ky(A2—dD)Y, = | 96978 | =98-0736] 0-0989 |, k3! = 980736
20-4734 0-2088
97-4989 1-0000
Y, = ky(A2—dD)Y, = | 9-6428 | =97-4980| 0-0989 |, k3! = 974989
20-3569 0-2088

and we have now converged to the solution. This gives
22 = 97-4989+d = 99-9989

We can see that we have got the same solution as in example 9.1, but we have
reached it in three iterations instead of four. Whereas

p_1 a_1
%~ ™ %10
we now have

so that E(p) tends to zero somewhat faster.
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This device is extremely useful if we have some knowledge as to the
dominant and subdominant latent roots, or if convergence is slow because
of close roots. In the latter case the rate of convergence will give us an
indication as to what value of d should be selected, and if the roots of A are
real, it is especially useful working with A? because we know that its roots
will be positive. A full discussion of this type of shift of origin is given by
Wilkinson,t as well as an acceleration technique due to Aitken.

9.4 INVERSE ITERATION

Another useful possibility is to iterate with the polynomials (A%—dI)~! or
(A —dI)~'. The second case was the one recommended for finding the latent
vector of a tridiagonal matrix. Rather than computing the inverse itself we
solve at each stage the set of equations

(A2—dD) Y, = kY,
in order to find Y, ,. It is interesting to notice that in this method, with a
suitable choice of d, we can converge to any desired root. It is usual to use
a method such as triangular decomposition to solve the equations, altering

only the right-hand side at each stage. This method is analysed fully by
Wilkinson.

Example 9.9

Here we take the matrix A of example 9.2. We have already determined
that A2 = A2 = 100 and the rate of convergence suggests that the remaining
root is somewhat less than two. Taking d = 2 we get

105 —18 —106
A?—dl = 0 98 0

7 -—-18 -8
and taking
1

Yo=1 0}, k=1
0
then (A2-2I)Y, = k, Y, yields the equations
105y, — 18y, — 106y, = 1
98y, =0
Tyy —18y,— 8y, =0

1 See reference 7, pp. 572-584.
} Bee reference 7, pp. 619-626.
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which have the solution

y1 = 0-0816, y, = 0-0000, ;= 0-0714

so that
0-0816 1-0000
Y, =] 0-0000 } =0-0816f 00000 }, k= 00816
0-0714 0-8750

Then (A2-2I)Y, = £, Y, yields the equations
105y, — 18y, — 106y, = 1-0000
98y, = 0-0000
Ty, —18y,— 8y; = 0-8750
which have the solution

Yy = —0-8648, 1y, = 0-0000, y, = —0-8661

so that
~0-8648 0-9985
Y, = 0-0000 = —0-8661f 0-0000 §, k3! =—0-8661
—0-8661 1-0000

Then (A%-2I)Y; = k, Y, yields the equations
105y, — 18y, — 106y, = 0-9985
98y, = 0-0000
Ty, —18y,— 8ys = 1-0000
whieh have the solution

g1 = —1:0001, y, = 0-0000, g, = —1-0001

8o that
-~ 1-0001 1-0000
Y, = 0-0000 = 10001} 0-0000 [, k!=~—1-0001
- 1-0001 1-0000
Now

kgl+d = 1-0001
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and |/1-0001 = 1-0000 correct to four decimal places, which corresponds
exactly to the correct value of };, as does the latent vector

1
0
1

In this method, as in that of the previous section, we have the possibility
of adjusting d as we proceed. This is not to be recommended unless con-
vergence is not taking place or is slow, because this means that we have to
alter the left-hand sides of the simultaneous equations. We note that the
better the approximation d is to the latent root the more ill-conditioned the
equations become, so that care is needed in their solution.

Inverse iteration is one of the most useful of the available iterative methods.

9.5 MATRIX DEFLATION

There are numerous methods available for deflating an » x » matrix, A, to
one of size (n—1)x(n—1) having n—1 of the latent roots of A. This
technique is clearly useful in the context of this chapter. I intend to look
at one such method here. This is based on the unitary similarity trans-
formations of theorem 1.5.

Suppose that we have determined the latent root A, and the corresponding
latent vector X, of the matrix A, and that X, is normalized so that

X#X, =1

Then, if we take a unitary matrix C, having X, as its first column, we find
as in theorem 1.5 that

Ale € oo Cpy

CFAC, = C1AC = o - B,

n—1

0

where A, _; is an (n—1)x(r—1) matrix having Ay, Ay, ..., A, as its latent
roots. Once we have found a root of A, , we can then repeat the process
with A, ;. If we find all the latent roots of A in this manner we shall
eventually produce the triangular matrix of theorem 1.5. Let us write the
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matrix B; as

Then suppose that we have found the latent root A, and the corresponding
latent vector Z,_, of A,,_,. We get

(i) ) e
R Y E An-—l Zn-—l o Zn—-l S

which gives

Me+DTZ, | =2 (9.8)
and, of course,

A2, ,= A2 Zn—l
Equation (9.8) gives

z2=A—A)DTZ, , (9.9)
which allows us to find the only unknown element of the latent vector Y,.
From theorem 1.2 we have
.Y, =X,

from which we may find the latent vector X, of A.

It remains to be shown how we may find the matrix C,. We shall consider
only the case of a real latent vector, which means that C, is orthogonal, in
the hope that the extension to the complex case is then clear. It is convenient
to choose C; so that it is symmetrie,T of the form

C, =1-2YY”

as in the Householder transformation of §7.1, which means that
Gt =07 =0

If the elements of Y are y,,¥,,...,¥,, then
1-208 =219 - —201Y,
-2 1—-2¢42 ... -2

0, = I—-2YY” = ?‘!1% . Y2 ?{2?/11

~201%n  —2WaYn - 1-29%

and since we wish the first column of C; to be the latent vector X; whose
components are x,,%,, ...,-,, we get

1-203 =2, —201Y=%p., —2Yn=72n
and from these n equations it is easy to determine the values of y,,¥s, ..., ¥,.

+ In the complex case C; would be Hermitian.
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Subsequent deflations may be similarly performed. Although this method

requires more calculations than some of the other deflation methods, it is
quite general and is extremely stable.}

Example 9.10

16 -8 8
A= -8 10 20
-20 1 50

Suppose that iteration has given us the latent root of largest modulus of A,
which is A; = 48, and the corresponding latent vector, which is

1
8
1
2
1
Then normalizing so that X7 X, = 1 we get
5
8
9
This means that
1-241 =5
—21Ys=%
—21ys =%
and hence
=% %=-% y=-%
This gives
C1AC, = C AC,
348 16 -8 8\ /% & 3
(s 8 -3 -8 10 20| (¢ 3 -3
\§ -4 3 ~20 1 50/ \§ -4 3
48 -8 4
= o = =

11 58
\ o -1

t See reference 7, p. 594.
10
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We can now find the next latent root and vector using the deflated matrix

2 %
A, =
2 i1 58
=73 3

(=3
Ut
e

This gives A, = 16 and

From equation (9.9) we get

10
e=(16-48)1( -5 %) (“)=(-2>
1
so that the latent vector of A is given by
1 & & 5 83 1
9 9 ] 4 44
— A d A 10 9 63 4
X,=0GY,= 9 9 9 T =Y It T oqpy 7
44

§ -4 3 1 & 3

We could similarly deflate A, to obtain the remaining latent root A; = 12
and the latent veetor,

1
X3= 1
3

Deflation is often a very useful technique, especially for large matrices
when only a few of the latent roots and vectors are required. This method is
also useful in conjuction with § 2.4 in the case of equal roots.

9,6 FuRTHER COMMENTS ON THE ITERATIVE METHOD

It is clear that there are many circumstances under which an iterative
method is extremely useful. The case of complex roots needs especial care
because the quadratic equation can be ill-conditioned, but since we are
able to find two roots simultaneously it is not really surprising that we
are likely to need extra precision. The case that gives real difficulty is that of
a matrix not possessing n linearly independent latent vectors.f Methods
for dealing with this are discussed by Wilkinson.}

Although in nearly every instance we have taken k7' to be the element
of largest modulus in the vector Y, it is occasionally worth taking k; = 1

1 See example 9.4.
1 See reference 7, Chapter 9, §§ 16, 32, 41 and 53.
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for certain 4, especially for the firet few iterates, to iron out local instabilities
or to avoid rounding errors due to division of the elements in ¥,.

It is hoped that a reasonable case has been made for the use of A2 in
preference to A. Nevertheless, it is often quite adequate to use A, especially
if prior knowledge shows that no advantage is to be gained by using A2
We note that using A? approximately halves the number of iterations
required, but we have roughly #® extra calculations to make in finding A%

An interesting discussion of various iterative methods is also given by
Householder.}

9.7 EXERCISES

9.1. Find the latent roots of largest modulus and corresponding latent vectors
of the following matrices:

3 4 —4 5 2 —20
G A=f 2 1 -2 |, @ A=| 3 1 -3
-6 4 5 -10 2 -5
13 7 -12
(i) A=f -5 10 5
3 2 -2

9.2. By using the Frobenius matrix whose characteristic equation is
28 —9-4022 —1-442+ 1354 = 0
find the largest root of this cubie correct to two decimal places.
9.3. (i) A skew-Hermitian matrix is a matrix such that
A*=—-A

Show that the latent roots of a skew—Hermitian matrix are purely imaginary.
Hence show that if A is an n x n skew—Hermitian matrix where » is odd, then at
least one latent root is zero.

(ii) Find the two latent roots of largest magnitude of the matrix

0 3 5 1

-3 0 4 -5
A=

-5 -4 0 -3

-1 5 3 0

correct to two decimal places.

1 Bee reference 12, Chapter 7.
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9.4. Establish the equation
Y, = kyky ... kp_qfa, P X, +05 0P X, +E(p)]

of §9.2.
9.5. Given that the latent roots of the matrix
14 2 -12
A= 4 4 -2
3 2 -1

are approximately 10, 5 and 1, use the method of §9.3 to find the largest and
smallest of these to two decimal places.

9.6. If

20 -10 20 10 06 0 1 -1 2
A=] -10 25 -5 and W= —-10 5 O 6 1 3
20 -5 85 20 15 -10 0 o0 1

show that A—101 = LU. Taking &; = 1 and

1

Yo=1 0

0

solve the equations LUY, = k, Y, by first solving the equations LZ = k, Y, where
4
Z=UY,=1 2
%3

and then solving the equations UY, = Z.

Continue the inverse iteration to find the latent root close to 10 of the matrix A.
Notice that A~dI only needs to be decomposed into the product LU once for
the method of inverse iteration.

9.7. For the tridiagonal matrix A, of example 6.1 find a lower triangular matrix
L with unit elements on its leading diagonal, and an upper triangular matrix U
such that

A -NI=1LU
Solve the equations
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Perform one step of inverse iteration by solving the equations
LUY, =k, Y,

to find a more accurate latent vector of A,.

Finding a starting vector Y; by the above is the method recommended by
Wilkinson for performing inverse iteration on a tridiagonal matrix. In practice
Wilkinson has found that Y, is never then needed. For details of the method of
triangular decomposition, and the necessary pivoting techniques see (p. 23).

9.8. Given that one latent root of the matrix

-10 3 3
A=§ =50 17 10
48 -19 -3
is A, = 2 and that the corresponding latent vector is
1
X, = 2
2

use the method of matrix deflation to find the remaining latent roots and vectors.
9.9. The largest latent root of the matrix

3 583 1
Am 4 4 3 1
75 6 —6

111 9

is A; = 12 and the corresponding latent vector is
1
1
X, = 1
1

Use the method of deflation to find a three by three matrix whose latent roots
are the remaining latent roots of A. By iterating with this three by three matrix
find the next largest latent root of A and the corresponding latent vector. By
deflating once more find the other two latent roots and vectors of A.




Chapter 10

THE METHOD OF FRANCIS

The method of Francis, discovered also by Kublanovskaya and generally
referred to as the Q-R algorithm, is an iterative method that attempts to
reduce a matrix to triangular form. From a practical point of view this is
one of the most important methods at present available.

10.1 Tare ITERATIVE PROCEDURE

The method decomposes the matrix A into the product
A=QT

where @, is an orthogonal matrix and U, is an upper triangular matrix.
Then a matrix A, is formed by

A1 = U1 Q1
and since ;
A=Q,U,=Q,U,Q,Q;' = Q1A1Qf1

A, is similar to A. The method proceeds iteratively by forming the sequence
of matrices A, A,, ..., A,, ..., where

Ai = Ui Qz’

Q, being orthogonal and U; upper triangular and these being given by
decomposing A,_, into the product

Ai—-l = Qi Ui

Under certain conditions A, tends towards an upper triangular matrix as
i->00, 80 that the latent roots of A lie on the diagonal of this matrix.

The complete proof of the @R algorithm is by no means easy and only an
indication as to how the final result may be arrived at is given here.

10.2 RESULT OF THE ITERATIVE PROCEDURE

Let us put
W;=9,Q,..4

+ For a formal proof see reference 12, § 7.9. Also see reference 7, pp. 515 f.
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Then,
A =0,Q,=Q1QU,)Q = QA1 Q
=Q'Q44A,.Q.,Q;
= Qi—l ,;;1'1 ens Qi.l A‘Ql ven Q‘i*—l Qi
=(QQ;.--9;;9)AQ,Q,... Q.9
= W;L AW, (10.1)
so that A, is similar to A.
Also,
' A=Q,U,
so that
AQ1 = Q1U1Q1 = Q1A1 = Q1Q2U2
and

AQ1Q2 = Q1Q2U2Qz = Q1Q2A2 = Q1Q2Q3U3
Proceeding in this way we get
AQ1Q2 Qz = Q1Q2 Qi+1Ui+1

or
AW, =W, U,y (10.2)
From equation (10.1) this gives
A= WilAW, = Wi W,,, Uy, = WIW,,, U,y (10.3)
since W; is orthogonal.
Equation (10.2) allows us to investigate the limit of W, as ¢—o00, and

equation (10.3) then allows us to investigate A; as i >co. Clearly if W,—~W
{(say) as 400, then

A,~>U,,, asi—>00

where U, is of course upper triangular. It is possible to investigate the
limit in this full formt but instead an indication is given as to how this may
be arrived at inductively.

Instead of considering the sequence

AW, =W, Uy
first consider the equation
AY; =Y, ;75

where Y, is a column vector such that Y7 ¥, = 1 and r, is a scalar.

+ See reference 12, § 7.9.
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Theorem 10.1
If the latent roots of A are such that

al> ]2 2 2] A,

then 7,2, and Y,—X, as ¢—>00, where X, is the latent vector of A
associated with A, and
AY; =133 Y

Proof
Since 7, is chosen so that Y7 Y, = 1, the result follows immediately from
§9.1.
Next we consider the iterative procedure
AY; =Y, R,y

where Y, is a matrix containing two columns Y,; and Y, such that Y'Y, =1,
and R, is a two by two upper triangular matrix, that is,

Tir11 Titr2

AYi = A( Yﬂ Yiz ) = ( Yi+1,1 Yi+1,2 ) ( ) = Yi+1R'i+1

(10.4)

0 Tiv1,3

Theorem 10.2
If the latent roots of A are such that
A]> 121> 124] 2 .. 214, ]
then 74— Xy, r3—>2 and Y;; >X,; as ¢—>00, where these are given by the

above iterative procedure of equation (10.4).

Proof
Since Y7 Y, = I we get that Y] Y; = 1 and also we have, from equation
(10.4), that
AY; = YT+ Ve X 0= 73 Yo

Hence from theorem 10.1 7, —>2A, and Y, > X, as ¢ —>c0.
The second equation arising from equation (10.4) gives

AV, =Y, 1170t YinaTis

= Foae Yipna T 7es13 Yorne

Because YZ,,Y,,, =1, we must have that Y7,,,¥;,,, =0 and hence Y,
and Y,,, , are linearly independent.
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Now Y, ﬂ.l"’xl as ¢—> 00, 8o that Yiﬂ,ﬂ must become linearly independent
of X, as 4—>o0 and therefore becomes dominated by the next largest root,
that is A,. Hence 7, 3—> A, as 1—00, and the theorem is established.

Notice that ¥;,;,—>X, as ¢—oc0 only if X; and X, are orthogonal. In
particular this will be true if A is symmetric. Since Y, ; tends to a limit and
Y7,1Y050 =0, Y, , must also always tend to a limit.

It is hoped it is now clear how the following theorem may be established.

Theorem 10.3
If the latent roots of A are such that
A >125]> . > 1A, ]
then in the sequence defined by
AW, =W, Uiy
where W, is an orthogonal matrix and U; is upper triangular,
W,—>W (ie. W tends to a limit)

and the elements on the leading diagonal of U; tend to the latent roots of
A as 1>,

If W, W, then from equation (10.3) we get
A, =WIW,, U, »~W'WU,, =0,

We have now established that if no two latent roots of A are of equal
modulus then A, tends to an upper triangular matrix.

If the latent roots of A are not all of distinet modulus then A; may not
tend to an upper triangular matrix, but may instead have a block of elements
centred on the leading diagonal whose latent roots correspond to the latent
roots of A of equal modulus.

For example, suppose that A is a four by four matrix with

[AL]>125] = |A5] > A
and that
W,=(W; W, W5 W,)

Then clearly W, -> X, and W,,—V (say) as i—co, but W, and W,; may not
tend to a limit. (Compare with §9.2.) Also we can see that
AL ® xy
U, 0 a, 2, x4

0 0 b, =g

0 0 0 A

where x,,%,, ..., £ may or may not depend on .
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Then; since
1 0 0 0
LimWIW... = 0 WEW, 0. WEW.,5 O
i Wi =
>0 0 WEW, ;o WEW,,5 O
] 0 0 1
Lim A, = Lim(W7 W,,, U,,,) is of the form
i—>w 00

Al Ty zy %4

O 20 % %N
0 7, 8 Y
0 0 0 A

and the latent roots A, and A; are the latent roots of the matrix

( P % )
Ti 8,,:
The element r; may of course be zero, but, in particular, if A, and A; are

complex then r; will not be zero. The extension to the general case should
now be clear.

Theorem 10.4
Define a sequence by
AW, =W, U,
where W, is orthogonal and U, is upper triangular. Then if
Az‘ = Wip Wz’+1 Ui+1

A, tends towards a block triangular matrix as ¢ — 00, where the latent roots
of each block correspond to the latent roots of equal modulus of the matrix A.

10.3 PERFORMING THE METHOD

We now look at how that @-R algorithm is actually performed. We wish to
decompose A,_, into the product

Ay = QU;
This is done by finding @, such that
zT Ai——l = Ui

We form Q7 as the product of orthogonal matrices which are chosen as in
either the Givens or the Householder methods. Taking as representative the
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three by three matrix,
Oy Oyp Oyg
Aia=| oy ay ay
Ogy Ogg Ogs

we wish to introduce zeros into the a,y, @4, and ag, positions. The method of
Givens suggests that we rotate in the (1,2)-, (1, 3)- and (2, 3)-planes, so that
the first stage forms

&, $8 0 Q11 Qg Oy
PA= -8 ¢ 0 Qg1 Ogp Qgg
0 0 1 Oy Qg dgg

where ¢; = a,;(a}, +0a3,)"t and s, = ay,(a2, +a;)~t which will introduce the
required zero into the a,, position. Then successively P,(P, A, ;) and
P,(P,P, A,_,) are formed, where P, and P, are of the form

ca 0 s 1 0 0
P2 == 0 1 O 5 P3 = 0 03 83
—8; 0 ¢, 0 —s8 ¢

so that QF = P;P,P,. Then A, is given by
A;=U,Q,=TU PP, P)" = U P PP

In forming A; we compute in sequence U, P7, (U, P{)PT, (U, P7 PT)PT.
We can of course replace the Givens type transformations with those of
Householder and for computer purposes this is undoubtedly preferable in

general.
Example 10.1
3 7
A=
4 6

Then
c=ap(eh+ad) =% s=ayle}+af) =%
so that
2 4 3 7 5 9
QITA = s = = Ul
s 3 4 6 0 —2
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Then,
A —U.0Q (5 9 ) —4 ( 102 14
15 V1R = 0 -9 3 = 16 —12 )

At this stage A; = 10-2 and A, = —1-2.

ol e

Now
¢ = 10-2(10-22 + (— 1-6)2)~% = 0-99
= —1-6(10-22 + (— 1-6)2)% = — 0-15
so that
099 —015 102 14 10-34  1-57
wn- ) )-( )-v
0-15  0-99 ~16 —12 0 -098
Then
10-34 157 099 015 10-00  3-11
o ) )| )=
0 -098 ~0-15 0-99 0-15 —0-97

Ay = 10-00, A, = —0-97
¢ = 10-00(10-00%+ 0-152)~% = 100, s = 0-15(1-002+ 0-152)~% = 0-01
so that

1-00 0-01 10-00  3-11 10:00  3-10
o (5 )

—0:01 1-00 015 —0-97 0 - 1-00
Then ,
10-:00 3-10 1-00 —-0-01 10-03 3-00
U3Q3 = = S A3
0 —1-00 0-01 1-00 -0-01 —1-00

A = 10-03, Ay = —1-00

These are good approximations to the exact roots which are A; = 10 and
), = — 1. Notice that rounding errors have not seriously affected convergence
to the roots. Notice also that

06 —08 099 0-15 071 —-0-70
w00 o) (o ow)om om )

08 06 —~015 0-99 070 071
and
071 »0-70) 1:00 —0-01 070 —0-71
W, = = =
= Gk (0-70 0-71 001  1-00 071 0-70
Also

w=(3)= (o)

sk Sl
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Actually in exact arithmetic we clearly have that
I S 10 3
W, V2 V2 and U;— as ¢-—>00
L L 0 -1
vz v
Example 10.2
4 -3
A=
3 -2
Then
€ = %: 8§ = %
80 that
08 06 4 -3 50 —36
QT A = = =T,
-06 08 3 -2 0 0-2
and
50 -—36 0-8 —06 1-84 —5-88
0,Q, = ) = = Ay
0 0-2 06 08 012 0-16
A =184, X, =016
¢ =099, s=007
so that
099  0-07 1-84 —5-88 1-83 —5-81
QFf A, = = =T,
—~0-07 0-99 0-12 0-16 0 0-57
and
1-83 —-581 099 —-0-07 141 —5-88
U2 QZ = - 1 A2
0 0-57 0-07 099 0-04 056
Ay =1-41, A, =0-56
¢ =100, s=003
so that
1-00 003 141 -588 1-41 —5:86
Qg‘ Az = = = .[j3
—-0-03 1-00 0-04 056 0 0-74
and
141 586 1-00 —0-03 123 —590
U;Q; = = = A,
0 074 0-03 100 0-02 074

Ay == 1-23,

Ay = 0-74
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Hence convergence is slow to the latent roots which are A; = A, = 1. But
if A had been, say, a four by four matrix with the other two latent roots, for
example, A; = 10 and A, = 5, then at this stage we might have had

10+4+¢ zy Zg
0 54 gy z, x5
A3 =
0 0 1-23 —5-90
0 0 0-02 0-74

where ¢, and ¢, are small.

10.4 THE Q-R ALGORITHM AND HrEssENBERG FoRM

Clearly for a general matrix larger than a two by two matrix the Q-R
algorithm involves an excessive number of calculations. For this reason it is
advisable to reduce first the matrix to an upper Hessenberg form, that is, a
matrix of the form

bll bl2 b13 b14 o bln

{ b21 622 623 624 . b2n

b0 bu by by . by,
6 6 0 o0 .. b

We can apply either the Givens or the Householder transformations to a
matrix to obtain the Hessenberg form. Of course, if the matrix is symmetric
then B is tridiagonal. The important point here is that the Q-R algorithm
preserves the Hessenberg form, which makes this an extremely useful
technique.

Example 10.3

4 27 1
B=§ 3 24 -3
0 4 5

Then,
o= 443 =4, 5y = 342430 = 3
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so that
& 3 9 4 27 1 ° 5 36 -1
P,B=| -2 ¢ o 3 24 -3 J={0 3 -3
o 0 1 0 4 5 0 4 5
=3(824+42)F =2 5 =4(324+42)F=¢
so that
1 0 0 5 36 —1
Pp,PB=f 0 2% ¢ 0 3 -3
0 —-% % 0 4 5
50 360 —10
= 0o 50 22 |=QfB=1,
0 0 56
Then X
50 360 —10 £ 2 9 256 258 —1-0
U,PP=| 0 50 22 2 ¢ o}={ 30 40 22
0 0 56 0 0 1 0 0 56
and
256 258 —1-0 10 0
U,PTP{=| 30 40 22 0 & -&
0 0 0 & &
¢ 2560 14-68 —21-24
=| 300 416 -188 |=0,Q =B,
0 4-48 3:36

A =256, Ay==4:16, ), =336

and we see that B, is still a Hessenberg matrix. Clearly from the way in
which it is formed this will always be so.
Working to two decimal places, the next two iterations yield

27-25 -13-15 —20-37 2700 -—16:61 1869
B, = 0-61 5-24 -286 |, By;= 0-11 516 -3-17
0 0-85 0-46 0 0-12 0-81
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The exact latent roots are A; = 27, A, = 5, A; = 1. Notice that convergence
to the largest latent root has already taken place. It is possible to improve
convergence to the next root by using a shift of origin similar to that of §9.3.

10.5 SHIFT OF ORIGIN

Consider the sequence

AL, =U,Q+p1
where

QU,=4A,-p1
Then

Ay =UQ+p 1= QU Q;+p,1 = QY A, -p, 1) Q; +p,1
=@ AQ-p, Q' IQ;+ 9,1 = Q71 A, Q- p, I+ X
=Q;1A,Q,

so that A, is still similar to A; and must then, of course, be similar to A.
The standard @-R algorithm takes p, = 0 for all 7. A suitable choice of p,
may improve convergence to particular latent roots. For example, in the
matrix B, of example 10.1 a possible choice to improve convergence to A, = 5
would be to take p; = 0-81, this being the current estimate of A;. Whereas
the latent roots of By are A; = 27, A, = 5, A; == 1, the latent roots of B;—p,I
would obviously be A; = 26-19, A, == 4-19, A;==0-19, so that we have con-
siderably improved the dominance of A; over As.

Wilkinson gives a full discussion on suitable choices of p;, and of a
powerful double-shift technique.

10.6 ForTtEER COMMENTS ON THE Q-R ALcoRIiTHM

As a hand method the Q-R algorithm clearly presents a large amount of
computation and for this reason only three simple examples were given
earlier. As a computer method the Q-R algorithm, with suitable shift of
origin, is extremely powerful, mainly because it is a very stable method.

If the Q-R algorithm is applied to a general matrix then Householder-type
transformations are most suitable in reducing A to triangular form. But if
the matrix A is first reduced to Hessenberg form, which is generally advisable,
then Givens-type transformations only are needed in reducing B to triangular
form since each column of B only requires the introduction of one zero.

+ See reference 7, Chapter 8, §§ 36-45.
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10.7 EXERCISES
10.1. Apply the @-R algorithm to the following matrices:

30 85 7 -1
i A= : i A=
40 180 24 7
4 57 2 20 19 -29
Gi) B=| 3 34 -3 |, iv) B=| 15 19 -10
0 24 6 0 3 -4

10.2. Prove theorem 10.3.

10.3. Prove that the Q-R algorithm preserves the Hessenberg form.
104. If

6 0 1
B=§ 1 0 0
010

show that the Q-R algorithm gives B, = B for all <. Use a shift of origin to try to
obtain convergence.

10.4. Reduce the matrix
99 700 170
A={( -14 -9 10
1 7 6

to an upper Hessenberg matrix B, performing all calculations correct to four
significant figures. Apply the Q-R algorithm to the matrix B, again using four
significant figure accuracy, and employing suitable shifts of origin. Compare the
latent roots so obtained to those of exercises 3.2 and 8.4.

11




Chapter 11
OTHER METHODS AND FINAL COMMENTS

11,1 Brier SuMMARY oF OTHER METHODS

Some of the other methods available are listed below with very brief
comments, and references.
1. The Method of Rutishauser which is also called the L-R algorithm. It
led to the development of the Q-R algorithm of Francis and Kublanovskaya.
The matrix A is decomposed into a lower triangular matrix L, and an
upper triangular matrix U, such that |L;| = 1 and

A=LT,
We then form A, = U, L, and A, is then similarly decomposed as
A2 = Lz Ug

and A, = U,L, This process is continued iteratively and in general the
sequence A, A, ... will converge to an upper triangular matrix.

The method is important since it led to the @-R algorithm, but it is not
as general or as stable as that algorithm, (See reference 7, chapter 8; reference
13, pp. 45 ff.; reference 12, §7.7; reference 21, pp. 475 ff.)

2. The Method of Jacobi is an iterative method, which uses plane rotations
similar to those of Givens’, but with the aim of producing a diagonal rather
than a tridiagonal matrix. It is a stable method and generally produces
good latent vectors, but the number of calculations required will generally
be large compared with the methods of Givens or Householder. (See reference
7, pp. 266-282.)

3. The Method of Kaiser uses a Householder type of transformation, but
like the Jacobi method attempts to diagonalize the matrix. The method
achieves this by maximizing the first element on the leading diagonal rather
than reducing off-diagonal elements to zero. The method seems promising,
especially for large matrices when only a few of the latent roots are required.
(See reference 14.)

4. The Leverrier—Fadeev Method is based on the fact that

i ¢ = Trace of A¥

f==l
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It computes, for any matrix A, the coefficients of the characteristic equation
and the adjoint matrix of A. The sequence

A, =AAL-p4])
is constructed, where A; = A and
_ Trace of A,

T r
Then the characteristic equation is given by
AP —p ML= P A2 — L =Py A=p, =0 ,
and the adjoint matrix is (—1)»'B,_,, where B, , = A, _,—p, L If A1
exists, then A~ =B, _,/p,.

The method has no cases of breakdown, but the number of calculations
is somewhat prohibitive. (See reference 15, p. 193; reference 6, p. 177.)

5. The Escalator Method finds the relation between the latent roots of the
matrix and those of its principal submatrix. Then commencing with a two
by two matrix we successively build up to the n by # matrix, finding at each
stage the latent roots of the submatrix. The advantage of the method is that
accuracy may be fairly easily checked at each stage, but again the number
of calculations is prohibitive. (See reference 6, p. 183.)

6. The Method of Eberlein is based on the fact that any matrix is similar to
a matrix which is arbitrarily close to a normal matrix. (A is normal if
A*A = AA*) Eberlein’s method attempts to reduce A to a normal matrix N,
such that

IN| = [Dy]|Dy}...| D, |
where no D, is greater than a two by two matrix. The advantage of this
method is that the latent root problem of a normal matrix is well-conditioned.
Developments along these lines seem likely to provide an excellent algorithm.
(See reference 13, p. 53; reference 22.)

7. Matriz Squaring is a method similar to the iterative method of §9.1,
but instead of working throughout with A or A% we work with the sequence
of matrices A, A2 A4 A8, ..., A?. This is useful when the two latent roots
of largest modulus are poorly separated. (See reference 7, p. 615.)

8. Spectroscopic Bigenvalue Analysis is an iterative method due to Lanczos
and is based on replacing equation (9.4)

Yi = g AYi-l
= Kgky ... by (@, M X +a, X+ ... +a, X X))
by
Y, =a, T,A0) X; +a, T,(A) X, + ... +2,T,(2,) X,
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where T;(2) is the ith Chebyshev polynomial of the first kind. This, of course,
means secaling A so that —1<A;<1. There seems, at present, to be no
special advantage in this method over the more usual iterative methods.
(See reference 16, p. 190; reference 12, p. 188; reference 7, p. 617.)

11.2 FixaL COMMENTS

Whenever we use a method that finds directly the characteristic equation,
the condition of this equation should be carefully investigated, for many
polynomials are extremely ill-conditioned. We may easily turn a well-
conditioned latent root problem into an ill-conditioned polynomial problem.t
Though there are a large number of methods available, the complete solution
of the latent root and vector problem for a large unsymmetric matrix still
presents severe difficulties.

To date, the best answer seems to be to use a Householder-type trans-
formation to reduce the matrix to Hessenberg form, and then to apply the
Q-R algorithm to the Hessenberg matrix, both of these being stable processes.

For a symmetric matrix the method of Householder, together with inverse
iteration for finding the latent vectors of the tridiagonal matrix, is generally
quite adequate.

If we require only one, or a few, of the latent roots, then it is best to use
one of the iterative methods together with matrix deflation when more than
one root is wanted. If approximate values of the required latent roots are
known then inverse iteration provides an excellent method.

1 Bee reference 13, pp. 28-31.




Appendiz 1

THE LATENT ROOTS OF A COMMON
TRIDIAGONAL MATRIX

Let A be the common tridiagonal n x » matrix given by

a ¢ 0 0 ... 0 0
b a ¢ 0 ... 00
A=f 0 b a ¢ ... 00
0 0 0 O b a
We can write A as
A=0l+B

so that if A is a latent root of A and B is a latent root of B, we have from
theorem 1.13 that

A=a+8 (1)

If D,(B) = |B—pI|, we have

-8B ¢ 0 0 0

b —-B ¢ 0 ..

DB =| O b —-B ¢ ... 0 0 [=0

0 0 0 0 .. b -B
and expanding D, (B) by the first row we get

D,,(8) = — D, 4(8) ~beD, () )

which is very close to the recurrence relation for a Chebyshev polynomial.
Bearing this in mind we put

B =2(bcfz and D,(B) = (—1)*(be)2U,(x)
and substituting in equation (2) we get
(=1)* (be)*2U(x) = —2(— 1)1 (be)*2 2,y (2) — (— 1) ()2 U, (%)
which gives
U (@) = 22U,y (%) - U,,_4(%)
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and this is the recurrence relation for a Chebyshev polynomial. Noting that

D,(B) = 1 and D,(B) = — B we see that U,(x) is a Chebyshev polynomial of
the second kind, and hence

_sin(n+1)6
Uno) = =g
where z = cos § and we can see that the zeros of U, (x) occur when
& = CO8 m , r=12,..,n
n+1
which means that D, (B) = 0 when
rm
3_2J(bc)cosn+1, r=12,...,n 3

and hence the latent roots of A are given by

rm

A= a+2J(bc)cosn+1,

r=12,...,n

No knowledge of Chebyshev polynomials is required. Substitution of equa-
tion (3) in (2) shows that these are required roots.




SOLUTIONS TO EXERCISES

Chapter 1
5 1
1.1, (i) A=3 A=2 X =k , Xo=1Fk .
— -1
(i) Mrg=atbi, X, X,=F ) (E=4y-1)
Fi
(iii) A=3 =2 A=1

1 3
1
(iv) M=X=A=1 X=Ik| 0
1

1.5. Sinh # and cosh § can be defined from Fig. 5 as
sinhezg, coshd =2
r r

where the hyperbolic angle 0 is defined as 8 = 24/r%, A being the shaded area.

Hyperbola x*-y*-r?

y
(x,y}
|
E
A r! x
’ Fia

[ ]

. b
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This is analogous to defining sin @ and cos§ using the circle a2+y2 = 12, See
Fig. 6.

iy
(x,y)
x’«yfzr"
Al
\ﬂ x

r -

cost =2, sme =Y @= in

7 ¥

Fia. 6

It is interesting to notice that the matrix

()

transforms the circle 22442 = 72 into the hyperbola X2~ Y2 = 2. Since |P| =1,
the area of transformation is ¢, so that 14’ = 4, which means that ¢¢’ = 8. That is,

10 radians = 8 hyperbolic radians
By considering the transformation
10 cos & cos §' cosh 8
(0 i) ( sin 8’ ):( 48in 6’ )z(sinh{))
we have shown that cos (—6) = cos 8 = cosh § and ¢sin (—¢0) = —isin 48 = sinh 4.

Thus these relationships have been established without recourse to the exponential
fanetion. By showing that 4 (see Fig. 5) is given by

Y 2
4= f (P +ydy— oy = %loge (i}ﬁ)
1]

it is easy to show that cosh @ = 4(e?+e~%) and sinh § = }(e?~e~9).
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1.6. If X is a latent vector of AB and Y the corresponding vector of BA, then
BX =Y (and AY = X).

1.7. The matrix of exercise 1.1 (iv) has the same characteristic equation as L

1.10. AX = XX
Hence

X*A* = AX* (X is the complex conjugate of A)
whieh gives
X*A*AX = AX*AX = AX*X

But
A*A =1
so that
X#X = AAX*X
Hence

M=1 and [A]=1

1.13. See theorem 4.3 for the first part.
From theorem 1.14,

h(A)X = h(A) X

But
h(A) =0
Hence
B =0
1.18. (i) AN=15, X)y=+£26
(ii) M=34, MA=+45 A =0
n
1.20. When A =—a, XT = (—— Su; Ty Xy ... xn)
i=2
When A = a(n—1),XT = g(11...1).
1.28. For

form PQ and QP.
|PQ| =|QP|
Chapter 2
2.1. Axes of symmetry are the lines
4y=3x and 3y =-—4x

Distances are  and 4. (Since the curve is a hyperbola only one axis actually
meets the curve.)

12
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2.2. One axis of symmetry is the line 48z = 28y = 21z. Any line in the plane

Z+2y+2z = 0 is also an axis of symmetry. (One cross-section of the ellipsoid is a
circle.)

The distances are § and 1. (The radius of the circle is 1.)
2.3. Ellipse if A;, ,>0 or A, A, <0.

Cirele if A, = 2,50,

Hyperbola if A, >0,2,<0 or A; <0, ,>0.

Parabola if Ay = 0 or A, = 0.

(Straight line if A, = A, = 0.)

2.4. (i) A, = 2, A3 = —3, hence hyperbola.

(ii) A; = 13, A, = 0, hence parabola.

2.6. Jacobi scheme is

Typn= 2 3 — 3,— 3%,)
= (1= 2z, +0-12;, 4 0-1z,,)
3,41 = 70( — 39+ 402y, + 20z,, + 2,)
%y i1 = T00( 196 — 2021, — 102y, + 2, )

with @, = #yg = g = @49 = 0.
The Gauss-Seidel scheme is

Tipn= 3 3 — 3z, -— 3a,)
T = T— 20,4, +01z,,  +0-1z,,)
g pi1 = T00(—39+402y . + 209, + 22,)
Typi1 = To0( 195 =202, ) — 1009,y + T,y )

with gy = @, = 0 being the only initial values needed. The exact solution is
2, = 15,2y = 4:0, 3 = 0-5, 2y = —0-b.

2.7. (i) For Jacobi’s method, |M~ AL} = —A%4-0:01 = 0. Hence the method will
converge.

For the Gauss-Seidel method, |M— AI| = — A(A243-981—3-99) = 0. Hence the
method will not converge.

(i) For Jacobi’s method, |M—Al} = (A—~2)(—A2—24+4+1)=0. Hence the
method will not converge.

For the Gauss—Seidel method, |M—AL| = A%(~A—0-1) = 0. Hence the method
will converge.

Solution of (i) sz =y=2=1,
Solution of (iv)isx =y=2=1.

1 1
2.12. (i) X =k, e® +k, e’”(

1 -1

1 1
(i) X = ky e+ ) + eu~m( )
—2+414 —2—4




(i)

(iv)

™)

(vi)

(vii)

Solutions to Exercises

1 1
X = 3e¥ + 2e%
1 7
-2k, ~ 10k
( k, —2k,— 10k, )e_sl
X_ezt( 1—-2t)
V2\ 142

L)

2y + ky — 20,1

X= 362‘(

9 -3 1
X=lkel 1 |+ket] 1 |+kf 0
7 -3 1

159

2.13. (i) The latent roots of A, are A, = A, = 1, since these are both roots of A.
The latent vector of A, is

Hence

() X=| a

(iii) (a) Ty

(b) Ty

A )

1 0 0
=0 & ¢

0o ¢ %
1 — 2Tk, — 1836%; — 2025k,
2 e2t+1—15 — 60k, — 3705k, — 4500k, | ¢
2 — 39k, — 37027, — 2925k, ¢
1 — 10k, — 8/(2) by —15(2) k¢
0 @m\% 2k, + J@)ks + 3y(2) kgt
-1

8ky +10(2) ky+12/(2) kyt
by +2ky+2ks+ 9(ky+ks)t +5Mk,12
2ty — 2y + kg + 18(ky—2k5) £+ 81ky2 | e

2y + by — 2y +9(2hey—Fog) ¢+ 8Ly 12
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Ty, 1/l 1 1
2.16. (i) ( y )=—6( ) )3"+§( . )(—-1)"

%, 1 [ by—hkyt+dkyn
(ii) = (—=1)»
( Yn ) 2 ( by + kg + &by m )
Chapter 3
3.1, (@) A=3 A=2 A=-—4
3 1 19
X, =k] 6 §, X,=k} 3 ), X;=k] 45
2 1 1
—4
(i) MN=h=N=1 X=k 2
1
(ii1) M=2dha=2 M=M=A=1
41 —4
-15
X, =kf -7 X, =k 1
10 -3
1 0
3.2. Using arithmetic correct to four significant figures gives
-1 100 -670

A=| 005 695 —6
o 1 0

Notice that in exact arithmetic the a,, position is zero and hence A, =B is
not formed. This example highlights the dangers of a small pivot element. The
roots of

A —5-95X2—5-951+39:5 = 0
are
Ay =580, A, =268, A;=-—254

which do not bear much resemblance to the correct latent roots. Notice that b,
is quite close to the trace of A, but that b, is quite different from | A]. Most eom-
puters use floating point arithmetic, which means that calculations are performed
to a set number of significant figures, so that this sort of result is quite possible
in practice.
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3.3. 1
X=Fk} 1
2

Chapter 4

4.2. This starting vector yields the full characteristic equation
A3 —TA2-130-10=0
The grade of this vector with respect to A is four.
4.3. From §4.2 we have F = Y1 AY, where, of course,
Y=(Y, ¥, ... Y,,)
A latent vector, say Z, of F is easily found and then
X=YZ
where X is the corresponding vector of A. If r <n, then Y~ does not exist so that
F is not similar to A. (It is not even the same size.)
Chapter 5
5.1. () folx) = 2722 —40
| Fu(®) = $(80z+63)
Jolz) is positive

The exact roots are #; = §; @, &3 = §(—7 1 /13)

(ii) fo(@) = 423+ 1222 + 120+ 4
fole) = 25
The two real roots are 2;,z, = —1 4 /5.

Notice that having only three polynomials in the sequence means that at most
only two distinet real roots are possible because there cannot be more than two
changes of sign.

5.4. See Lanczost for an excellent discussion on orthogonal polynomials.

5.5. (i) Exact roots are A, = —3; Ay, A3 = —3 + /8.

(ii) Exact roots are Ay = —1; 2y, A =143

5.7. (i) Tt is not known under what conditions convergence takes place. The

advantage is that complex arithmetic is avoided.
(ii) The exact roots are

1,
Apy Ay = £t A Ay = i’t-@
where ¢ is the ‘golden ratio’, i.e.
1445
)

1 Reference 18.
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Chapter 6
6.2. (i) 6 5 0
B={5 92 -16 |, 3,=13 A3=3 XA=1
0 —-16 18 k
1 1 1
= 1]) X=| -1} x,={ 1
1 0 -2
(if) 1 10 o0
B=| 10 —20 0 }, A =X=5 A=-24
0 0 5
1 1
X, = S+% |, x,=] -2
—5+ 3 H

From the above set of vectors, any two orthogonal vectors can be chosen for X,
and X,. Notice X, is orthogonal to X, X, for all values of .

6.3. 2 5 0 0
5 -2 5 0
B=
0 5 6 -2
0o 0 -2 3
To the nearest integer the roots are A, = 9, A, = 5, Ag = 2,y = —7. Correct to two
decimal places A; = 2:00 and A, = —6-84.
1 1 1-00 1-00
- 0 x -2 - - 177 X -1-60
N S B A BT A Y SR Al S
-2 -2 0-15 0-66
Chapter 7
7.1. (i) 1 -2 0
B=§ -25 5 12
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(ii) 5 -9 0 0
-9 9 5 0

B=1 0o 5 24 -—12
0 0 =12 -94
Chapter 8
8.1. (i) 6 25 0 10 O
C={1 92 256 ), Y=4§ 0 3 64
6 1 18 0 4 -—48
(ii) 2 25 0 O 1 0 0 0
1 -2 25 0 0 4 -9 -24
C 1 ) Y -
0 1 6 4 0 3 12 32
o 0 1 3 0 0 20 -30
In both the above exercises it is assumed that YT =(1 0 ... 0).
(1if) -1 9 0 0
o | 1 % e o
0 1 500
0 0 0 0
Note that Y, = 0.
8.3. (i)
4 6 0 1 0O 0 1
=§ 1 -3 —-2¢ §}, Y=§ 0 1 -2 if ,=10
0 1 5 0 -1 3 0
1 1 1
M=Lap=2%=3 X = -3} X= -3 %= -3
B 2 z
12 3 8
Vectors of AT are
1 1 1
W= —-15 §, Wy=f ~22 J, W=} -27

~14 -20 —~24
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(i) 4 ~2 0\ 1
c=|1 2 & | if ,=| 0
0 0 1 0

Note that Y, = 0, hence b, will depend on the next vector chosen.

1 1
Alzl, Ag,A3=3i'I:, X1= gél , XZ’X3= l;ﬁ
£ 1%
Vectors of AT are
0
-06
Notice that
4 -2 0
=|1 2 o
0 1 1
and when A =1, g, 1. (See §6.3.)
1
Wl Wz - _2(1;521:)
__23;{:29'5
50
(iii) 1 3 0 1
C=11 -1 0 Y = 0
0o 0 2 0
Note that Y, = Z; = 0 so that b, = 0.
1
N=x=2 Nn=-2 X, X,=| k+5 |, X3={ -5
k+% -4
Vectors of A7 are
1 1
W, Wy={ 1-4t |, W,=| -3

~1+5k 3
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(iv) 1 1
N=d=4, A=-2 X, X,=f -1 |, X;={ -1
] 1
Vectors of AT are
1 1
W, W=} 1}, W=} —-%
0 g

Note that f YT =27 =(1 0 0)then ZTY,=0.

Chapter 9
9.1. (i) 1
A=9 X= %
-1
(i1) 143 1
A=—2=15 X = 4 |, X,=1 0
—61) 1
(iii) TF12
A Ay =1015i, X, X, = 9+5i
2T 3
9.2. z = 9-40.

Iterating with the Frobenius matrix is equivalent to using Bernoulli’s method
for finding the root of the largest modulus of a polynomial.

9.3. (ii) Exact roots are Ay, Ay = +4.,/(5)1.
9.5. \y =11, A3 =3—,5.
9.6. The equations LZ = k,Y,, which are easily solved by forward substitution,
give
21 =01, 2,=02, 2,=056

Then UY, = Z can be solved by backward substitution to give
Yy =—22, yy=-~13 y3=05H
Hence
1-000
Y, =-22] 04591 , kt=-22

—0-227
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Solving LUY, = %, ¥, gives

1-000
Y, =—3-082 0-578 , kgl =—3-082
—0-227
Solving LUY; = £, Y, gives
1-000
Y, = —3-065 0-578
-0-227
Hence
A= ~_;—66—5+ 10 = 9-67
9.7. A, —4-71501
—4-7150  5-0000 0-0000
= 5:0000 —5-3150 —0-20000
0-0000 —0-2000 —3-1150
1 0 0 —4-71500  5-00000 O-OOQOO
=| -106045 1 o 0 ~001275 —0-20000 | =LY
0-00000 15-6863 1 0 0 0-02226
Then
—~4-71500  5-00000 0 Yy 1
0 —0:01275 —0-20000 ¥ =11
0 0 0-02226 Ys 1
gives
—7556-1774 1
Y, = —7125-2763 } = —"7556-1774 0-9430 bkt = —7556:1774
44-92363 —0-0595
Solving LUY, = k, Y, gives
23362-142 1
Y, = 22030-700 = 2336-142 0-9430

—1414-4744 —0-0605
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This gives, correct to four decimal places, the latent vector of A,. (The latent
root was only given to four decimal places.) Notice that ¥, is extremely accurate.

9.8. 9

N=Xx=1, X,=X,=| 20
13

(Compare with exercise 2.13.)

9.9. SR S
1 1
A
=
1 _1 1 -1
g z % )
1 L 1
- -% %
which gives
1 i
80

=

KA

g

(o]

| |
/——\A
-
S O ©O
| ot e oo

o

I o | oo

[~ pont
w b
SO )

Tteration gives

0
Ay=10 and Z,= 1
-1
which gives
1
2
%
X, =
? 0
1
0 7& -7
C, = Vli‘a' 3 3
-vs b}
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which gives

which gives

and

Chapter 10

Latent Roots and Latent Vectors

10 5+ —5+%
C3'A,0,=f 0 % -1-1L

v
1 1
0 -1+ va

=1, A\ =-1

23 105
23 —38
X, = , X, =
—54 —77
1 1

10.1. (i) A =20, A, = 1.
(i) A =—X =5.

(i) A\, =37, 2 =6, )y =1.
(iv) A =855 My Mg = +1.
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Adjoint matrix, 8, 151

Axes of symmetry of conic section, 20f., 34
— — — of ellipse, 23, 34

~— — — of ellipsoid, 84

- — — of hyperbola, 34

Berezin, I. 8., and Zhidkov, N. P., 57
Bi-orthogonal vectors, 13, 102

Block triangular matrix, 142
Brauer’s theorem, 17

Cayley—Hamilton theorem, 8
Charscteristic equation, 1

— — of Frobenius matrix, 39

— value, see Latent root

Chebyshev polynomial, 74, 152, 153, 154
Circulant matrix, 19

Co-factor, 8

Common tridiagonal matrix, 29, 153
Companion matrix, 39, 40

Conic section, 20, 34

Crank-Nicolson method, 28, 30, 35, 36

Danilevsky, method of, 39ff., 85, 112

— — ——, instability of, 52, 54

- — -~y relationship with Krylov’s method,
58ff,

Deflation of matrix, 131ff,

— of polynomial, 73

Derogatory matrix, 60

Diagonal matrix, 13, 15

Difference equations, 38

Differential equations, partial, 26

-~ —, simultaneous, 30ff.

Eberlein, method of, 151
Eigenvalue, see Latent root
Ellipse, 22, 34

Ellipsoid, 34

Escalator method, 151

Faddeeva, V. N., 52, 57

Finite difference approximation, 28, 35
Francis, method of, see @-R algorithm
Frobenius matrix, 39., 58, 135

Gantmacher, F. R., 56

Gauss—Siedel method, 23ff., 34

— -—, convergence of, 26, 35, 36
Gerschgorin’s theorem, 9

Givens, method of, 76ff.

—— — —, stability of, 86

— transformation, 76ff., 142, 143, 146, 150
Golden ratio, 161

Grade of a vector, 56, 110

Gram-Schmidt process, 100, 107

Hermitian matrix, 17

— -y gkew—, 135

Hessenberg form, 146

Householder, A. 8., 112, 135

—, method of, 85, 87ff., 101, 152

— — —, stability of, 94

- transformation, 87ff., 132, 142, 143, 146,
150, 152

Hyperbola, 16, 34, 155

Hyperbolic angle, 16, 155

Idempotent matrix, 19

Inverse iteration, see Iterative methods
Isomorphie, 16

Iterative methods, 1144f.

— — for latent root of largest modulus, 114ff.
———————— , complex roots, 124ff,
———————— , imaginary roots, 123
- —, ilproving convergence of, 127{f.

— —, inverse iteration, 129ff., 152

— ~ — —, for tridiagonal matrix, 83, 85, 136

Jacobi method for finding latent roots, 150

— — — gimultaneous linear equations, 23ff.,
34

—————— , convergence of, 26, 35, 36

Jordan canonicsal form, 32

Kaiser, method of, 150

Krylov, method of, 55ff.

— — —, rolationship with Danilevsky’s
method, 58ff,

~~~~~ Lanczos’ method, 110

Kublanovskaya, method of, see Q-R algor-
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