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Abstract

Quantum counterparts of certain simple classical systems can exhibit chaotic behaviour through
the statistics of their energy levels. Gamma distributions do not precisely model the various an-
alytic systems discussed here, but some features may be useful in studies of qualitative generic
properties in applications to data from real systems which manifestly seem to exhibit behaviour
reminiscent of near-random processes. We use known bounds on the distribution function for
eigenvalue spacings for the Gaussian orthogonal ensemble (GOE) and show that gamma distribu-
tions, which have an important uniqueness property, can yield an approximation similarly good,
except near the origin, to that of the widely used Wigner surmise. This has the advantage that
then both the chaotic and non chaotic cases fit in the information geometric framework of the
manifold of gamma distributions, which has been the subject of recent work on neighbourhoods
of randomness for more general stochastic systems.
Keywords: Random matrices, quantum chaotic, eigenvalue spacing, statistics, gamma
distribution, randomness, information geometry

1 Introduction

Berry introduced the term quantum chaology in his 1987 Bakerian Lecture [4] as the study of semi-
classical but non-classical behaviour of systems whose classical motion exhibits chaos. He illustrated
it with the statistics of energy levels, following his earlier work with Tabor [5] and related develop-
ments from the study of a range of systems. In the regular spectrum of a bound system with n ≥ 2
degrees of freedom and n constants of motion, the energy levels are labelled by n quantum numbers,
but the quantum numbers of nearby energy levels may be very different. In the case of an irregular
spectrum, such as for an ergodic system where only energy is conserved, we cannot use quantum
number labelling. This prompted the use of energy level spacing distributions to allow comparisons
among different spectra [5]. It was known, eg from the work of Porter [13], that the spacings between
energy levels of complex nuclei and atoms with n large are modelled by the spacings of eigenvalues
of random matrices and that the Wigner distribution [18] gives a very good fit. It turns out that
the spacing distributions for generic regular systems are negative exponential, that is random; but
for irregular systems the distributions are skew and unimodal, at the scale of the mean spacing.
Mehta [11] provides a detailed discussion of the numerical experiments and functional approximations
to the energy level spacing statistics, Alt et al [1] compare eigenvalues from numerical analysis and
from microwave resonator experiments, also eg. Bohigas et al [7] and Soshnikov [15] confirm certain
universality properties.
Here we show that gamma distributions provide approximations comparable to the Wigner distribution
at the scale of the mean; that may be useful because the gamma distribution has a well-understood
and tractable information geometry [2, ?] as well as the following important uniqueness property:

Theorem 1.1 (Hwang and Hu [9]) For independent positive random variables with a common
probability density function f, having independence of the sample mean and the sample coefficient
of variation is equivalent to f being the gamma distribution.
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2 Quantum chaology and gamma manifold approximations
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Figure 1: The bounds on the normalized cumulative distribution function of eigenvalue spacings for
the GOE of random matrices (2.3) (dashed), the Wigner surmise (2.1) (dotted) and the gamma dis-
tribution function (2.5) (solid).

2 Eigenvalues of Random Matrices

The two classes of spectra are illustrated in two dimensions by bouncing geodesics in plane billiard
tables: eg in the de-symmetrized ‘stadium of Bunimovich’ with ergodic chaotic behaviour and irregular
spectrum on the one hand, and on the other hand in the symmetric annular region between concentric
circles with non-chaotic behaviour, regular spectrum and random energy spacings [5, 7, 11, 4].
It turns out that the mean spacing between eigenvalues of infinite symmetric real random matrices—
the so called Gaussian Orthogonal Ensemble (GOE)—is bounded and therefore it is convenient to
normalize the distribution to have unit mean. In fact, Wigner [16, 17, 18] had already surmised that
the cumulative probability distribution function at the scale of the mean spacing should be of the
form:

W (s) = 1− e−πs
2

4 (2.1)

which has unit mean and variance 4−π
π ≈ 0.273 with probability density function

w(s) =
π

2
s2 e−

πs2
4 . (2.2)

Remarkably, Wigner’s surmise gave an extremely good fit with numerical simulations and with a
variety of observed data from atomic and nuclear systems [18, 5, 4, 11].
From Mehta [11] p 171, we have bounds on the cumulative probability distribution function P for the
spacings between eigenvalues of infinite symmetric real random matrices:

L(s) = 1− e− 1
16π

2s2 ≤ P (s) ≤ U(s) = 1− e− 1
16π

2s2
(

1− π2s2

48

)
. (2.3)

Here the lower bound L has mean 2√
π
≈ 1.13 and variance 4(4−π)

π2 ≈ 0.348, and the upper bound U

has mean 5
3
√

5
≈ 0.940 and variance 96−25π

9π2 ≈ 0.197.

The family of probability density functions for gamma distributions having unit mean is given by

f(s) = κκ
sκ−1

Γ(κ)
e−sκ, for κ > 0 (2.4)
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Figure 2: Probabilty density function for gamma distribution with unit mean and same variance (2.6)
(solid) as the Wigner surmised density (2.2) (dotted) and the probability densities for the bounds (2.8)
(dashed) for the distribution of normalized spacings between eigenvalues for infinite symmetric real
random matrices.

and variance 1
κ . The maximum entropy case has κ = 1 and corresponds to an underlying Poisson

random event process; for κ > 1 the distributions are skew unimodular. The maximum likelihood
gamma distribution, of unit mean and the same variance as Wigner’s, has κ = π

4−π ≈ 3.660 with
cumulative probability distribution function given by

G(s) = 1−
Γ
(

π
4−π ,

πs
4−π

)
Γ
(

π
4−π

) (2.5)

and probability density function

g(s) =
e
−πs
4−π

(
πs

4−π

) π
4−π

sΓ
(

π
4−π

) . (2.6)

In fact, κ is a geodesic coordinate in the Riemannian 2-manifold of gamma distributions with Fisher
information metric [2]; arc length along this coordinate from κ = a to κ = b is given by

|
∫ b

a

√
d2 log(Γ(κ))

dκ2
− 1
κ
dκ| . (2.7)

Plotted in Figure 1 are the cumulative distributions for the bounds (2.3) (dashed), the maximum
likelihood gamma distribution with unit mean (2.5) (solid), and the Wigner surmised distribution
(2.1) (dotted). The gamma distribution and the Wigner surmise are very close together and within the
bounds but they differ near the origin. It would be interesting to know if other irregular spectra exhibit
energy spacings with different values of κ > 1. From a different standpoint, Berry and Robnik [6] gave
a statistical model using a mixture of energy level spacing sequences from exponential and Wigner
distributions.
The corresponding probability density functions in Figure 2 for the lower and upper bounds are the
derivatives of the bounding cumulative distributions from (2.3), respectively,

l(s) =
1
2
e−

πs2
4 πs, u(s) = − 1

384
e−

1
16π

2s2π2s
(
π2s2 − 64

)
. (2.8)
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Figure 3: Frequency histogram with unit mean for the spacings between the first 100,000 zeros of the
Riemann zeta function from the tabulation of Odlyzko [12], and the corresponding points from the
maximum likelihood gamma distribution which has κ = 5.427. The data has been collected into 30 bins
each of width 0.1.

3 Asymptotic Deviations

Berry has pointed out [3] that the gamma density (2.6) with κ = π
4−π does not have the correct

asymptotic linear behaviour at the origin for modelling the GOE case and that the behaviour near
the origin is an important feature of the ensemble statistics of these matrices. Moreover, for the
unitary ensemble (GUE) of complex hermitian matrices, near the origin, the behaviour is ∼ s2 and for
the symplectic ensemble (GSM, representing half-integer spin particles with time-reversal symmetric
interactions) it is ∼ s4.
From (2.6) we see that at unit mean the gamma density behaves like sκ−1 near the origin, so linear
behaviour would require κ = 2 which gives a variance of 1

κ = 1
2 . This may be compared with variances

for the lower bound l, 4(4−π)
π2 ≈ 0.348, the upper bound u, 96−25π

9π2 ≈ 0.197, and the Wigner distribution
w, 4−π

π ≈ 0.273. We note that the maximum likelihood gamma distributions fitted to the lower and
upper bounding distributions have, respectively, κL = π

4−π ≈ 3.660 and κU = 25π
96−25π ≈ 4.498.

The author is indebted to Rudnick [14] for pointing out that the GUE eigenvalue spacing distribution
is rather closely followed by the distribution of zeros for the Riemann zeta function. The spacings
between the first 100,000 zeros provided by Odlyzko [12], normalized here to unit mean, and a maxi-
mum likelihood gamma distribution are shown in Figure 3; the actual mean spacing was ≈ 0.749 and
the variance was ≈ 0.429 so the gamma distribution has κ = 5.427.
Remark It is clear that gamma distributions do not precisely model the analytic systems discussed
here, but some features may be useful in studies of qualitative generic properties in applications to
data from real systems. The gamma distribution provides a similarly good model to the Wigner
distribution, except near the origin, for the spacings between GOE eigenvalues of infinite symmetric
real random matrices. It would be interesting to investigate whether data from real atomic and nuclear
systems has generally the property that the sample coefficient of variation is independent of the mean.
That by Theorem 1.1 is an information-theoretic distinguishing property of the gamma distribution.
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