
An Introduction to the Quality of Computed
Solutions

Hammarling, Sven

2005

MIMS EPrint: 2005.29

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

An Introduction to the Quality of Computed Solutions1

Sven Hammarling

The Numerical Algorithms Group Ltd
Wilkinson House
Jordan Hill Road

Oxford, OX2 8DR, UK

sven@nag.co.uk

December 5, 2005

1Based on [Hammarling, 2005], Chapter 4 of [Einarsson, 2005], which is available for pur-
chase from SIAM athttp://ec-securehost.com/SIAM/SE18.html . The royalties go to the
SIAM Student Travel Fund.

http://ec-securehost.com/SIAM/SE18.html
http://www.siam.org/prizes/sponsored/travel.php

CONTENTS 1

Contents

1 Introduction 2

2 Floating Point Numbers and IEEE Arithmetic 2

3 Why Worry about Computed Solutions? 5

4 Condition, Stability and Error Analysis 9

4.1 Condition . 9

4.2 Stability . 14

4.3 Error Analysis . 19

5 Floating Point Error Analysis 23

6 Posing the Mathematical Problem 29

7 Error Bounds and Software 30

8 Other Approaches 34

9 Summary 34

Bibliography 35

1 INTRODUCTION 2

1 Introduction

This report is concerned with the quality of the computed numerical solutions of mathematical
problems. For example, suppose we wish to solve the system of linear equations Ax = b using
a numerical software package. The package will return a computed solution, sayx̃, and we wish
to judge whether or not̃x is a reasonable solution to the equations. Sadly, all too often software
packages return poor, or even incorrect, numerical results and givethe user no means by which to
judge the quality of the numerical results. In 1971, Leslie Fox commented [Fox, 1971, p. 296]

“I have little doubt that about 80 per cent. of all the results printed from thecomputer
are in error to a much greater extent than the user would believe, ...”

More than thirty years on that paper is still very relevant and worth reading. Another very readable
article is Forsythe [1970].

The quality of computed solutions is concerned with assessing how good a computed solution is in
some appropriate measure. Quality software should implement reliable algorithmsand should, if
possible, provide measures of solution quality.

In this report we give an introduction to ideas that are important in understanding and measuring
the quality of computed solutions. In particular we review the ideas of condition, stability and error
analysis, and their realisation in numerical software. We take as the principal example LAPACK
[Anderson et al., 1999], a package for the solution of dense and banded linear algebra problems,
but also draw on examples from the NAG Library [NAG, a] and elsewhere. The aim is not to show
how to perform an error analysis, but to indicate why an understanding of the ideas is important
in judging the quality of numerical solutions, and to encourage the use of software that returns
indicators of the quality of the results. We give simple examples to illustrate some ofthe ideas that
are important when designing reliable numerical software.

Computing machines use floating point arithmetic for their computation, and so we start with an
introduction to floating point numbers.

2 Floating Point Numbers and IEEE Arithmetic

Floating point numbers are a subset of the real numbers that can be conveniently represented in the
finite word length of a computer, without unduly restricting the range of numbers represented. For
example, the ANSI/IEEE standard for binary floating point arithmetic [IEEE,1985] uses 64 bits to
represent double precision numbers in the approximate range10±308.

A floating point number, x, can be represented in terms of four integers as

x = ±m × be−t,

where b is the baseor radix, t is the precision, e is the exponentwith an exponent rangeof
[emin, emax] andm is the mantissaor significand, satisfying0 ≤ m ≤ bt − 1. If x 6= 0 and

http://www.netlib.org/lapack/index.html
http://www.nag.co.uk/numeric/

2 FLOATING POINT NUMBERS AND IEEE ARITHMETIC 3

m ≥ bt−1 thenx is said to benormalized. An alternative, equivalent representation ofx is

x = ±0.d1d2 . . . dt × be

= ±
(

d1

b
+

d2

b2
+ · · · + dt

bt

)

× be,

where each digit satisfies0 ≤ di ≤ b − 1. If d1 6= 0 then we see thatx is normalized. Ifd1 = 0
andx 6= 0 thenx is said to bedenormalized. Denormalized numbers between0 and the smallest
normalized number are calledsubnormal. Note that denormalized numbers do not have the fullt
digits of precision.

The following example, which is not intended to be realistic, illustrates the model.

Example 2.1 (Floating point numbers)

b = 2, t = 2, emin = −2, emax = 2.

All the normalized numbers haved1 = 1 and eitherd2 = 0 or d2 = 1, that ism is one of the two
binary integersm = 10 (= 2) or m = 11 (= 3). Denormalized numbers havem = 01 (= 1). Thus
the smallest positive normalized number is2× 2emin−t = 1

8
and the largest is3× 2emax−t = 3. The

value1 × 2emin−t = 1

16
is the only positive subnormal number in this system. The complete set of

non-negative normalized numbers is:

0,
1

8
,

3

16
,
1

4
,
3

8
,
1

2
,
3

4
, 1,

3

2
, 2, 3

The set of non-negative floating point numbers is illustrated in Figure 1, where the subnormal num-
ber is indicated by a dashed line.

0 1 2 3

b = 2, t = 2, emin = −2, emax = 2

Figure 1: Floating Point Number Example

Note that floating point numbers are not equally spaced absolutely, but therelative spacing between
numbers is approximately equal. The value

u =
1

2
× b1−t (1)

is called theunit roundoff, or therelative machine precisionand is the furthest distance relative to
unity between a real number and the nearest floating point number. In Example 2.1,u = 1

4
= 0.25

2 FLOATING POINT NUMBERS AND IEEE ARITHMETIC 4

and we can see, for example, that the furthest real number from1.0 is 1.25 and the furthest real
number from2.0 is 2.5. u is fundamental to floating point error analysis.

The valueεM = 2u is calledmachine epsilon.

The ANSI/IEEE standard mentioned above (usually referred to as IEEE arithmetic), which of course
hasb = 2, specifies:

• floating point number formats,

• results of the basic floating point operations,

• rounding modes,

• signed zero, infinity(±∞) and not-a-number (NaN),

• floating point exceptions and their handling and

• conversion between formats.

Thankfully, nowadays almost all machines use IEEE arithmetic. There is alsoa generic ANSI/IEEE,
base independent, standard [IEEE, 1987]. The formats supported bythe ANSI/IEEE binary standard
are indicated in Table 1.

Format Precision Exponent Approx Range Approx Precision
Single 24 bits 8 bits 10±38 10−8

Double 53 bits 11 bits 10±308 10−16

Extended ≥ 64 bits ≥ 15 bits 10±4932 10−20

Table 1: IEEE Arithmetic Formats

The default rounding mode for IEEE arithmetic isround to nearest, in which a real number is
represented by the nearest floating point number, with rules as to how to handle a tie [Overton,
2001, Chapter 5].

Whilst the ANSI/IEEE standard has been an enormous help in standardizingfloating point com-
putation, it should be noted that moving a computation between machines that implement IEEE
arithmetic does not guarantee that the computed results will be the same. Variations can occur due
to such things as compiler optimization, the use of extended precision registers, and fused multiply-
add.

Further discussion of floating point numbers and IEEE arithmetic can be found in Higham [2002]
and Overton [2001].

The valueu can be obtained from the LAPACK function SLAMCH, for single precision arithmetic,
or DLAMCH for double precision arithmetic by calling the function with the argument CMACH
as’e’ , and is also returned by the NAG Fortran Library routine X02AJF1. It should be noted that
on machines that truncate, rather than round,εM is returned in place ofu, but such machines are
now rare. It should also be noted that ’e’ in S/DLAMCH representseps , but this should not be

1In some ports it actually returnsu + b1−2t. See the X02 Chapter introduction [NAG, b].

http://www.nag.co.uk/numeric/fl/manual/html/X02/x02_conts.html

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 5

confused withεM . The Matlab built in variableeps returnsεM [MathWorks], as does the For-
tran 95/Fortran 2003 numeric enquiry functionepsilon [Metcalf and Reid, 1996; Metcalf et al.,
2004].

3 Why Worry about Computed Solutions?

In this section we consider some simple examples of numerical computation that need care in order
to obtain reasonable solutions. For clarity of exposition, most of the examplesin this and the
following sections are illustrated using decimal floating point (significant figure) arithmetic, with
round to nearest.

The first example illustrates the problem of damaging subtraction, usually referred to ascancella-
tion.

Example 3.1 (Cancellation)
Using four figure decimal arithmetic, suppose we wish to computes = 1.000 + 1.000 × 104 −
1.000 × 104. If we compute in the standard way from left to right we obtain

s = 1.000 + 1.000 × 104 − 1.000 × 104 ⇒ (1.000 + 1.000 × 104) − 1.000 × 104

⇒ 1.000 × 104 − 1.000 × 104 ⇒ 0,

instead of the correct result of1.0. Although the cancellation (subtraction) was performed exactly,
it lost all the information for the solution.

As Example 3.1 illustrates, the cause of the poor result often happens before the cancellation, and the
cancellation is just the final nail in the coffin. In Example 3.1, the damage was done in computing
s = 1.000 + 1.000 × 104, where we lost important information (1.000). It should be said that the
subtraction of nearly equal numbers is not always damaging.

Most problems have alternative formulations which are theoretically equivalent, but may computa-
tionally yield quite different results. The following example illustrates this in the case of computing
sample variances.

Example 3.2 (Sample variance [Higham, 2002], Section 1.9)
The sample variance of a set ofn valuesx1, x2, . . . , xn is defined as

s2
n =

1

n − 1

n
∑

i=1

(xi − x̄)2, (2)

wherex̄ is the sample mean of then values

x̄ =
1

n

n
∑

i=1

xi.

An alternative, theoretically equivalent, formula to compute the sample variance which requires
only one pass through the data is given by

s2
n =

1

n − 1

n
∑

i=1

x2
i −

1

n

(

n
∑

i=1

xi

)2

 . (3)

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 6

If xT =
(

10000 10001 10002
)

then using 8 figure arithmetic (2) givess2 = 1.0, the correct
answer, but (3) givess2 = 0.0, with a relative error of 1.0.

(3) can clearly suffer from cancellation, as illustrated in the example. On theother hand, (2) always
gives good results unlessn is very large [Higham, 2002, Problem 1.10]. See also Chan et al. [1983]
for further discussion of the problem of computing sample variances.

Sadly, it is not unknown for software packages and calculators to implement the algorithm of (3).
For example in Excel 2002 from Microsoft Office XP (and in previous versions of Excel also), the
function STDEV computes the standard deviation,s, of the data

xT =
(

100000000 100000001 100000002
)

ass = 0. Considering the pervasive use of Excel and the importance of standard deviation and its
use in applications, it is disappointing to realise that (3) has been used by these versions of Excel2.
See Cox et al. [2000] for further information, as well as Knüsel [1998], McCullough and Wilson
[1999] and McCullough and Wilson [2002]. The spreadsheet from OpenOffice.org version 1.0.2
produces the same result, but gives no information on the method used in its help system; on the
other hand the Gnumeric spreadsheet (version 1.0.12) gives the correct result, although again the
function description does not describe the method used.3

A result that is larger than the largest representable floating point numberis said tooverflow. For
example, in double precision IEEE arithmetic for which the approximate range is10±308, if x =
10200, thenx2 would overflow. Similarly,x−2 is said tounderflowbecause it is smaller than the
smallest non-zero representable floating point number.

As with the unit rounding error or machine epsilon discussed in Section 2, theoverflow and under-
flow thresholds can be obtained from the LAPACK function S/DLAMCH by calling the function
with the argument CMACH as’o’ and’u’ respectively; from the NAG Fortran Library routines
X02ALF and X02AKF respectively; the Matlab built in variablesrealmax andrealmin ; and
from the Fortran 95 numeric enquiry functionshuge andtiny .

Care needs to be taken to avoid unnecessary overflow and damaging underflow. The following
example illustrates this care in the case of computing the hypotenuse of the rightangled triangle
shown in Figure 2.

x

y

Z
Z

Z
Z

Z
Z

Z
Z

z =
√

x2 + y2

Figure 2: Hypotenuse of a right angled triangle

2The algorithm has at last been replaced in Excel from Office 2003, which now gives the correct answer.
3OpenOffice.org version 2.0 also now gives the correct result.

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 7

Example 3.3 (Hypotenuse)
In Figure 2, ifx or y is very large there is a danger of overflow, even ifz is representable. Assuming
thatx andy are non-negative, a safe method of computingz is

a = max(x, y), b = min(x, y)

z =

{

a

√

1 +
(

b
a

)2
, a > 0

0, a = 0.

This also avoidsz being computed as zero ifx2 andy2 both underflow. We note that Stewart [1998,
p.139 and p.144] actually recommends computingz as

z =

{

s
√

(

x
s

)2
+
(

y
s

)2
, wheres = x + y, s > 0

0, s = 0

because this is slightly more accurate on a hexadecimal machine. An interestingalternative for
computing Pythagorean sums is given in Moler and Morrison [1983]; see also Dubrulle [1983] and
Higham and Higham [2005, section 22.9] .

We can see that (3) of Example 3.2 also has the potential for overflow and underflow and, as well as
implementing this formula rather than a more stable version, Excel does not takethe necessary care
to avoid underflow and overflow. For example, for the values (1.0E200,1.0E200), STDEV in Excel
2003 from Microsoft Office 2003 returns the mysterious symbol#NUM!, which signifies a numeric
exception, in this case overflow, due to the fact that(10.0200)2 overflows in IEEE double precision
arithmetic. The correct standard deviation is of course 0. Similarily, for the values (0, 1.0E-200,
2.0E-200), STDEV returns the value 0 rather than the correct value of 1.0E-200. OpenOffice.org
version 1.0.2 also returns zero for this data, and overflows on the previous data. Mimicking Excel
is not necessarily a good thing!4

The computation of the modulus of a complex numberx = xr + ixi requires almost the same
computation as that in Example 3.3.

Example 3.4 (Modulus of a complex number)

|x| =
√

x2
r + x2

i .

a = max(|xr|, |xi|), b = min(|xr|, |xi|)

|x| =

{

a

√

1 +
(

b
a

)2
, a > 0

0, a = 0.

Again this also avoids|x| being computed as zero ifx2
r andx2

i both underflow.

Another example where care is needed in complex arithmetic is complex division

x

y
=

xr + ixi

yr + iyi

=
(xr + ixi) (yr − iyi)

y2
r + y2

i

.

4OpenOffice.org version 2.0 now produces the correct result for the data (1.0E200, 1.0E200), but underflows for (0,
1.0E-200, 2.0E-200).

3 WHY WORRY ABOUT COMPUTED SOLUTIONS? 8

Again, some scaling is required to avoid overflow and underflow. See forexample Smith [1962],
Stewart [1985] and Priest [2004]. Algol 60 procedures for the complex operations of modulus, divi-
sion and square root are given in Martin and Wilkinson [1968] and the NAG Library Chapter, A02,
for complex arithmetic has routines based upon those Algol procedures, see for example NAG [b].
A careful C function is given in the Priest reference above. Occasionally, some aspect of complex
floating point arithmetic is incorrectly implemented, see for example Blackford etal. [1997, Section
7].

Another example, similar to the previous examples, requiring care to avoid overflow and damaging
underflow is that of real plane rotations where we need to computec = cos θ ands = sin θ such
that

c =
x

z
, s =

y

z
, wherez =

√

x2 + y2

or alternatively

c =
−x

z
, s =

−y

z
.

Another convenient way to express the two choices is as

c =
±1√
1 + t2

, s = c t, wheret ≡ tan θ =
x

y
. (4)

If G is theplane rotation matrix

G =

(

c s
−s c

)

,

then, with the choices of (4),

G

(

x
y

)

=

(

±z
0

)

.

When used in this way for the introduction of zeros the rotation is generally termed aGivens plane
rotation [Givens, 1954; Golub and Van Loan, 1996]. Givens himself certainly took care in the com-
putation ofc ands. To see an extreme case of the detailed consideration necessary to implementa
seemingly simple algorithm, but to be efficient, to preserve as much accuracy as possible throughout
the range of floating point numbers, and to avoid overflow and damaging underflow see Bindel et al.
[2002], where the computation of the Givens plane rotation is fully discussed.

Sometimes computed solutions are in some sense reasonable, but may not be what the user was
expecting. In the next example, the computed solution is close to the exact solution, but does not
meet a constraint that the user might have expected the solution to meet.

Example 3.5 (Sample mean [Higham, 1998])
Using three figure floating point decimal arithmetic:

(5.01 + 5.03)/2 ⇒ 10.0/2 ⇒ 5.00

and we see that the computed value is outside the range of the data, although it isnot inaccurate.

Whether or not such a result matters depends upon the application, but is an issue that needs to be
considered when implementing numerical algorithms. For instance if

y = cos x

4 CONDITION, STABILITY AND ERROR ANALYSIS 9

then we probably expect the property|y| ≤ 1 to be preserved computationally, so that a value
|y| > 1 is never returned. For a monotonic function we may expect monotonicity to be preserved
computationally.

In the next section we look at ideas that help our understanding of what constitutes a quality solution.

4 Condition, Stability and Error Analysis

4.1 Condition

Firstly we look at the condition of a problem. Theconditionof a problem is concerned with the
sensitivity of the problem to perturbations in the data. A problem is ill-conditioned if small changes
in the data cause relatively large changes in the solution. Otherwise a problem is well-conditioned.
Note that condition is concerned with the sensitivity of the problem, and is independent of the
method we use to solve the problem. We now give some examples to illustrate somewhat ill-
conditioned problems.

Example 4.1 (Cubic equation)
Consider the cubic equation

x3 − 21x2 + 120x − 100 = 0,

whose exact roots arex1 = 1, x2 = x3 = 10. If we perturb the coefficient ofx3 to give

0.99x3 − 21x2 + 120x − 100 = 0,

the roots becomex1 ≈ 1.000, x2 ≈ 11.17, x3 ≈ 9.041, so that the changes in the two rootsx2 and
x3 are significantly greater than the change in the coefficient. On the other hand, the roots of the
perturbed cubic equation

1.01x3 − 21x2 + 120x − 100 = 0,

arex1 ≈ 1.000, x2, x3 ≈ 9.896 ± 1.044i, and this time the double root has become a complex
conjugate pair with a significant imaginary part.

We can see that the rootsx2 andx3 are ill-conditioned. Note that we cannot deduce anything about
the condition ofx1 just from this data. The three cubic polynomials are plotted in Figure 3.

Example 4.2 (Eigenvalue problem)
The matrix

A =

10 100 0 0
0 10 100 0
0 0 10 100
0 0 0 10

has eigenvaluesλ1 = λ2 = λ3 = λ4 = 10, whereas the slightly perturbed matrix

B =

10 100 0 0
0 10 100 0
0 0 10 100

10−6 0 0 10

4 CONDITION, STABILITY AND ERROR ANALYSIS 10

0 2 4 6 8 10 12
−100

−50

0

50

100

150

Figure 3: Cubic Equation Example

has eigenvaluesλ1 = 11, λ2, λ3 = 10 ± i, λ4 = 9.

Example 4.3 (Integral)

I =

∫

10

−10

(

aex − be−x
)

dx

Whena = b = 1, I = 0, but whena = 1, b = 1.01, I ≈ −220. The functionf(x) = aex − be−x,
whena = b = 1 is plotted in Figure 4. Notice that the vertical scale has a scale factor104, so that a
small change in function can make a large change in the area under the curve.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

4

Figure 4: Integral Example

4 CONDITION, STABILITY AND ERROR ANALYSIS 11

Example 4.4 (Linear equations)
The equationsAx = b given by

(

99 98
100 99

)(

x1

x2

)

=

(

197
199

)

(5)

have the solutionx1 = x2 = 1, but the equations
(

98.99 98
100 99

)(

x1

x2

)

=

(

197
199

)

have the solutionx1 = 100, x2 = −99. The two straight lines represented by (5) are plotted in
Figure 5, but to the granularity of the graph we cannot tell the two lines apart.

0 10 20 30 40 50 60 70 80 90 100
−100

−80

−60

−40

−20

0

20

Figure 5: Linear Equations Example

To be able to decide whether or not a problem is ill-conditioned it is clearly desirable to have some
measure of the condition of a problem. We show two simple cases where we canobtain such a
measure, and quote the result for a third example. For the first case we derive the condition number
for the evaluation of a function of one variable [Higham, 2002, Section 1.6].

Let y = f(x) with f twice differentiable andf(x) 6= 0. Also let ŷ = f(x + ε). Then, using the
mean value theorem

ŷ − y = f(x + ε) − f(x)

= f ′(x)ε +
f ′′(x + θε)

2!
ε2, θ ∈ (0, 1)

giving
ŷ − y

y
=

(

xf ′(x)

f(x)

)

ε

x
+ O

(

ε2
)

.

The quantity

κ(x) =

∣

∣

∣

∣

xf ′(x)

f(x)

∣

∣

∣

∣

4 CONDITION, STABILITY AND ERROR ANALYSIS 12

is called thecondition numberof f since
∣

∣

∣

∣

ŷ − y

y

∣

∣

∣

∣

≈ κ(x)
∣

∣

∣

ε

x

∣

∣

∣
.

Thus ifκ(x) is large the problem is ill-conditioned, that is small perturbations inx can induce large
perturbations in the solutiony.

Example 4.5
Let y = f(x) = cos x. Then we see that

κ(x) = |x tanx|

and, as we might expect,cos x is most sensitive close to asymptotes oftanx, such asx close to
π/2.5 If we takex = 1.57 andε = −0.01 then we find that

κ(x)
∣

∣

∣

ε

x

∣

∣

∣ ≈ 12.5577,

which is a very good estimate of|(ŷ − y)/y| = 12.55739

For the second example we consider the condition number of a system of linear equationsAx = b.
If we let x̂ be the solution of the perturbed equations

(A + E)x̂ = b,

then
A(x̂ − x) = −Ex̂, so thatx̂ − x = −A−1Ex̂,

giving
‖x̂ − x‖
‖x̂‖ ≤ ‖A−1‖ · ‖E‖ =

(

‖A‖ · ‖A−1‖
) ‖E‖
‖A‖ . (6)

The quantity
κ(A) = ‖A‖ · ‖A−1‖

is called the condition number ofA with respect to the solution of the equationsAx = b, or the
condition number ofA with respect to matrix inversion. SinceI = AA−1, for any norm such that
‖I‖ = 1, we have that1 ≤ κ(A), with equality possible for the1, 2 and∞ norms. IfA is singular
thenκ(A) = ∞.

Example 4.6 (Condition of matrix)
For the matrix of Example 4.4 we have that

A =

(

99 98
100 99

)

, ‖A‖
1

= 199

and

A−1 =

(

99 −98
−100 99

)

,
∥

∥A−1
∥

∥

1
= 199,

5The given condition number is not valid atx = π/2, sincecos π/2 = 0.

4 CONDITION, STABILITY AND ERROR ANALYSIS 13

so that
κ1(A) = 1992 ≈ 4 × 104.

Thus we can see that ifA is only accurate to about 4 figures, we cannot guarantee any accuracy in
the solution.

The term condition number was first introduced by Turing in the context of systems of linear equa-
tions [Turing, 1948]. Note that for an orthogonal or unitary matrixQ, κ2(Q) = 1.

As a third illustration we quote results for the sensitivity of the root of a polynomial. Consider

f(x) = anxn + an−1x
n−1 + . . . + a1x + a0,

and letα be a single root off(x) so thatf(α) = 0, but f ′(α) 6= 0. Let p(x) be the perturbed
polynomial

p(x) = f(x) + εg(x), g(x) = bnxn + bn−1x
n−1 + . . . + b1x + b0,

with root α̂ = α + δ, so thatp(α̂) = 0. Then [Wilkinson, 1963, Section 7, Chapter 2] shows that

|δ| ≈
∣

∣

∣

∣

εg(α)

f ′(α)

∣

∣

∣

∣

.

Wilkinson also shows that ifα is a double root then

|δ| ≈
∣

∣

∣

∣

∣

(

−2εg(α)

f ′′(α)

) 1

2

∣

∣

∣

∣

∣

.

Example 4.7 (Condition of roots of cubic equation)
For the rootα = x1 = 1 of the cubic equation of Example 4.1, withg(x) = x3 andε = −0.01, we
have

f ′(x) = 3x2 − 42x + 120

so that

|δ| ≈
∣

∣

∣

∣

−0.01 × 13

81

∣

∣

∣

∣

≈ 0.0001

and hence this root is very well-conditioned with respect to perturbations inthe coefficient ofx3.
On the other hand, for the double rootα = 10, we have

f ′′(x) = 6x − 42,

so that

|δ| ≈
∣

∣

∣

∣

∣

(−2 ×−0.01 × 103

18

)
1

2

∣

∣

∣

∣

∣

≈ 1.054

and this time the perturbation ofε produces a rather larger perturbation in the root. Becauseε is not
particularly small the estimate ofδ is not particularly accurate, but we do get a good warning of the
ill-conditioning.

4 CONDITION, STABILITY AND ERROR ANALYSIS 14

Higham [2002, Section 25.4] gives a result for the sensitivity of a root of a general nonlinear equa-
tion.

Problems can be ill-conditioned simply because they are poorly scaled, oftenas the result of a poor
choice of measurement units. Some algorithms, or implementations of algorithms, are insensitive
to scaling or attempt automatic scaling, but in other cases a good choice of scaling can be important
to the success of an algorithm. It is also all too easy to turn a badly scaled problem into a genuinely
ill-conditioned problem.

Example 4.8 (Badly scaled matrix)
If we let A be the matrix

A =

(

2 × 109 109

10−9 2 × 10−9

)

,

thenκ2(A) ≈ 1.67 × 1018 and soA is ill-conditioned. However we can row scaleA as

B = DA =

(

10−9 0
0 109

)(

2 × 109 109

10−9 2 × 10−9

)

=

(

2 1
1 2

)

,

for which κ2(B) = 3, so thatB is well-conditioned. On the other hand if we perform a plane
rotation onA with c = 0.8, s = 0.6 we get

C = GA =

(

0.8 0.6
−0.6 0.8

)(

2 × 109 109

10−9 2 × 10−9

)

= 2

(

8 × 108 + 3 × 10−10 4 × 108 + 6 × 10−10

−6 × 108 + 4 × 10−10 −3 × 108 + 8 × 10−10

)

.

SinceG is orthogonal,κ2(C) = κ2(A) ≈ 1.67 × 1018, and soC is of course as ill-conditioned as
A, but now scaling cannot recover the situation. To see thatC is genuinely ill-conditioned, we note
that

C ≈ 2 × 108

(

8 4
−6 −3

)

which is singular. In double precision IEEE arithmetic, this would be the floatingpoint representa-
tion of C.

Many of the LAPACK routines perform scaling, or have options to equilibrate the matrix in the case
of linear equations [Anderson et al., 1999, Sections 2.4.1 and 4.4.1], [Higham, 2002, Sections 7.3
and 9.8], or to balance in the case of eigenvalue problems [Anderson et al., 1999, Sections 4.8.1.2
and 4.11.1.2].

4.2 Stability

Thestability of a method for solving a problem is concerned with the sensitivity of the methodto
(rounding) errors in the solution process. A method that guarantees as accurate a solution as the
data warrants is said to be stable, otherwise the method is unstable. To emphasise the point we note
that, whereas condition is concerned with the sensitivity of the problem, stabilityis concerned with
the sensitivity of the method of solution.

4 CONDITION, STABILITY AND ERROR ANALYSIS 15

An example of an unstable method is that of (3) for computing sample variance.We now give two
more simple illustrative examples.

Example 4.9 (Quadratic equation)
Consider the quadratic equation

1.6x2 − 100.1x + 1.251 = 0.

Four significant figure arithmetic when using the standard formula

x =
−b ±

√
b2 − 4ac

2a

gives
x1 = 62.53, x2 = 0.03125.

If we use the relationshipx1x2 = c/a to computex2 from x1 we instead find that

x2 = 0.01251.

The correct solution isx1 = 62.55, x2 = 0.0125. We can see that in using the standard formula to
compute the smaller root we have suffered from cancellation, since

√
b2 − 4ac is close to(−b).

Even a simple problem such as computing the roots of a quadratic equation needs great care. A very
nice discussion is to be found in Forsythe [1969].

Example 4.10 (Recurrence relation)
Consider the computation ofyn defined by

yn = (1/e)

∫

1

0

xnexdx, (7)

wheren is a non-negative integer. We note that, since in the interval[0, 1], (1/e)ex is bounded by
unity, it is easy to show that

0 ≤ yn ≤ 1/(n + 1). (8)

Integrating (7) by parts gives

yn = 1 − nyn−1, y0 = 1 − 1/e = 0.63212055882856. . . (9)

and we have a seemingly attractive method for computingyn for a given value ofn. The result of
using this forward recurrence relation, with IEEE double precision arithmetic, to compute the values
of yi up toy21 is shown in Table 2. Bearing in mind the bounds of (8), we see that later values are
diverging seriously from the correct solution.

A simple analysis shows the reason for the instability. Sincey0 cannot be represented exactly, we
cannot avoid starting with a slightly perturbed value,ŷ0. So let

ŷ0 = y0 + ε.

4 CONDITION, STABILITY AND ERROR ANALYSIS 16

y0 y1 y2 y3 y4 y5 y6 y7

0.6321 0.3679 0.2642 0.2073 0.1709 0.1455 0.1268 0.1124
y8 y9 y10 y11 y12 y13 y14 y15

0.1009 0.0916 0.0839 0.0774 0.0718 0.0669 0.0627 0.0590
y16 y17 y18 y19 y20 y21

0.0555 0.0572 -0.0295 1.5596 -30.1924 635.0403

Table 2: Forward Recurrence foryn

Then, even if the remaining computations are performed exactly we see that

ŷ1 = 1 − ŷ0 = y1 − ε
ŷ2 = 1 − 2ŷ1 = y2 + 2ε
ŷ3 = 1 − 3ŷ2 = y3 − 6ε
ŷ4 = 1 − 4ŷ3 = y4 + 24ε

and a straightforward inductive proof shows that

ŷn = yn + (−1)nn!ε.

Whenn = 21, n! ≈ 5.1091 × 1019. We see clearly that this forward recurrence is an unstable
method of computingyn, since the error grows rapidly as we move forward.

The next example illustrates a stable method of computingyn.

Example 4.11 (Stable recurrence)
Rearranging (9) we obtain the backward recurrence

yn−1 = (1 − yn)/n,

Suppose that we have an approximation,ŷn+m, to yn+m and we let

ŷn+m = yn+m + ε.

Then, similarly to the result of Example 4.10, we find that

ŷn = yn +
(−1)m−nε

(n + m)(n + m − 1) . . . (n + 1)

and this time the initial error decays rapidly, rather than grows rapidly as in Example 4.10. If we
take an initial guess ofy21 = 0, we see from (8) that

|ε| ≤ 1/21 < 0.05.

Using this backward recurrence relation, with IEEE double precision arithmetic, gives the value

y0 = 0.63212055882856,

which is correct to all the figures shown. We see that this backward recurrence is stable.

4 CONDITION, STABILITY AND ERROR ANALYSIS 17

It should also be said that the integral of (7) can be evaluated stably without difficulty using a good
numerical integration (quadrature) formula, since the functionf(x) = (1/e)xnex is non-negative
and monotonic throughout the interval[0, 1].

In the solution of ordinary and partial differential equations one form ofinstability can arise by
replacing a differential equation by a difference equation. We first illustrate the problem by the
solution of a simple nonlinear equation.

Example 4.12 (Parasitic solution)
The equation

e−x = 99x (10)

has a solution close tox = 0.01. By expandinge−x as a power series we have that

e−x = 1 − x +
x2

2!
− x3

3!
+ . . . ≈ 1 − x +

x2

2!

and hence an approximate solution of (10) is a root of the quadratic equation

x2 − 200x + 2 = 0,

which has the two rootsx1 ≈ 0.0100005, x2 ≈ 199.99. The second root clearly has nothing to do
with the original equation and is called aparasitic solution.

In the above example we are unlikely to be fooled by the parasitic solution, since it so clearly does
not come close to satisfying (10). But in the solution of ordinary or partial differential equations
such bifurcations, due to truncation error, may not be so obvious.

Example 4.13 (Instability for ODE)
For the initial value problem

y′ = f(x, y), y = y0 whenx = x0, (11)

the mid-point rule, or leap-frog method, for solving the differential equation is given by

yr+1 = yr−1 + 2hfr, (12)

whereh = xi − xi−1 for all i andfr = f(xr, yr). This method has a truncation error ofO(h3)
[Isaacson and Keller, 1966, Section 1.3, Chapter 8]6 This method requires two starting values, so
one starting value must be estimated by some other method. Consider the case where

f(x, y) = αy, y0 = 1, x0 = 0,

so that the solution of (11) isy = eαx. Figures 6 and 7 show the solution obtained by using (12)
whenh = 0.1 for the casesα = 2.5 andα = −2.5 respectively. In each case the value ofy1 is
taken as the correct four figure value,y1 = 1.284 whenα = 2.5 andy1 = 0.7788 whenα = −2.5.
We see that in the first case the numerical solution does a good job in followingthe exact solution,
but in the second case oscillation sets in and the numerical solution divergesfrom the exact solution.

6Here it is called the centered method. It is an example of a Nyström method.

4 CONDITION, STABILITY AND ERROR ANALYSIS 18

The reason for the behaviour in the above example is that (12) has the solution

yr = A
(

αh +
(

1 + α2h2
)

1

2

)r

+ B
(

αh −
(

1 + α2h2
)

1

2

)r

, (13)

whereA andB are constants that depend on the intial conditions. With the initial conditionsy0 =
1, x0 = 0 andy1 = eαh, x1 = h we find thatA = 1 + O(h3), B = O(h3). We can see that the
first term in (13) approximates the exact solution, but the second term is a parasitic solution. When
α > 0 the exact solution increases and the parasitic solution decays, and so is harmless, but when
α < 0 the exact solution decays and the parasitic solution grows as illustrated in Figure 7. An

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

Figure 6: Stable ODE Example

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

Figure 7: Unstable ODE Example

entertaining discussion, in the context of the Milne-Simpson method, of the above phenomenon is

4 CONDITION, STABILITY AND ERROR ANALYSIS 19

given in Acton [1970, Chapter 5], a book full of good advice and insight. A more recent book by
Acton in the same vein is [Acton, 1996].

4.3 Error Analysis

Error analysisis concerned with analysing the cumulative effects of errors. Usually these errors
will be rounding or truncation errors. For example, if the polynomial

p(x) = p0 + p1x + p2x
2 + · · · + pnxn

is evaluated at some pointx = α using Horner’s scheme (nested multiplication) as

p(α) = p0 + α (p1 + · · · + α (pn−2 + α (pn−1 + αpn)) . . .) ,

we might ask under what conditions, if any, on the coefficientsp0, p1, . . . , pn andα, the solution
will, in some sense, be reasonable? To answer the question we need to perform an error analysis.

Error analysis is concerned with establishing whether or not an algorithm isstable for the problem
in hand. Aforward error analysisis concerned with how close the computed solution is to the exact
solution. A backward error analysisis concerned with how well the computed solution satisfies
the problem to be solved. On first acquaintance, that a backward erroranalysis, as opposed to a
forward error analysis, should be of interest often comes as a surprise. The next example illustrates
the distinction between backward and forward errors.

Example 4.14 (Linear equations)
Let

A =

(

99 98
100 99

)

and b =

(

1
1

)

.

Then the exact solution of the equationsAx = b is given by

x =

(

1
−1

)

.

Also let x̂ be an approximate solution to the equations and define theresidual vectorr as

r = b − Ax̂. (14)

Of course, for the exact solutionr = 0 and we might hope that for a solution close tox, r should be
small. Consider the approximate solution

x̂ =

(

2.97
−2.99

)

, for which x̂ − x =

(

1.97
−1.99

)

,

and sox̂ looks to be a rather poor solution. But for this solution we have that

r =

(

−0.01
0.01

)

4 CONDITION, STABILITY AND ERROR ANALYSIS 20

and we have almost solved the original problem. On the other hand the approximate solution

x̂ =

(

1.01
−0.99

)

, for which x̂ − x =

(

0.01
0.01

)

,

gives

r =

(

−1.97
−1.97

)

and, althougĥx is close tox, it does not solve a problem close to the original problem.

Once we have computed the solution to a system of linear equationsAx = b we can, of course,
readily compute the residual of (14). If we can find a matrixE such that

Ex̂ = r, (15)

then
(A + E)x̂ = b

and we thus have a measure of the perturbation inA required to makêx an exact solution. A
particularE that satisfies (15) is given by

E =
rx̂T

x̂Tx̂
.

From this equation we have that

‖E‖
2
≤ ‖r‖

2
‖x̂‖

2

‖x̂‖2

2

=
‖r‖

2

‖x̂‖
2

and from (15) we have that

‖r‖
2
≤ ‖E‖

2
‖x̂‖

2
, so that ‖E‖

2
≥ ‖r‖

2

‖x̂‖
2

and hence

‖E‖
2

=
‖r‖

2

‖x̂‖
2

.

Thus, this particularE minimizes‖E‖
2
. SincexTx = ‖x‖2

F , it also minimizesE in the Frobenius
norm. This gives us ana posterioribound on the backward error.

Example 4.15 (Perturbation in linear equations)
Consider the equationsAx = b of Example 4.14 and the ‘computed’ solution

x̂ =

(

2.97
−2.99

)

for which r =

(

−0.01
0.01

)

.

Then

rx̂T =

(

−0.0297 0.0299
0.0297 −0.0299

)

, x̂Tx̂ = 17.761

4 CONDITION, STABILITY AND ERROR ANALYSIS 21

and

E ≈
(

−0.00167 0.00168
0.00167 −0.00168

)

.

Note that‖E‖F /‖A‖F ≈ 1.695×10−5 and so the computed solution corresponds to a small relative
perturbation inA.

From (6) we have that
‖x̂ − x‖
‖x̂‖ ≤ κ(A)

‖E‖
‖A‖

and so, if we knowκ(A), then an estimate of the backward error allows us to estimate the forward
error.

As a general rule, we can say that approximately:

forward error≤ condition number× backward error.

Although the idea of backward error analysis had been introduced by others, it was James Hardy
Wilkinson who really developed the theory and application, and gave us ourunderstanding of error
analysis and stability, particularly in the context of numerical linear algebra.See the classic books
Wilkinson [1963] and Wilkinson [1965]. A typical picture of Wilkinson, cheerfully expounding his
ideas, is shown in Figure 8. A wonderful modern book that continues the Wilkinson tradition is
Higham [2002]. The solid foundation for the numerical linear algebra of today relies heavily on the
pioneering work of Wilkinson; see also Wilkinson and Reinsch [1971]7

Wilkinson recognised that error analysis could be tedious and often required great care, but was
nevertheless essential to our understanding of the stability of algorithms.

“The clear identification of the factors determining the stability of an algorithm
soon led to the development of better algorithms. The proper understandingof inverse
iteration for eigenvectors and the development of the QR algorithm by Francis are the
crowning achievements of this line of research.

“For me, then, the primary purpose of the rounding error analysis was insight.”
[Wilkinson, 1986, p. 197.]

As a second example to illustrate forward and backward errors, consider we consider the quadratic
equation of Example 4.9.

Example 4.16 (Errors in quadratic equation)
For the quadratic equation of Example 4.9 we saw that the standard formula gave the rootsx1 =
62.53, x2 = 0.03125. Since the correct solution isx1 = 62.55, x2 = 0.0125 the second root has a

7In Givens 1954 technical report quoted earlier [Givens, 1954], which was never published in full and must be one
of the most oft quoted technical reports in numerical analysis, as well as the introduction of Givens plane rotations, it
describes the use of Sturm sequences for computing eigenvalues of tridiagonal matrices, and contains probably the first
explicit backward error analysis. Wilkinson, who so successfully developed and expounded the theory and analysis of
rounding errors, regarded thea priori error analysis of Givens as “one of the landmarks in the history of the subject”
[Wilkinson, 1965, Additional notes to Chapter 5].

4 CONDITION, STABILITY AND ERROR ANALYSIS 22

Figure 8: James Hardy Wilkinson (1919 – 1986)

large forward error. If we form the quadraticq(x) = 1.6(x − x1)(x − x2), rounding the answer to
four significant figures, we get

q(x) = 1.6x2 − 100.1x + 3.127

and the constant term differs significantly from the original value of 1.251,so that there is also a
large backward error. The standard method is neither forward nor backward stable. On the other
hand, for the computed rootsx1 = 62.53, x2 = 0.01251 we get

q(x) = 1.6x2 − 100.1x + 1.252,

so this time we have both forward and backward stability.

An example of a computation that is forward stable, but not backward stableis that of computing
the coefficients of the polynomial

p(x) = (x − x1)(x − x2) . . . (x − xn), xi > 0

In this case, since thexi are all of the same sign, no cancellation occurs in computing the coefficients
of p(x) and the computed coefficients will be close to the exact coefficients; thus we have small
forward errors. On the other hand, as Example 4.1 illustrates, the roots ofpolynomials can be
sensitive to perturbations in the coefficients and so the roots of the computedpolynomial could
differ significantly fromx1, x2, . . . , xn.

Example 4.17 (Ill-conditioned polynomial)
The polynomial whose roots arexi = i, i = 1, 2, . . . , 20, is

p(x) = x20 − 210x19 + . . . + 20!

5 FLOATING POINT ERROR ANALYSIS 23

Suppose that the coefficient ofx19 is computed as−(210 + 2−23); then we find thatx16, x17 ≈
16.73 ± 2.813i. Thus a small error in computing a coefficient produced a polynomial with signifi-
cantly different roots from those of the exact polynomial. This polynomial isdiscussed in Wilkinson
[1963, Chapter 2, Section 9] and Wilkinson [1984]. See also Wilkinson [1985, Section 2].

5 Floating Point Error Analysis

Floating point error analysisis concerned with the analysis of errors in the presence of floating
point arithmetic. It is based on the relative errors that result from each basic operation. We give just
a brief introduction to floating point error analysis in order to illustrate the ideas.

Let x be a real number; then we use the notation fl(x) to represent the floating point value ofx. The
fundamental assumption is that

fl (x) = x(1 + ε), |ε| ≤ u (16)

whereu is the unit roundoff of (1). Of course,

fl (x) − x

x
= ε.

A useful alternative is

fl (x) =
x

1 + δ
, |δ| ≤ u, so that

fl (x) − x

fl (x)
= δ. (17)

Example 5.1 (Floating point numbers)
Consider four figure decimal arithmetic with

u =
1

2
× 10−3 = 5 × 10−4.

If x =
√

2 = 1.414213. . . then fl(x) = 1.414 and

|ε| =

∣

∣

∣

∣

fl (x) − x

x

∣

∣

∣

∣

≈ 1.5 × 10−4.

If x = 1.000499. . . then fl(x) = 1.000 and

|ε| =

∣

∣

∣

∣

fl (x) − x

x

∣

∣

∣

∣

≈ 5 × 10−4 = u.

If x = 1000.499. . . then fl(x) = 1000 and again

|ε| =

∣

∣

∣

∣

fl (x) − x

x

∣

∣

∣

∣

≈ 5 × 10−4 = u.

5 FLOATING POINT ERROR ANALYSIS 24

Bearing in mind (16), ifx andy are floating point numbers, then the standard model of floating
point arithmetic, introduced by Wilkinson [1960], is given by

fl (x ⊗ y) = (x ⊗ y)(1 + ε), |ε| ≤ u,

where⊗ ≡ +,−,×,÷.
(18)

It is assumed, of course, thatx ⊗ y produces a value that is in the range of representable floating
point numbers. Comparable to (17), a useful alternative is

fl (x ⊗ y) =
x ⊗ y

1 + δ
, |δ| ≤ u.

When we consider a sequence of floating point operations we frequentlyobtain products of error
terms of the form

(1 + ε) = (1 + ε1)(1 + ε2) . . . (1 + εr)

so that
(1 − u)r ≤ 1 + ε ≤ (1 + u)r.

If we ignore second order terms then we have the reasonable assumption that8

|ε| ≤ ru. (19)

We now give three illustrative examples. In all three examples thexi are assumed to be floating
point numbers, that is, they are values that are already represented in the computer. This is, of
course, a natural assumption to make when we are analysing the errors in acomputation.

Example 5.2 (Product of values)
Let x = x0x1 . . . xn andx̃ = fl(x). Thus we haven products to form, each one introducing an error
bounded byu. Hence from (18) we get

x̃ = x0x1(1 + ε1)x2(1 + ε2) . . . xn(1 + εn), |εi| ≤ u (20)

and from (19) we see that
x̃ = x(1 + ε), |ε| ≤ nu, (21)

where
1 + ε = (1 + ε1)(1 + ε2) . . . (1 + εn).

We can see from (21) that this computation is forward stable, because the result is close to the
exact result, and from (20) the computation is also backward stable, because the result is exact
for a slightly perturbed problem; that is the result is exact for the datax0, x1(1 + ε1), x2(1 +
ε2), . . . , xn(1 + εn).

8Those who are uncomfortable with the approximation may prefer to replace the bound|ε| ≤ ru with one of the form
|ε| ≤ γr, whereγr = (ru)/(1 − ru) andru < 1 is assumed. See Higham [2002], Lemma 3.1.

5 FLOATING POINT ERROR ANALYSIS 25

Example 5.3 (Sum of values)
Let s = x1 + x2 + . . . + xn ands̃ = fl(s). By considering

sr = fl (sr−1 + xr) , s1 = x1

it is straightforward to show that

s̃ = x1(1 + ε1) + x2(1 + ε1) + x3(1 + ε2) + . . . + xn(1 + εn−1)

= s + (x1ε1 + x2ε1 + x2ε2 + . . . + xnεn−1), |εr| ≤ (n − r + 1)u.

Here we see that summation is backward stable, but is not necessarily forward stable. Example 3.1
gives a case where summation is not forward stable, but notice that the computed solution is the
exact solution of the slightly perturbed problem

1.000 + 1.000 × 104 − 1.0001 × 104 = 0,

which illustrates the backward stability.

Note that if thexi all have the same sign, then summation is forward stable because

|s̃ − s| ≤ (|x1| + |x2| + . . . + |xn|)nu = |s|nu

so that
|s̃ − s|
|s| ≤ nu, s 6= 0.

Example 5.4 (Difference of two squares)
Consider the computation

z = x2 − y2 (22)

We can, of course, also expressz as

z = (x + y)(x − y). (23)

If we computez from (22) we find that

z̃ = fl
(

x2 − y2
)

= x2(1 + ε1) − y2(1 + ε2)

= z + (x2ε1 − y2ε2), ε1, ε2 ≤ 2u

and so this is backward stable, but not forward stable. On the other hand, if we computez from (23)
we find that

ẑ = fl ((x + y)(x − y)) = (x + y)(x − y)(1 + ε)

= z(1 + ε), ε ≤ 3u

and so this is both backward and forward stable. As an example, if we take

x = 543.2, y = 543.1, so that z = 108.63

and use four significant figure arithmetic we find that

z̃ = 100, but ẑ = 108.6.

Clearly z̃ has suffered from cancellation, butẑ has not.

5 FLOATING POINT ERROR ANALYSIS 26

We now quote some results, without proof, of solving higher level linear algebra problems to il-
lustrate the sort of results that are possible. Principally we consider the solution of then linear
equations

Ax = b (24)

by Gaussian elimination and we assume that the reader is familiar with Gaussian elimination. The
kth step of Gaussian elimination can be expressed as

Ak = MkPkAk−1Qk, A0 = A, (25)

wherePk andQk are permutation matrices, one or both of which may be the unit matrix, chosen to
implement whatever pivoting strategy is used andMk is the multiplier matrix chosen to eliminate
the elements below the diagonal of thekth column ofAk−1. This results in the factorization

A = PLUQ,

whereP andQ are permutation matrices,L is a unit lower triangular matrix andU is upper trian-
gular. To simplify analysis it is usual to assume that, with hindsight,A has already been permuted
so that we can work withA ⇐ PTAQT. In this case (25) becomes

Ak = MkAk−1, A0 = A

andMk andAk−1 have the form

Mk =

I 0 0
0 1 0
0 −mk I

 , Ak−1 =

Uk−1 uk−1 Xk−1

0 αk−1 bT
k−1

0 ak−1 Âk−1

 .

mk is chosen to eliminateak−1, so that

ak−1 − αk−1mk = 0, giving mk = ak−1/αk−1,

Âk−1 is updated as

Ãk = Âk−1 − mkb
T
k−1 ≡

(

αk bT
k

ak Âk

)

and
A = LU, whereL = M−1

1
M−1

2
. . . M−1

n−1
, andU = An−1.

Since

M−1

k =

I 0 0
0 1 0
0 mk I

we have that

L =

1 0 · · · 0 0
m21 1 · · · 0 0
m31 m32 · · · 0 0

...
...

...
...

mn−1,1 mn−1,2 · · · 1 0
mn1 mn2 · · · mn,n−1 1

.

5 FLOATING POINT ERROR ANALYSIS 27

It can be shown that the computed factorsL̃ andŨ satisfy

L̃Ũ = A + F,

where various bounds onF are possible; for example, for the1,∞ or F norms

‖F‖ ≤ 3ngu‖A‖, g =
max ‖Ãk‖

‖A‖ .

g is called thegrowth factor. Similarly it can be shown that the computed solution of (24),x̃,
satisfies

(A + E)x̃ = b,

where a typical bound is
‖E‖ ≤ 3n2gu‖A‖.

We can see that this bound is satisfactory unlessg is large, so it is important to chooseP or Q, or
both, in order to control the size ofg. This is essentially the classic result of Wilkinson [1961] and
Wilkinson [1963, Section 25], where the∞-norm is used and the use of partial pivoting is assumed;
see also Higham [2002, Theorem 9.5].

The next example gives a simple demonstration of the need for pivoting.

Example 5.5 (The need for pivoting)
Consider the matrix

A =

(

0.001 12
10 −10

)

.

and the use of four significant figure arithmetic. Since this is just a two by two matrix we have that
M−1

1
= L andM1A = U . Denoting the computed matrixX by X̃, we find that

L = L̃ =

(

1 0
10000 1

)

, U =

(

0.001 12
0 −120010

)

and Ũ =

(

0.001 12
0 −120000

)

,

which gives

U − Ũ =

(

0 0
0 10

)

and

F = L̃Ũ − A =

(

0 0
0 10

)

= U − Ũ .

Thus whilst‖F‖ is small relative to‖U‖, it corresponds to a large relative perturbation in‖A‖. On
the other hand if we permute the two rows of A to give

Ā =

(

10 −10
0.001 12

)

,

we have that

L = L̃ =

(

1 0
0.0001 1

)

, U =

(

10 −10
0 12.001

)

and Ũ =

(

10 −10
0 12.00

)

,

5 FLOATING POINT ERROR ANALYSIS 28

which gives

U − Ũ =

(

0 0
0 −0.001

)

and

F = L̃Ũ − A =

(

0 0
0 −0.001

)

= U − Ũ .

This time‖F‖ is small relative to both‖U‖ and‖A‖.

If we putm = max |m̃ij | then we can show that

g ≤ (1 + m)n−1.

Partial pivoting ensures that
m ≤ 1 and henceg ≤ 2n−1.

Only very special examples get anywhere near this bound, one example due to Wilkinson being
matrices of the form

A =

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1

...
...

...
...

...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1

, for whichU =

1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 0 1 · · · 0 4
...

...
...

...
...

...
0 0 0 · · · 1 2n−2

0 0 0 · · · 0 2n−1

.

Despite such examples, in practice partial pivoting is the method of choice, but careful software
should at least include an option to monitor the growth factor.

There are classes of matrices for which pivoting is not needed to controlthe growth ofg [Higham,
2002, Table 9.1]. Perhaps the most important case is that of symmetric positive definite matrices
for which it is known a priori that growth cannot occur, and so Gaussian elimination is stable when
applied to a system of equations for which the matrix of coefficients is symmetric positive definite9.

The choice of pivots is affected by scaling and equilibration, and a poor choice of scaling can lead
to a poor choice of pivots. A full discussion on pivoting strategies, equilibration and scaling, as well
as sage advice, can be found in Higham [2002].

For methods that use orthogonal transformations we can usually obtain similarerror bounds, but
without the growth factor, since orthogonal transformations preserve the 2−norm andF−norm.
For example, if we use Householder transformations to perform aQR factorization ofA for the
solution of the least squares problemminx ‖b − Ax‖

2
, whereA is anm by n, m ≥ n matrix of

rankn [Golub, 1965], the computed solutioñx satisfies

min
x

‖(b + f) − (A + E)x̃‖
2
,

wheref andE satisfy bounds of the form

‖f‖F ≤ c1mnu‖b‖F , ‖E‖F ≤ c2mnu‖A‖F .

9The variant of Gaussian elimination that is usually used in this case isCholesky’s method.

6 POSING THE MATHEMATICAL PROBLEM 29

andc1 andc2 are small integer constants [Lawson and Hanson, 1995, page 90].

Similarly, for the solution of the eigenvalue problemAx = λx, whereA is ann by n matrix, using
Housholder transformations to reduceA to upper Hessenberg form, followed by theQR algorithm to
further reduce the Hessenberg form to upper triangular Schur form, the computed solution satisifies

(A + E)x̃ = λ̃x̃

where
‖E‖F ≤ p(n)u‖A‖F

andp(n) is a modestly growing function ofn [Wilkinson, 1965; Anderson et al., 1999].

We note that the bounds discussed so far are callednormwisebounds, but in many cases they can
be replaced bycomponentwisebounds which bound the absolute values of the individual elements,
and so are rather more satisfactory. For instance, ifA is a sparse matrix, we would probably prefer
not to have to perturb the elements that are structurally zero. As a simple example, consider the
triangular equations

Tx = b, T − n by n triangular,

and letx̃ be the solution computed by forward or backward substitution, depending on whetherT
is lower or upper triangular respectively. Then it can readily be shown that x̃ satisifes

(T + E)x̃ = b, with |eij | ≤ nu|tij |,

which is a strong componentwise result showing backward stability [Higham, 2002, Theorem 8.5].

Associated with componentwise error bounds are componentwise condition numbers. Once again
see Higham [2002] for further details and references.

6 Posing the Mathematical Problem

In this short section we merely wish to raise awareness of the need to model a problem correctly,
without offering any profound solution.

It can be all too easy to transform a well-conditioned problem into an ill-conditioned problem. For
instance, in Example 4.10 we transformed the well-conditioned quadrature problem of finding

yn = (1/e)

∫

1

0

xnexdx, n ≥ 0,

into the ill-conditioned problem of findingyn from the forward recurrence relation

yn = 1 − nyn−1, y0 = 1 − 1/e.

As another example, we noted in Section 4.3 that polynomials can be very ill-conditioned. It follows
that the eigenvalues of a matrixA should most certainly not be computed via the characteristic
equation ofA. For example, ifA is a symmetric matrix with eigenvaluesλi = i, i = 1, 2, . . . , 20,
then the characteristic equation ofA, det(A − λA), is very ill-conditioned (see Example 4.17).

7 ERROR BOUNDS AND SOFTWARE 30

On the other hand, the eigenvalues of a symmetric matrix are always well-conditioned [Wilkinson,
1965, Section 31, Chapter 2].

The above two examples illustrate the dangers in transforming the mathematical problem. Some-
times it can be poor modelling of the physical problem that gives rise to an ill-conditioned mathe-
matical problem, and so we need to think carefully about the whole modelling process.

We cannot blame software for giving us poor solutions if we provide the wrong problem. We can,
of course, hope that the software might provide a measure for the condition of the problem, or some
measure of the accuracy of the solution to give us warning of a poorly posed problem.

At the end of Section 4.1 we also mentioned the desirability of careful choice of measurement units,
in order to help avoid the effects of poor scaling.

7 Error Bounds and Software

In this section we give examples of reliable software that return information about the quality of the
solution. Firstly we look at the freely available software package LAPACK [Anderson et al., 1999],
and then at an example of a commercial software library, the NAG Library [NAG, a]. The author of
this report has to declare an interest in both of these software products;he is one of the authors of
LAPACK and is currently a software developer employed by NAG Ltd. Naturally, the examples are
chosen because of familiarity with the products and belief in them as quality products, but I have
nevertheless tried not to introduce bias.

LAPACK stands forLinearAlgebraPACKage and is a numerical software package for the solu-
tion of dense and banded linear algebra problems aimed at PCs, workstationsand high-performance
shared memory machines. One of the aims of LAPACK was to make the software efficient on mod-
ern machines, whilst retaining portability, and to this end it makes extensive use of the Basic Linear
Algebra Subprograms (BLAS), using block-partitioned algorithms based upon the Level 3 BLAS
wherever possible. The BLAS specify the interface for a set of subprograms for common scalar
and vector (Level 1), matrix-vector (Level 2) and matrix-matrix operations (Level 3). Their motiva-
tion and specification are given in Lawson et al. [1979], Dongarra et al. [1988a] and Dongarra et al.
[1990] respectively. Information on block-partitioned algorithms and performance of LAPACK can
be found in Anderson et al. [1999, Chapter 3]. See also Golub and VanLoan [1996, particularly
Section 1.3], and [Stewart, 1998, Chapter 2], which also has some nice discussion on computation.

LAPACK has routines for the solution of systems of linear equations, linear least squares problems,
eigenvalue and singular value problems, including generalized problems, as well as routines for the
underlying computational components such as matrix factorizations. In addition, a lot of effort was
expended in providing condition and error estimates. Quoting from the firstparagraph of Chapter 4
– Accuracy and Stability – of the LAPACK Users’ Guide:

“In addition to providing faster routines than previously available, LAPACKprovides
more comprehensive and better error bounds. Our goal is to provide error bounds for
most quantities computed by LAPACK.”

In many cases the routines return the bounds directly; in other cases the Users’ Guide gives details
of error bounds and provides code fragments to compute those bounds.

http://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 31

As an example, routine DGESVX10 solves a system of linear equationsAX = B, whereB is a
matrix of one or more right-hand sides, using Gaussian elimination with partial pivoting. Part of the
interface is

SUBROUTINE DGESVX(..., RCOND, FERR, BERR, WORK, ..., INFO)

where the displayed arguments return the following information:

RCOND - Estimate of reciprocal of condition number,1/κ(A)
FERR(j) - Estimated forward error forXj

BERR(j) - Componentwise relative backward error forXj (smallest relative
change in any element ofA andBj that makesXj an exact solu-
tion)

WORK(1) - Reciprocal of pivot growth factor,1/g
INFO - Returns a positive value if the computed triangular factorU is

singular or nearly singular

Thus DGESVX is returning all the information necessary to judge the quality ofthe computed
solution.

The routine returns an estimate of1/κ(A), rather thanκ(A) to avoid overflow whenA is singular,
or very ill-conditioned. The argument INFO is the LAPACK warning or error flag, and is present
in all the LAPACK user callable routines. It returns zero on successfulexit, a negative value if
an input argument is incorrectly supplied, for examplen < 0, and a positive value in the case
of failure, or near failure as above. In the above example, INFO returns the valuei if uii = 0,
in which case no solution is computed sinceU is exactly singular, but returns the valuen + 1 if
1/κ(A) < u, in which caseA is non-singular to working precision. In the latter case a solution
is returned, and so INFO =n + 1 acts as a warning that the solution may have no correct digits.
The routine also has the option to equilibrate the matrixA. See the documentation of the routine
for further information, either in the Users’ Guide, or in the source code available from netlib at
http://www.netlib.org/lapack/index.html .

As a second example from LAPACK, routine DGEEVX solves the eigenproblemAx = λx for the
eigenvalues and eigenvectors,λi, xi, i = 1, 2, . . . , n of then by n matrixA. Optionally, the matrix
can be balanced and the left eigenvectors ofA can also be computed. Part of the interface is

SUBROUTINE DGEEVX(..., ABNRM, RCONDE, RCONDV, ...)

where the displayed arguments return the following information:

ABNRM - Norm of the balanced matrix
RCONDE(i) - Reciprocal of the condition number for theith eigenvalue,si

RCONDV(i) - Reciprocal of the condition number for theith eigenvector, sepi

10In the LAPACK naming scheme the D stands for double precision, GE for general matrix, SV for solver and X for
expert driver

http://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 32

Following a call to DGEEVX, approximate error bounds for the computed eigenvalues and eigen-
vectors, say EERRBD(i) and VERRBD(i), such that

|λ̃i − λi| ≤ EERRBD(i)

θ(ν̃i, νi) ≤ VERRBD(i),

whereθ(ν̃i, νi) is the angle between the computed and true eigenvector, may be returned by the
following code fragment, taken from the Users’ Guide:

EPSMCH = DLAMCH(’E’)
DO 10 I = 1, N

EERRBD(I) = EPSMCH* ABNRM/RCONDE(I)
VERRBD(I) = EPSMCH* ABNRM/RCONDV(I)

10 CONTINUE

These bounds are based upon Table 3, extracted from Table 4.5 of the LAPACK Users’ Guide, which
gives approximate asymptotic error bounds for the nonsymmetric eigenproblem. These bounds as-

Simple eigenvalue |λ̃i − λi| . ‖E‖
2
/si

Eigenvector θ(ν̃i, νi) . ‖E‖F /sepi

Table 3: Asymptotic Error Bounds forAx = λx

sume that the eigenvalues are simple eigenvalues. In addition if the problem is ill-conditioned,
these bounds may only hold for extremely small‖E‖

2
and so the Users’ Guide also provides a

table of global error bounds which are not so restrictive on‖E‖
2
. The tables in the Users’ Guide

include bounds for clusters of eigenvalues and for invariant subspaces, and these bounds can be
estimated using DGEESX in place of DGEEVX. For further details see The LAPACK Users’ Guide
[Anderson et al., 1999, Chapter 4] and for further information see Golub and Van Loan [1996, Chap-
ter 7] and Stewart and Sun [1990].

LAPACK is freely available via netlib11, is included in the NAG Fortran 77 Library and is the basis
of the dense linear algebra in the NAG Fortran 90 and C Libraries. Tuned versions of a number
of LAPACK routines are included in the NAG Fortran SMP Library. The matrixcomputations
of MATLAB have been based upon LAPACK since Version 6 [MathWorks; Higham and Higham,
2005].

We now take an example from the NAG Fortran Library. Routine D01AJF is a general purpose
integrator using an adaptive procedure, based on the QUADPACK routine QAGS [Piessens et al.,
1983], which performs the integration

I =

∫ b

a

f(x)dx,

where[a, b] is a finite interval. Part of the interface to D01AJF is

SUBROUTINE D01AJF(..., EPSABS, EPSREL, RESULT, ABSERR, .. .)

11http://www.netlib.org/lapack/index.html

7 ERROR BOUNDS AND SOFTWARE 33

where the displayed arguments return the following information:

EPSABS - The absolute accuracy required
EPSREL - The relative accuracy required
RESULT - The computed approximation toI
ABSERR - An estimate of the absolute error

In normal circumstancesABSERRsatisfies

|I − RESULT| ≤ ABSERR≤ max(EPSABS, EPSREL× |I|).

See the NAG Library documentation [NAG, b] and Piessens et al. [1983] for further details. QUAD-
PACK is freely available from netlib12, and a Fortran 90 version of QAGS is available from the more
recent quadature package, CUBPACK [Cools and Haegemans, 2003], which is also available from
netlib. Typically the error estimate for a quadrature routine is obtained at the expense of additional
computation with a finer interval, or mesh, or the use of a higher order quadrature formula.

As a second example from the NAG Library we consider the solution of an ODE. Routine D02PCF
integrates

y′ = f(t, y), giveny(t0) = y0,

wherey is then element solution vector andt is the independent variable, using a Runge-Kutta
method. Following the use of D02PCF, routine D02PZF may be used to compute global error
estimates. Part of the interface to D02PZF is

SUBROUTINE D02PZF(RMSERR, ERRMAX, TERRMX, ...)

where the displayed arguments return the following information:

RMSERR(i) - Approximate root mean square error foryi

ERRMAX - Maximum approximate true error
TERRMX - First point at which maximum approximate true error occurred

The assessment of the error is determined at the expense of computing a more accurate solution
using a higher order method to that used for the original solution.

The NAG D02P routines are based upon the RKSUITE software by Brankin et al. [1992], which is
also available from netlib13. See also Shampine and Gladwell [1992] and Brankin et al. [1993]. A
Fortran 90 version of RKSUITE is also available14, see Brankin and Gladwell [1997].

Many routines in the NAG Library attempt to return information about accuracy. The documentation
of the routines includes a section labelled “Accuracy” which, when appropriate, gives further advice
or information. For instance, the optimization routines generally quote the optimalityconditions
that need to be met for the routine to be successful. These routines are cautious, and sometimes
return a warning, or error, when it is likely that an optimum point has been found, but not all the
optimality conditions have been met. NAG and the authors of the routines feel that this is much the
best approach for reliability – even if users would sometimes prefer that wewere more optimistic!

12http://www.netlib.org/quadpack/
13http://www.netlib.org/ode/rksuite/
14http://www.netlib.org/ode/rksuite/ or http://www.netlib.org/toms/771

http://www.netlib.org/toms/824
http://www.netlib.org/quadpack/
http://www.netlib.org/ode/rksuite/
http://www.netlib.org/ode/rksuite/
http://www.netlib.org/toms/771

8 OTHER APPROACHES 34

8 Other Approaches

What does one do if the software does not provide suitable estimates for theaccuracy of the solution,
or the sensitivity of the problem? One approach is to run the problem with perturbed data and
compare solutions. Of course, the difficulty with this approach is to know howbest to choose
perturbations. If a small perturbation does significantly change the solution, then we can be sure
that the problem is sensitive, but of course we cannot rely on the converse. If we can have trust that
the software implements a stable method, then any sensitivity in the solution is due to the problem,
but otherwise we cannot be sure whether it is the method or problem that is sensitive.

To help estimate such sensitivity there exists software that uses stochastic methods to give statis-
tical estimates of backward error, or of sensitivity. One such example, PRECISE, is described in
Chaitin-Chatelin and Frayssé [1996, Chapter 8] and provides a module for statistical backward er-
ror analysis as well as a module for sensitivity analysis. Another example is CADNA15; see for
example Vignes [1993].

Another approach to obtaining bounds on the solution is the use of interval arithmetic, in conjunction
with interval analysis [Moore, 1979; Kreinovich; Alefeld and Mayer, 2000]. Some problems can be
successfully solved using interval arithmetic throughout, but for some problems the bounds obtained
would be far too pessimistic; however interval arithmetic can often be applied as an posteriori tool to
obtain realistic bounds. We note that there is a nice interval arithmetic toolbox for Matlab, INTLAB,
by Rump [1999] that is freely available16; see also Hargreaves [2002]. It should be noted that in
general, the aim of interval arithmetic is to return forward error bounds onthe solution.

Example 8.1 (Cancellation and interval arithmetic)
As a very simple example consider the computation ofs in Example 3.1 using four figure interval
arithmetic. Bearing in mind that interval arithmetic works with intervals that are guaranteed to
contain the exact solution, we find that

s =
[

s1 s2
]

=
[

1.000 1.000
]

+
[

1.000 × 104 1.000 × 104
]

−
[

1.000 × 104 1.000 × 104
]

=
[

1.000 × 104 1.001 × 104
]

−
[

1.000 × 104 1.000 × 104
]

=
[

0 10
]

,

so whilst the result is somewhat pessimistic, it does give due warning of the cancellation.

Finally we comment that one should not be afraid to exert pressure on software developers to provide
features that allow one to estimate the sensitivity of the problem and the accuracy of the solution.

9 Summary

We have tried to illustrate the niceties of numerical computation and the detail that needs to be
considered when turning a numerical algorithm into reliable, robust numerical software. We have
also tried to describe and illustrate the ideas that need to be understood to judge the quality of

15At the time of writing, a free academic version is available fromhttp://www-anp.lip6.fr/cadna/Accueil.php
16http://www.ti3.tu-harburg.de/english/index.html

http://www-anp.lip6.fr/cadna/Accueil.php
http://www.ti3.tu-harburg.de/english/index.html

REFERENCES 35

a numerical solution, especially condition, stability and error analysis, including the distinction
between backward and forward errors.

We emphasise that one should most certainly be concerned about the qualityof computed solu-
tions, and use trustworthy quality software. We cannot just blithely assume that results returned by
software packages are correct.

This is not always easy since scientists wish to concentrate on their scienceand should not really
need to be able to analyse an algorithm to understand whether or not it is a stable method for solving
their problem. Hence the emphasis in this report on the desirability of softwareproviding proper
measures of the quality of the solution.

We conclude with a quotation:

“You have been solving these damn problems better than I can pose them.”
Sir Edward Bullard, Director NPL, in a remark to Wilkinson in the mid 1950s. See

Wilkinson [1985, p. 11].

Software developers should strive to provide solutions that are at leastas good as the data deserves.

References

F. S. Acton.Numerical Methods thatUsually Work. Harper and Row, New York, USA, 1970.

F. S. Acton.Real Computing Made Real: Preventing Errors in Scientific and Engineering Calcula-
tions. Princeton University Press, Princeton, NJ, USA, 1996. ISBN 0-691-03663-2.

G. Alefeld and G. Mayer. Interval analysis: Theory and applications.J. Comput. Appl. Math., 121:
421–464, 2000.

E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. C. Sorensen.LAPACK Users’ Guide. SIAM,
Philadelphia, PA, USA, 3rd edition, 1999. ISBN 0-89871-447-8. (www.netlib.org/lapack/lug/).

D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givens rotations reliably and
efficiently. ACM Trans. Math. Software, 28:206–238, 2002.

L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, A. Petitet, H. Ren,
K. Stanley, and R. C. Whaley. Practical experience in the numerical dangers of heterogeneous
computing.ACM Trans. Math. Software, 23:133–147, 1997.

R. W. Brankin and I. Gladwell. Algorithm 771:rksuite 90 : Fortran 90 software for ordinary
differential equation initial-value problems.ACM Trans. Math. Software, 23:402–415, 1997.

R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of runge-kutta codes for the
initial value problem for ODEs. Softreport 92-S1, Mathematics Department,Southern Methodist
University, Dallas, TX 75275, USA, 1992.

REFERENCES 36

R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of explicit runge-kutta codes. In
R. P. Agarwal, editor,Contributions to Numerical Mathematics, pages 41–53. World Scientific,
River Edge, NJ, USA, 1993. (WSSIAA, vol. 2).

J. L. Britton, editor.Collected Works of A. M. Turing: Pure Mathematics. North-Holland, Amster-
dam, The Netherlands, 1992. ISBN 0-444-88059-3.

F. Chaitin-Chatelin and V. Frayssé.Lectures on Finite Precision Computations. SIAM, Philadelphia,
PA, USA, 1996. ISBN 0-89871-358-7.

T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing the sample variance: Analy-
sis and recommendations.The American Statistician, 37:242–247, 1983.

R. Cools and A. Haegemans. Algorithm 824: CUBPACK: A package for automatic cubature;
framework description.ACM Trans. Math. Software, 29:287–296, 2003.

M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets and other packages used in
metrology: Testing functions for the calculation of standard deviation. NPL Report CMSC 07/00,
Centre for Mathematics and Scientific Computing, National Physical Laboratory, Teddington,
Middlesex TW11 0LW, UK, 2000.

D. S. Dodson. Corrigendum: Remark on “Algorithm 539: Basic Linear Algebra Subroutines for
FORTRAN usage”.ACM Trans. Math. Software, 9:140, 1983.

D. S. Dodson and R. G. Grimes. Remark on algorithm 539: Basic Linear Algebra Subprograms for
Fortran usage.ACM Trans. Math. Software, 8:403–404, 1982.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN Basic
Linear Algebra Subprograms.ACM Trans. Math. Software, 14:1–32, 399, 1988a. (Algorithm
656. See also Dongarra et al. [1988b]).

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Corrigenda: “An extended set of
FORTRAN Basic Linear Algebra Subprograms”.ACM Trans. Math. Software, 14:399, 1988b.
(See also Dongarra et al. [1988a]).

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra
Subprograms.ACM Trans. Math. Software, 16:1–28, 1990. (Algorithm 679).

A. A. Dubrulle. A class of numerical methods for the computation of Pythagorean sums.IBM J.
Res. Develop., 27(6):582–589, November 1983.

B. Einarsson, editor. Accuracy and Reliability in Scientific Computing. SIAM,
Philadelphia, PA, USA, 2005. ISBN 0-89871-584-9. (Accompanying web site:
http://www.nsc.liu.se/wg25/book/).

G. E. Forsythe. Pitfalls in computation, or why a math book isn’t enough.Amer. Math. Monthly, 9:
931–995, 1970.

G. E. Forsythe. What is a satisfactory quadratic equation solver. In B. Dejon and P. Henrici, editors,
Constructive Aspects of the Fundamental Theorem of Algebra, pages 53–61. Wiley, New York,
NY, USA, 1969.

http://www.nsc.liu.se/wg25/book/

REFERENCES 37

L. Fox. How to get meaningless answers in scientific computation (and what todo about it). IMA
Bulletin, 7:296–302, 1971.

W. Givens. Numerical computation of the characteristic values of a real symmetric matrix. Technical
Report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, 1954.

G. H. Golub. Numerical methods for solving linear least squares problems.Numer. Math., 7:
206–216, 1965.

G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996. ISBN 0-8018-5414-8.

S. Hammarling. An introduction to the quality of computed solutions. In B. Einarsson, editor,
Accuracy and Reliability in Scientific Computing, pages 43–76. SIAM, Philadelphia, PA, USA,
2005. (Accompanying web site for book:http://www.nsc.liu.se/wg25/book/).

G. Hargreaves. Interval analysis in MATLAB. Master’s thesis, Department of Mathematics, Uni-
versity of Manchester, Manchester M13 9PL, UK, 2002.

D. J. Higham and N. J. Higham.MATLAB Guide. SIAM, Philadelphia, PA, USA, 2nd edition, 2005.
ISBN 0-89871-578-4.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, USA,
second edition, 2002. ISBN 0-89871-521-0.

N. J. Higham. Can you “count” on your computer?
http://www.maths.man.ac.uk/ ˜ higham/talks/ , 1998. (Public lecture for
Science Week 1998).

IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985. IEEE Press, New
York, NY, USA, 1985.

IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: Std 854-1987. IEEE
Press, New York, NY, USA, 1987.

E. Isaacson and H. B. Keller.Analysis of Numerical Methods. Wiley, New York, NY, USA, 1966.
(Reprinted with corrections and new Preface by Dover Publications, NewYork, 1994, ISBN 0-
486 68029-0).

L. Knüsel. On the accuracy of statistical distributions in Microsoft Excel 97.Comput. Statist. Data
Anal., 26:375–377, 1998.

V. Kreinovich. Interval computations.http://www.cs.utep.edu/interval-comp/ .

C. L. Lawson and R. J. Hanson.Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1974. (Republished as Lawson and Hanson [1995]).

C. L. Lawson and R. J. Hanson.Solving Least Squares Problems. Classics in Applied Mathe-
matics, 15. SIAM, Philadelphia, PA, USA, 1995. ISBN 0-89871-356-0.(Revised version of
Lawson and Hanson [1974]).

http://www.nsc.liu.se/wg25/book/
http://www.maths.man.ac.uk/~higham/talks/
http://www.cs.utep.edu/interval-comp/

REFERENCES 38

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
FORTRAN usage.ACM Trans. Math. Software, 5:308–323, 1979. (Algorithm 539. See also
Dodson and Grimes [1982] and Dodson [1983]).

R. S. Martin and J. H. Wilkinson. Similarity reduction of a general matrix to Hessenberg form.
Numer. Math., 12:349–368, 1968. (See also [Wilkinson and Reinsch, 1971, pp 339–358]).

MathWorks. MATLAB. The Mathworks, Inc.http://www.mathworks.com .

B. D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel 2000
and Excel XP.Comput. Statist. Data Anal., 40:713–721, 2002.

B. D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel 97.
Comput. Statist. Data Anal., 31:27–37, 1999.

M. Metcalf and J. K. Reid.Fortran 90/95 Explained. Oxford University Press, Oxford, UK, 1996.

M. Metcalf, J. K. Reid, and M. Cohen.Fortran 95/2003 Explained. Oxford University Press,
Oxford, UK, 2004. ISBN 0 19 852693 8.

C. Moler and D. Morrison. Replacing square roots by Pythagorean sums. IBM J. Res. Develop., 27
(6):577–581, November 1983.

R. E. Moore.Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA, USA, 1979.

NAG(a). The NAG Library. NAG Ltd. http://www.nag.com/numeric/ , or
http://www.nag.co.uk/numeric/ .

NAG(b). The NAG Fortran Library Manual. NAG Ltd.
http://www.nag.com/numeric/fl/manual/html/FLlibrary manual.asp , or
http://www.nag.co.uk/numeric/fl/manual/html/FLlibra rymanual.asp .

M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia,
PA, USA, 2001. ISBN 0-89871-482-6.

R. Piessens, E. de Doncker-Kapenga, C. W.Überhuber, and D. K. Kahaner.QUADPACK – A
Subroutine Package for Automatic Integration. Springer-Verlag, Berlin, Germany, 1983.

D. M. Priest. Efficient scaling for complex division.ACM Trans. Math. Software, 30:389–401,
2004.

S. M. Rump. INTLAB – INTerval LABoratory. In T. Csendes, editor,Developments in Reliable
Computing, pages 77–104. Kluwer Academic, Dordrecht, The Netherlands, 1999.

L. F. Shampine and I. Gladwell. The next generation of rünge-kutta codes. In Cash J. R. and
I. Gladwell, editors,Computational Ordinary Differential Equations, pages 145–164. Oxford
University Press, Oxford, UK, 1992. (IMA Conference Series, New Series 39).

R. L. Smith. Algorithm 116: Complex division.Communs Ass. comput. Mach., 5:435, 1962.

G. W. Stewart. Matrix Algorithms: Basic Decompositions, volume I. SIAM, Philadelphia, PA,
USA, 1998. ISBN 0-89871-414-1.

http://www.mathworks.com
http://www.nag.com/numeric/
http://www.nag.co.uk/numeric/
http://www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp
http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp

REFERENCES 39

G. W. Stewart. A note on complex division.ACM Trans. Math. Software, 11:238–241, 1985.

G. W. Stewart and J. Sun.Matrix Perturbation Theory. Academic Press, London, UK, 1990.

A. M. Turing. Rounding-off errors in matrix processes.Q. J. Mech. appl. Math., 1:287–308, 1948.
(Reprinted in Britton [1992] with summary, notes and corrections).

J. Vignes. A stochastic arithmetic for reliable scientific computation.Math. and Comp. in Sim., 35:
233–261, 1993.

J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science, No.32.
HMSO, London, UK, 1963. (Also published by Prentice-Hall, EnglewoodCliffs, NJ, USA,
1964, translated into Polish as Bledy Zaokragleń w Procesach Algebraicznych by PWW, War-
saw, Poland, 1967 and translated into German as Rundungsfehler by Springer-Verlag, Berlin,
Germany, 1969. Reprinted by Dover Publications, New York, 1994).

J. H. Wilkinson.The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK, 1965.
(Also translated into Russian by Nauka, Russian Academy of Sciences, 1970).

J. H. Wilkinson. The perfidious polynomial. In G. H. Golub, editor,Studies in Numerical Analysis,
Volume 24, chapter 1, pages 1–28. The Mathematical Association of America, 1984.(Awarded
the Chauvenet Prize of the Mathematical Association of America).

J. H. Wilkinson. Error analysis revisited.IMA Bulletin, 22:192–200, 1986. (Invited lecture at
Lancaster University in honour of C. W. Clenshaw, 1985).

J. H. Wilkinson. Error analysis of direct methods of matrix inversion.J. ACM, 8:281–330, 1961.

J. H. Wilkinson. The state of the art in error analysis.NAG Newsletter, 2/85:5–28, 1985. (Invited
lecture for the NAG 1984 Annual General Meeting).

J. H. Wilkinson. Error analysis of floating-point computation.Numer. Math., 2:319–340, 1960.

J. H. Wilkinson and C. Reinsch, editors.Handbook for Automatic Computation, Vol.2, Linear
Algebra. Springer-Verlag, Berlin, Germany, 1971.

